
Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

1

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

2

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

3

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

4

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

5

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

6

So what’s MapReduce?
Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed, parallel execution environment for
those tasks.

7

It’s a really big deal!
Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed execution environment for those
tasks.

Largest Apache Spark cluster is 8000 nodes.

200 node Spark cluster sorted 100TB of data in 23 minutes.

8

Word count in five lines
text_file = spark.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

 .map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

9

Programmer doesn’t have to worry about
How the data is distributed across the cluster

Managing data operations performed by each machine

Fault tolerance

The distributed nature of the platform

10

MapReduce is a great example of
separation of concerns.

11

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

12

What does multi-party computation give us?
Given multiple parties p1, p2, …, pn with private inputs x1, x2, …, xn

Need to compute f(x1, x2, …, xn)

Without revealing more than the outputs of f

Sounds a bit like a magic trick...

13

Quick example: the sum of secrets

14

Split secrets into “shares”

15

Distribute shares

16

Add shares, (this results in more shares)

17

Recombine shares

18

Lo and behold

19

20

MPC is
magic!

MapReduce
is pretty cool!

21

So what?

Let’s think about pay (in)equity for a moment
Each company can use MapReduce to find the salary differences in their own
data.

The companies can use MPC to find the collective difference without revealing
their data.

22

Let’s think about pay (in)equity for a moment
Each company can use MapReduce to find the salary differences in their own
data.

→ Lots of computation

The companies can use MPC to find the collective difference without revealing
their data.

→ Just one addition

23

Why bother splitting tasks up like that?

24

Performance!
Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.

25

Usability
Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.

Data analysts don’t know about MPC (or think they do).

MPC frameworks require a steep learning curve (trust me...).

Direct disconnect between user expertise and available tools.

 What about separation of concerns?

26

27

Let’s put MapReduce and
MPC together!

Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure

28

The main components of Scatter
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a compiled Scatter program.

29

Let’s explore Scatter top-down
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a compiled Scatter program.

30

MapReduce primer coming up!

31

MapReduce is all about key-value stores

32

bear, 1 bear, 2

wolf, 2

MR operations are functions on key-value stores

33

bear, 1

bear, 2

wolf, 2

filter(bear)
bear, 1

bear, 2

bear, 1

bear, 2

wolf, 2

reduce(+)

bear, 3

wolf, 2

Pay equity in Scatter
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(+, filter("m", data))
 6: f := reduce(+, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

34

Declaring the key-value store
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(+, filter("m", data))
 6: f := reduce(+, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

35

What about MPC?

36

What about MPC?

37

Two main constructs Scatter, and Gather.

(Finally, the mystery is lifted.)

Scatter: make secret and share

38

bear, 1 bear, 2 deer, 2

Split* values into shares

39

bear, 1 bear, 2 deer, 2

bear, s1

bear, s2

bear, s3

bear, t1

bear, t2

bear, t3

deer, u1

deer, u2

deer, u3

* using the MPC backend secret sharing implementation

Send and receive shares

40

bear, 1 bear, 2 deer, 2

bear, s1

bear, t1

deer, u1

bear, s2

bear, t2

deer, u2

bear, s3

bear, t3

deer, u3

Now let’s say we want to reduce(+)

41

bear, 1 bear, 2 deer, 2

bear, s1

bear, t1

deer, u1

bear, s2

bear, t2

deer, u2

bear, s3

bear, t3

deer, u3

Now let’s say we want to reduce(+)

42

bear, 1 bear, 2 deer, 2

bear,
s1+t1

deer, u1

bear,
s2+t2

deer, u2

bear,
s3+t3

deer, u3

Gather: collect and reveal

43

bear, 1 bear, 2 deer, 2

bear,
s1+t1

deer, u1

bear,
s2+t2

deer, u2

bear,
s3+t3

deer, u3

Send shares to specified participant

44

bear, 1 bear, 2 deer, 2

bear,
s1+t1

deer, u1

bear,
s2+t2

deer, u2

bear,
s3+t3

deer, u3

Recombine shares

45

bear, 1 bear, 2 deer, 2

bear, 3

deer, 2

Complete pay equity Scatter program
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(x, y, +, filter("m", data))
 6: f := reduce(x, y, +, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

46

Each company will execute this locally
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(lambda x,y: x+y, filter("m", data))
 6: f := reduce(lambda x,y: x+y, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

47

The companies will need to perform an MPC
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(lambda x,y: x+y, filter("m", data))
 6: f := reduce(lambda x,y: x+y, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

48

What to do with a Scatter program?
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a compiled Scatter program.

49

Our current target frameworks

5050

“a fast and general engine for
large-scale data processing”

MPC framework that allows
for Shamir secret sharing,
arithmetic, and comparison
over secret shares

Let’s compile Scatter code to PySpark*
 5: own m := reduce(lambda x,y: x+y,
 filter("m", data))
 6: own f := reduce(lambda x,y: x+y,
 filter("f", data))
 7: own d := m - f

m = data.filter(lambda x: x[0] == 'm')\

 .reduceByKey(lambda x, y: x + y)\

 .collect()

f = data.filter(lambda x: x[0] == 'f')\

 .reduceByKey(lambda x, y: x + y)\

 .collect()

d = ('d', m[0][1] - f[0][1])

51* Apache Spark’s Python API

Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
 scatter(d)))

def input(in_handle):

 return in_handle.read()

def output(result, out_handle):

 out_handle.write(result)

def reduceByKey(lmbd, kv_store):

 distinct_keys = set(map(lambda x: x[0], kv_store))

 res = []

 for k in distinct_keys:

 pairs_for_key = filter(lambda x: x[0] == k, kv_store)

 values_for_key = map(lambda x: x[1], pairs_for_key)

 v = reduce(lmbd, values_for_key)

 res.append((k, v))

 return res

def run(id, players, in_handle, out_handle):

