

So what's MapReduce?

Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed, parallel execution environment for those tasks.

It's a really big deal!

Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed execution environment for those tasks.

Largest Apache Spark cluster is 8000 nodes.

200 node Spark cluster sorted 100TB of data in 23 minutes.

Word count in five lines

text_file = spark.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

Programmer doesn't have to worry about

How the data is distributed across the cluster

Managing data operations performed by each machine

Fault tolerance

The distributed nature of the platform

MapReduce is a great example of separation of concerns.

What does multi-party computation give us?

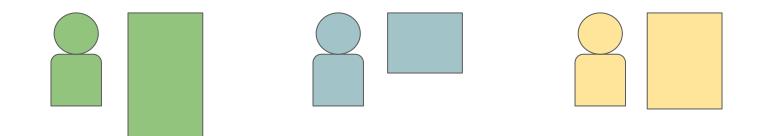
Given multiple parties $p_1, p_2, ..., p_n$ with private inputs $x_1, x_2, ..., x_n$

Need to compute $f(x_1, x_2, \dots, x_n)$

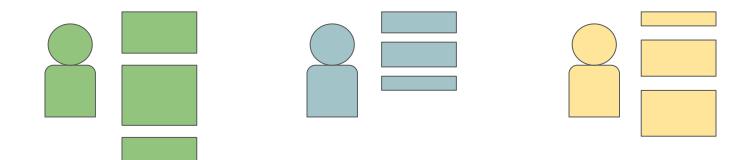
Without revealing more than the outputs of *f*

Sounds a bit like a magic trick...

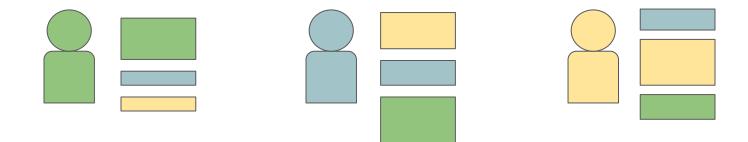
Quick example: the sum of secrets



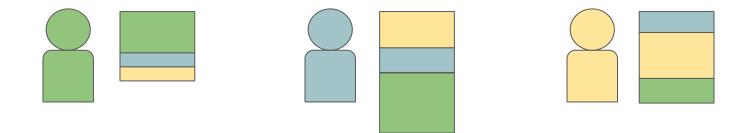
Split secrets into "shares"



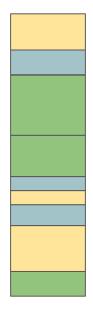
Distribute shares



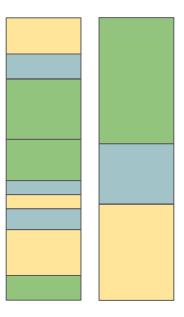
Add shares, (this results in more shares)

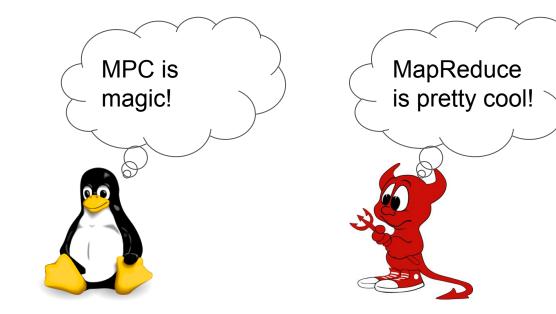


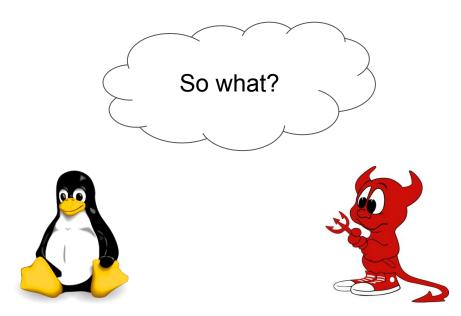
Recombine shares



Lo and behold







Let's think about pay (in)equity for a moment

Each company can use **MapReduce** to find the salary differences in their own data.

