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Global Energy Systems Are Coupled With Emissions
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Energy Institute Statistical Review of World Energy; Friedlingstein, P. et.al, Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811-4900
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Renewables Least Expensive New Electricity Source for 2/3 of the World

Cheapest source of Bulk Generation. Current LCOEs of New build solar, wind, coal and gas (2021)
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Source: BloombergNEF. Note: The map shows the technology with the lowest LCOE for new-build plants in each country where BNEF has data (H1, 2021).
The dollar numbers denote the pe-MWh benchmark levelized cost of the cheapest technology. All LCOESs are in nominal terms.
Calculations exclude subsidies, tax-credit or grid cannection costs. CCGT is combined-cycle gas turbine.



The Industrial Decarbonization Challenge
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World Economic Forum, How 6 heavy-emitting industries are working to decarbonize, 2024 a EEEEE






Solutions Approach

Three Pillars for Success

Digital transformation and automation
Electrification and grid integration
Economic and environmental impact

assessment (i.e., the new business

environment — win/win is a must) Business &
Environment




Demand Side is Critical

Demand-side mitigation

Can be achieved through changes in:
socio-cultural factors
infrastructure design
end-use technology adoption

Load management

Demand-side flexibility that cuts across all sectors
can be achieved through incentive design like time
of use pricing/monitoring by artificial intelligence,
diversification of storage facilities, etc.

Electricity: indicative impacts of change in service demand
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Reduced emissions through demand-side
mitigation options (in end-use sectors:
buildings, industry and land transport)
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*Dependent on variability of the carbon intensity of electric supply

W Additional electrification (+60%)

Additional emissions from increased
electricity generation to enable the
end-use sectors' substitution of electricity
for fossil fuels, e.g. via heat pumps and
electric cars

Source: IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group Il to the Sixth AssessmentReport of the Intergovernmental Panel on Climate Change | data to 2050
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‘Flexibility’ Key Enabler for Smart Energy Consumption
I] [] Example of flexible operation in response to variable electricity prices
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Power and process integration leads
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SE Sustainability Research Institute; Mallapragada, Dharik S., et al. "Decarbonization of the chemical industry through electrification: Barriers and opportunities.” Joule 7.1 (2023): 23-41.
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SE Approach to Industry E2E Systems —Value Beyond Carbon

Molecule Flows
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Grid Costs Sensitivity — Modeled Variation as Key Variable T
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Green Steel Hydrogen Demands Most Electricity in Process

Iron Ore
Effect of Electricty Price and Discount Rate on DRI/EAF Steel
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Green Steel Optimization Model

Life Is On
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Variables ——  Green Steel Production Optimization Model (CAPEX and OPEX) ——— Outputs
Target: Minimize Levelized Cost of Steel (LCOS) Production
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Kwan, T.A., 2025, Beyond Grid Dependency: The Technical and Economic Case for New Energy Systems in Green Steel, Schneider El ectric
Sustainability Research Institute
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Green Steel Market Prices vs Production Cost

Market Prices vs Modeled Green Steel Production Cost
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Key Takeaways

Semi-Islanded Configurations Offer Superior Economics and Emissions Performance

Steel plants that strategically combine grid electricity with onsite renewables can produce greener steel at lower costs than either fully grid-dependent or
fully off-grid facilities, offering a practical pathway to cleaner steel production. Optimized hybrid energy systems with partial grid connectivity achieve 12-
15% lower levelized steel costs than grid-only alternatives, with LCOS ranging from $781-811/tonne compared to $887-929/tonne, while enabling
emissions reductions of 46-84% versus conventional routes.

Higher Capital Investment in Renewable Integration Yields Long-Term Savings

Investing more upfront in renewable energy and hydrogen systems for steel production ultimately saves money by reducing exposure to unpredictable
electricity prices and creating opportunities to benefit from price swings in energy markets. While semi-islanded configurations require 60-84% higher
initial investment ($4.5-7.9B versus $2.8-4.3B for grid-only systems), this capital premium delivers superior lifecycle economics through operational cost
reductions and strategic energy arbitrage during volatile grid pricing periods.

Energy Storage Preferences Challenge Conventional Assumptions

The research reveals that storing energy as hydrogen—which can later be used directly in steel production—makes more economic sense than batteries
for most steel plants, creating natural synergies between energy storage and manufacturing needs. Hydrogen consistently emerges as the preferred
energy storage medium across optimization scenarios, serving dual purposes as both process input and energy buffer, with battery storage becoming
economically viable only under specific high-volatility pricing conditions.

Grid Price Volatility Creates Economic Opportunity

Fluctuating electricity prices, often considered a challenge for industry, can actually benefit steel producers with hybrid energy systems by allowing them to
purchase grid power when cheap and use their own renewable energy when prices spike. Counterintuitively, increased grid price volatility consistently
reduced overall production costs while driving investment toward expanded energy storage capacity, with the lowest LCOS achieved at the highest
volatility scenarios tested.
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