 Zp = GF(104729)

 kv_store = input(in_handle)

 filtered = filter(lambda x: x[0] == 'diff', kv_store)

 mapped = map(lambda x: x[1], filtered)

 private_kv_store = sorted(mapped, key=lambda x: x[0])

def protocol(rt):

 def exchange_key_stores(rt):

 def create_shared_key_stores(keys, player_mask):

 keys_to_sharers = zip(

 [chr(k) for k in keys], player_mask)

 return keys_to_sharers

52

Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
 scatter(d)))

def key_store_sizes_ready(key_store_sizes):

 return [int(ks) for ks in key_store_sizes]

 def share_keys(key_store_sizes, rt, Zp):

 sorted_keys = []

 player_mask = []

 for player in rt.players:

 key_store_size = key_store_sizes[player - 1]

 for i in xrange(key_store_size):

 if rt.id == player:

 key = ord(private_kv_store[i][0])

 else:

 key = None

 sorted_keys.append(rt.shamir_share(

 [player], Zp, key, threshold=0))

 player_mask.append(player)

 gathered_keys = gather_shares(

 [rt.open(k) for k in sorted_keys])

 return gathered_keys.addCallback(create_shared_key_stores,

 player_mask)

 shared_key_store_sizes = rt.shamir_share(

 players, Zp, len(private_kv_store), threshold=0)

 opened_key_store_sizes = map(rt.open, shared_key_store_sizes)

 key_store_sizes = gather_shares(

 opened_key_store_sizes).addCallback(key_store_sizes_ready)

53

Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
 scatter(d)))

keys_to_sharers = key_store_sizes.addCallback(

 share_keys, rt, Zp)

 return keys_to_sharers

 def distribute_shares(rt, Zp, private_kv_store, keys_to_sharers):

 private_value_queue = collections.deque(

 map(lambda x: x[1], private_kv_store))

 shared_kv_store = []

 for key, sharer in keys_to_sharers:

 if sharer == rt.id:

 value = rt.shamir_share(

 [sharer], Zp, private_value_queue.popleft())

 else:

 value = rt.shamir_share([sharer], Zp)

 shared_kv_store.append((key, value))

 return shared_kv_store

 def open_shares(rt, kv_store, keys_to_owners, result_handler):

 owner_queue = collections.deque(

 map(lambda x: x[1], keys_to_owners))

 opened_res = filter(lambda x: bool(x[1]), [(k, rt.open(v, owner_queue.popleft()))

 for k, v in kv_store])

 expected_keys = sorted(map(lambda x: x[0], opened_res))

 result_kv_store = []

 for k, v in opened_res:

 v.addCallback(

 result_handler, k, result_kv_store, expected_keys)

54

Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
 scatter(d)))

 rt.wait_for(*(map(lambda x: x[1], opened_res)))

 def got_result(value, key, result_kv_store, expected_keys):

 result_kv_store.append((key, int(value.signed())))

 if expected_keys == sorted([x[0] for x in result_kv_store]):

 output(result_kv_store, out_handle)

 def _run(keys_to_sharers):

 dist_keys = set([x[0] for x in keys_to_sharers])

 keys_to_owners = [(k, [x[1] for x in keys_to_sharers])

 for k in dist_keys]

 shared_kv_store = distribute_shares(

 rt, Zp, private_kv_store, keys_to_sharers)

 summed_diff = reduceByKey(lambda x, y: x + y, shared_kv_store)

 open_shares(rt, summed_diff, keys_to_owners, got_result)

 exchange_key_stores(rt).addCallback(_run)

 pre_runtime = create_runtime(id, players, 1)

 pre_runtime.addCallback(protocol)

 reactor.run()

run(id, players, in_handle, out_handle)

55

Phew, we have executable code!
Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those
operations.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a Scatter program.

56

Executable where?
Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those
operations.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a Scatter program.

57

Let’s build our backend.
Give each client the computational resources to:

● run local MapReduce tasks on their data
● participate in MPC rounds to process data across companies
● coordinate those two actions

Let’s build a worker node.

58

What does each company start with?

Storage StorageStorage

59

Worker node Worker node Worker node

What do companies need to run MapReduce code?

Storage StorageStorageMR cluster MR clusterMR cluster

 MR API MR API MR API

60

Worker node Worker node Worker node

What do companies need to run MPC code?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MPC ClientMPC Client MR API MR API MR API

61

Worker node Worker node Worker node

What about coordinating program execution?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MPC ClientMPC Client MR API MR API MR API

Worker application Worker application Worker application

62

Worker node Worker node Worker node

Bundle up the software, we have our worker nodes!

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker application

MPC Client MR API

Worker application

MPC Client MR API

Worker application

63

Worker node Worker node Worker node

Almost done...
We have a distributed system.

We need to coordinate task execution not only within worker nodes but also
across worker nodes. (Why?)

Let’s build a controller node.

64

What goes inside a controller node?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

Storage

65

Controller node

Software to orchestrate task execution + worker
configuration

Storage StorageStorageMR cluster MR clusterMR cluster

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

Controller application

Storage

66

Controller node

Workers connect to Controller over HTTPS

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage

67

Controller node

Use controller to configure and connect MPC clients

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage

68

Controller node

Who controls the controller?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage

69

Controller node

And there we have it
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an
execution environment for a compiled Scatter program.

70

Open future
Extend compiler with static analysis tools.

And more!

71