The companies can use **MPC** to find the collective difference without revealing their data.

Let's think about pay (in)equity for a moment

Each company can use **MapReduce** to find the salary differences in their own data.

 \rightarrow Lots of computation

The companies can use **MPC** to find the collective difference without revealing their data.

 \rightarrow Just one addition

Why bother splitting tasks up like that?

Performance!

Practical MPC frameworks are **slow**.

MPC frameworks optimize MPC, they don't optimize local computation.

Usability

Practical MPC frameworks are **slow**.

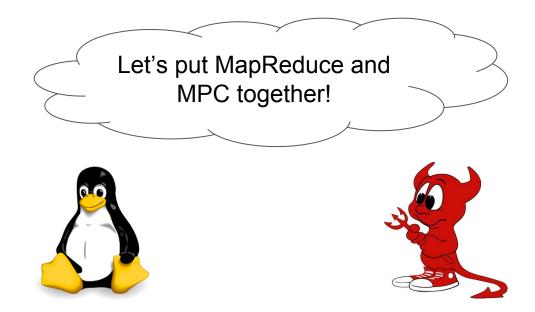
MPC frameworks optimize MPC, they don't optimize local computation.

Data analysts don't know about MPC (or think they do).

MPC frameworks require a steep learning curve (trust me...).

Direct disconnect between user expertise and available tools.

What about separation of concerns?



The main components of Scatter

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.

Let's explore Scatter top-down

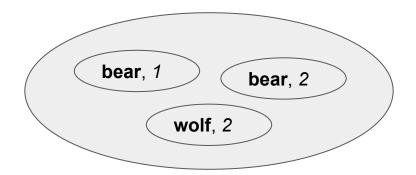
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

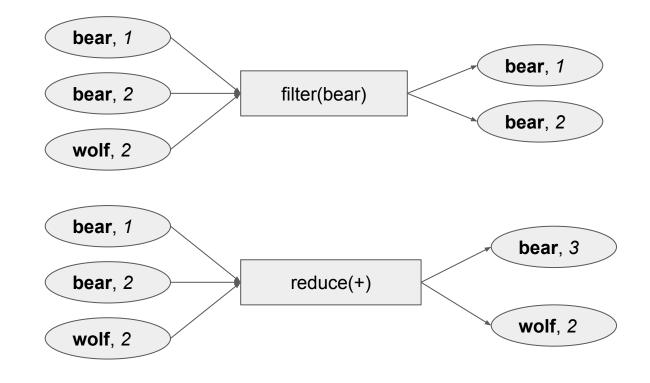
Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.

MapReduce primer coming up!

MapReduce is all about key-value stores



MR operations are functions on key-value stores



Pay equity in Scatter

5: m := reduce(+, filter("m", data)) 6: f := reduce(+, filter("f", data)) 7: d := m - f

Declaring the key-value store

1: type gender = str 2: type salary = int 3: **data** := store(gender, salary)

5: m := reduce(+, filter("m", **data**)) 6: f := reduce(+, filter("f", **data**)) 7: d := m - f

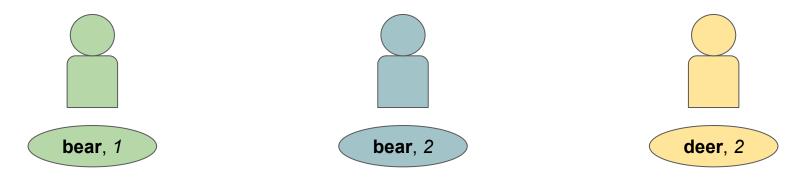
What about MPC?

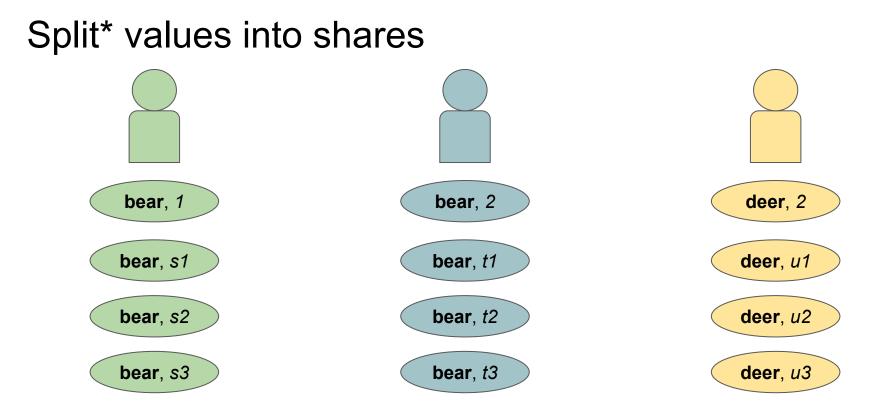
What about MPC?

Two main constructs **Scatter**, and **Gather**.

(Finally, the mystery is lifted.)

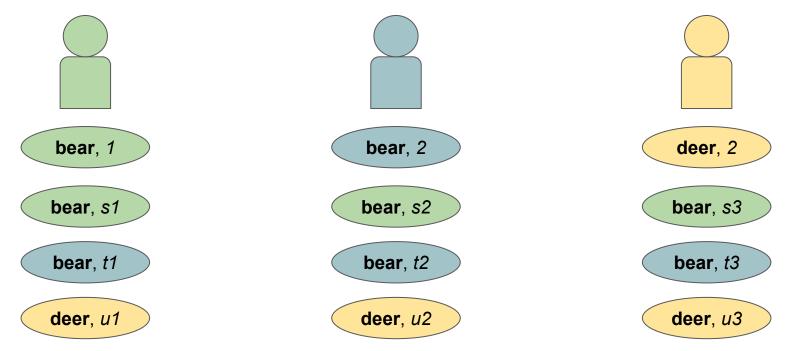
Scatter: make secret and share

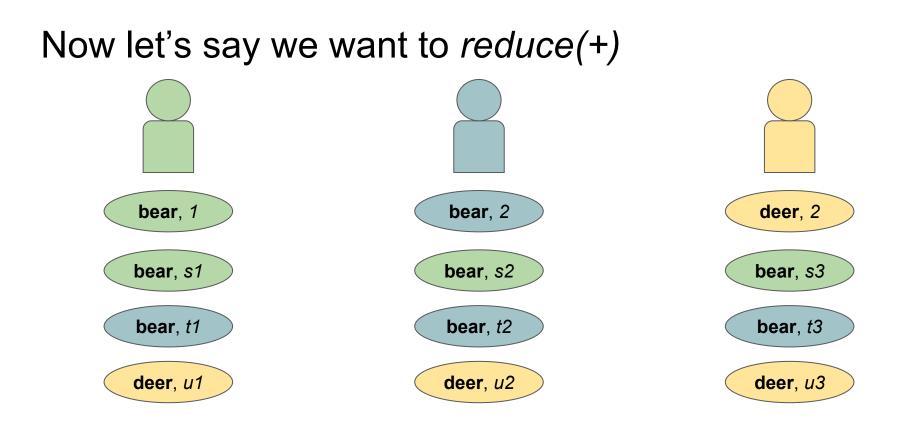


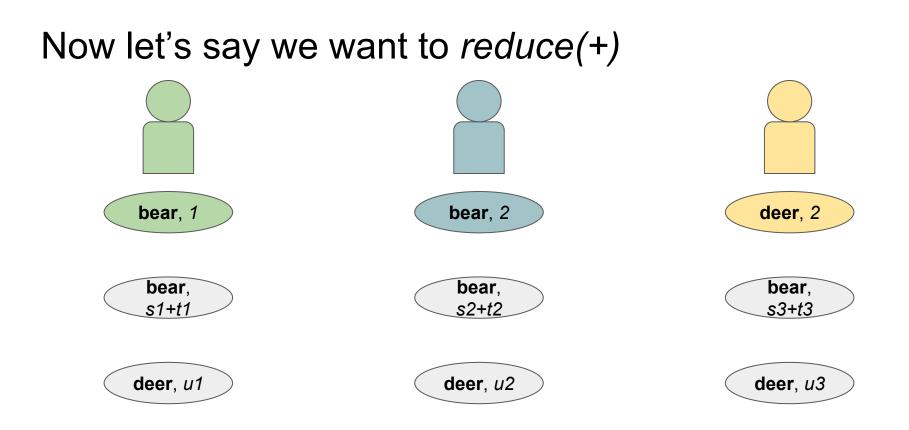


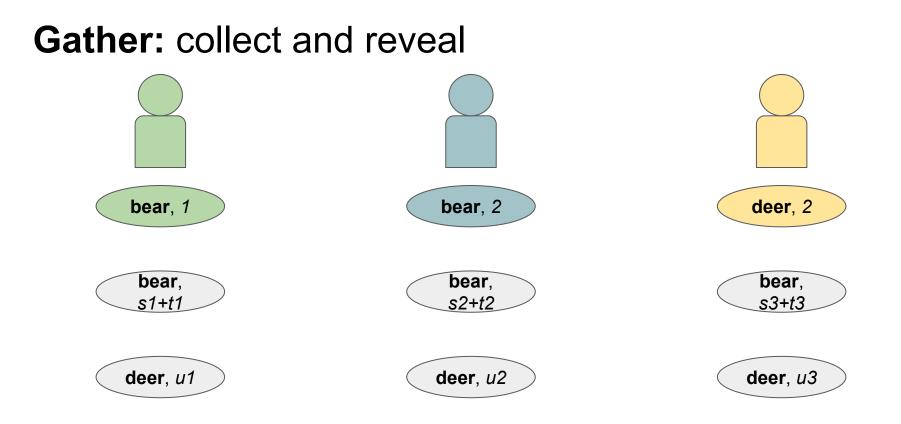
* using the MPC backend secret sharing implementation

Send and receive shares

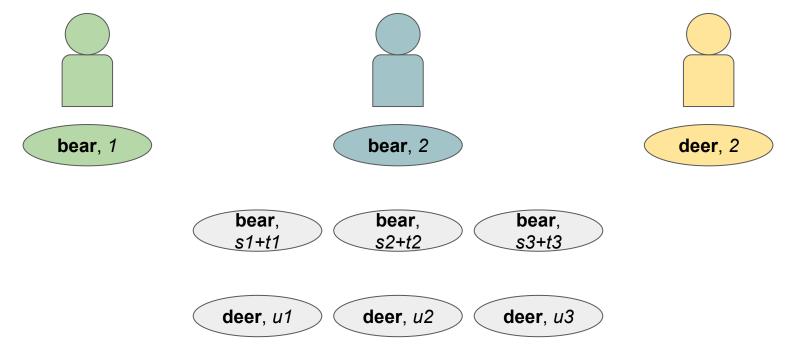


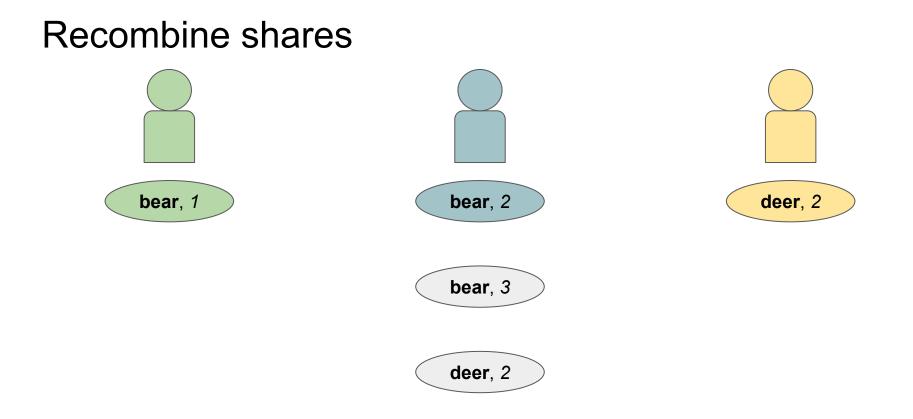






Send shares to specified participant





Complete pay equity Scatter program

```
1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(x, y, +, filter("m", data))
6: f := reduce(x, y, +, filter("f", data))
7: d := m - f
8:
9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
```

Each company will execute this locally

```
1: type gender = str
2: type salary = int
3: data := store(gender, salary)
4:
5: m := reduce(lambda x,y: x+y, filter("m", data))
6: f := reduce(lambda x,y: x+y, filter("f", data))
7: d := m - f
8:
9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
```

The companies will need to perform an MPC

```
1: type gender = str

2: type salary = int

3: data := store(gender, salary)

4:

5: m := reduce(lambda x,y: x+y, filter("m", data))

6: f := reduce(lambda x,y: x+y, filter("f", data))

7: d := m - f

8:
```

9: s := gather(reduce(lambda x,y: x+y, scatter(d)))

What to do with a Scatter program?

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.

Our current target frameworks

"a fast and general engine for large-scale data processing" MPC framework that allows for Shamir secret sharing, arithmetic, and comparison over secret shares

IFF! VIFF!

Let's compile Scatter code to PySpark*

5: own m := reduce(lambda x,y: x+y, filter("m", data)) 6: own f := reduce(lambda x,y: x+y, filter("f", data)) 7: own d := m - f m = data.filter(lambda x: x[0] == 'm')\

.reduceByKey(lambda x, y: x + y)\
.collect()

f = data.filter(lambda x: x[0] == 'f')\

.reduceByKey(lambda x, y: x + y)\

.collect()

d = ('d', m[0][1] - f[0][1])

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

def input(in_handle): return in_handle.read() def output(result, out handle): out handle.write(result) def reduceByKey(Imbd, kv store): distinct keys = set(map(lambda x: x[0], kv store)) res = [] for k in distinct keys: pairs_for_key = filter(lambda x: x[0] == k, kv_store) values_for_key = map(lambda x: x[1], pairs_for_key) v = reduce(Imbd, values for key) res.append((k, v)) return res def run(id, players, in handle, out handle): Zp = GF(104729)kv store = input(in handle) filtered = filter(lambda x: x[0] == 'diff', kv store) mapped = map(lambda x: x[1], filtered) private_kv_store = sorted(mapped, key=lambda x: x[0]) def protocol(rt): def exchange key stores(rt): def create shared key stores(keys, player mask): keys to sharers = zip([chr(k) for k in keys], player mask) return keys to sharers

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

def key_store_sizes_ready(key_store_sizes): return [int(ks) for ks in key store sizes] def share keys(key store sizes, rt, Zp): sorted keys = [] player mask = [] for player in rt.players: key_store_size = key_store_sizes[player - 1] for i in xrange(key_store_size): if rt.id == player: key = ord(private kv store[i][0]) else: key = None sorted keys.append(rt.shamir share([player], Zp, key, threshold=0)) player mask.append(player) gathered_keys = gather_shares([rt.open(k) for k in sorted keys]) return gathered_keys.addCallback(create_shared_key_stores, player_mask) shared_key_store_sizes = rt.shamir_share(players, Zp, len(private kv store), threshold=0) opened key store sizes = map(rt.open, shared key store sizes) key_store_sizes = gather_shares(opened key store sizes).addCallback(key store sizes ready)

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

keys_to_sharers = key_store_sizes.addCallback(share keys, rt, Zp) return keys to sharers def distribute shares(rt, Zp, private kv store, keys to sharers): private value queue = collections.degue(map(lambda x: x[1], private kv store)) shared kv store = [] for key, sharer in keys to sharers: if sharer == rt.id: value = rt.shamir share([sharer], Zp, private value queue.popleft()) else: value = rt.shamir share([sharer], Zp) shared kv store.append((key, value)) return shared kv store def open_shares(rt, kv_store, keys_to_owners, result_handler): owner_queue = collections.deque(map(lambda x: x[1], keys_to_owners)) opened_res = filter(lambda x: bool(x[1]), [(k, rt.open(v, owner_queue.popleft())) for k, v in kv store]) expected keys = sorted(map(lambda x: x[0], opened res)) result kv store = [] for k, v in opened res: v.addCallback(result handler, k, result kv store, expected keys)

9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

Phew, we have executable code!

Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those operations.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a Scatter program.

Executable where?

Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those operations.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a Scatter program.

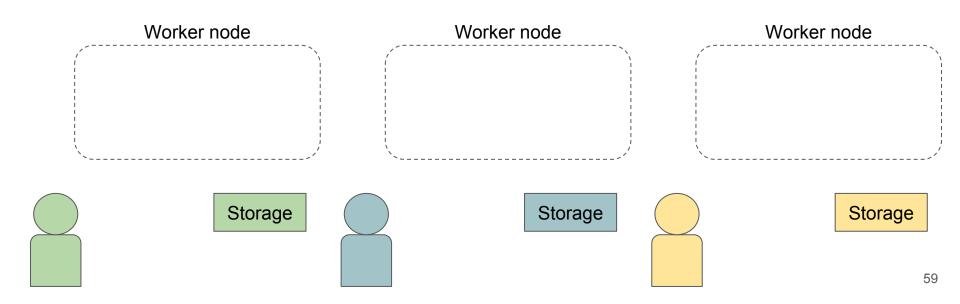
Let's build our backend.

Give each client the computational resources to:

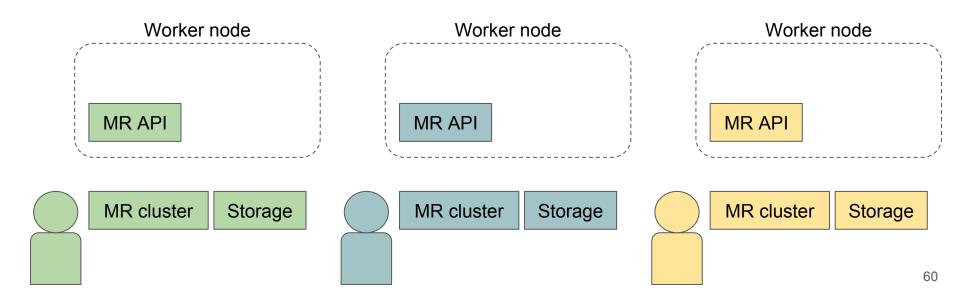
- run local MapReduce tasks on their data
- participate in MPC rounds to process data across companies
- coordinate those two actions

Let's build a **worker node**.

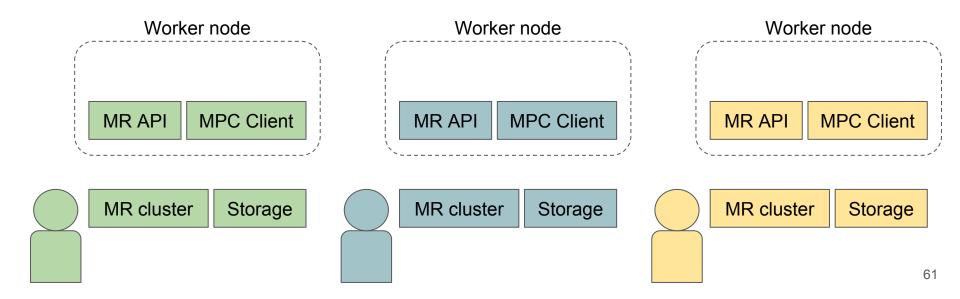
What does each company start with?



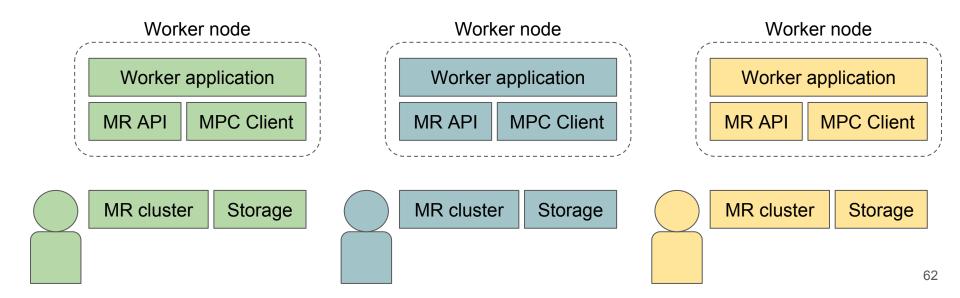
What do companies need to run MapReduce code?



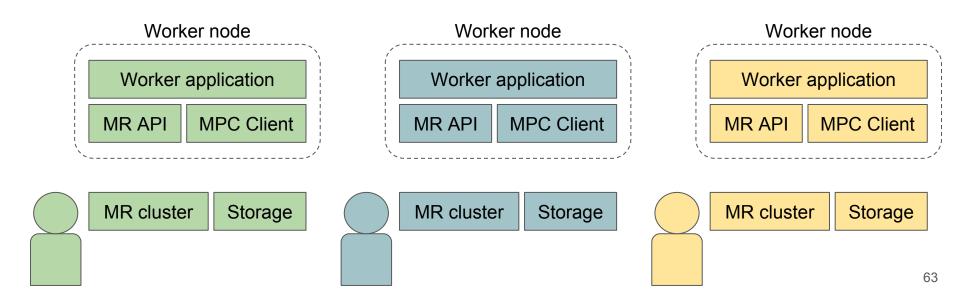
What do companies need to run MPC code?



What about coordinating program execution?



Bundle up the software, we have our worker nodes!



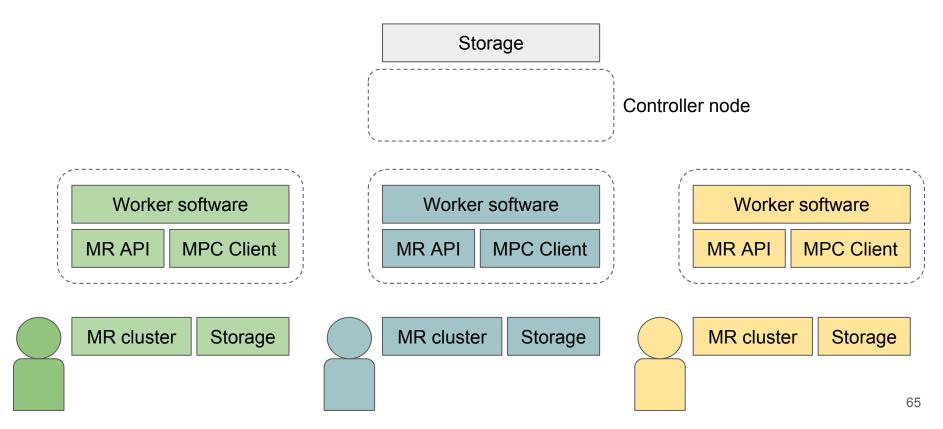
Almost done...

We have a distributed system.

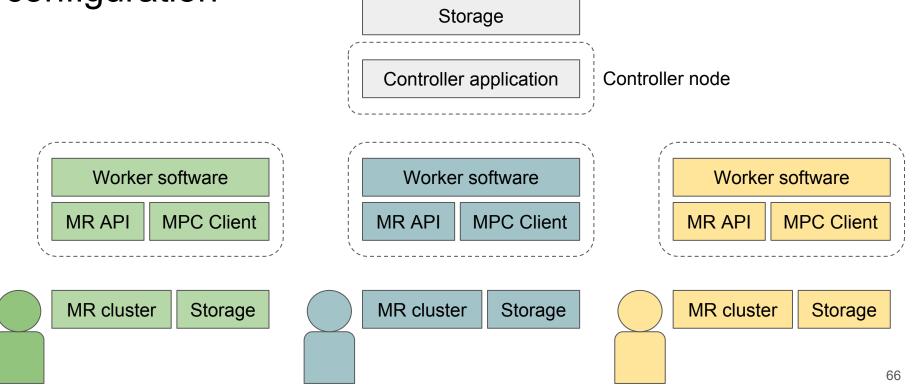
We need to coordinate task execution not only within worker nodes but also **across** worker nodes. (Why?)

Let's build a **controller node**.

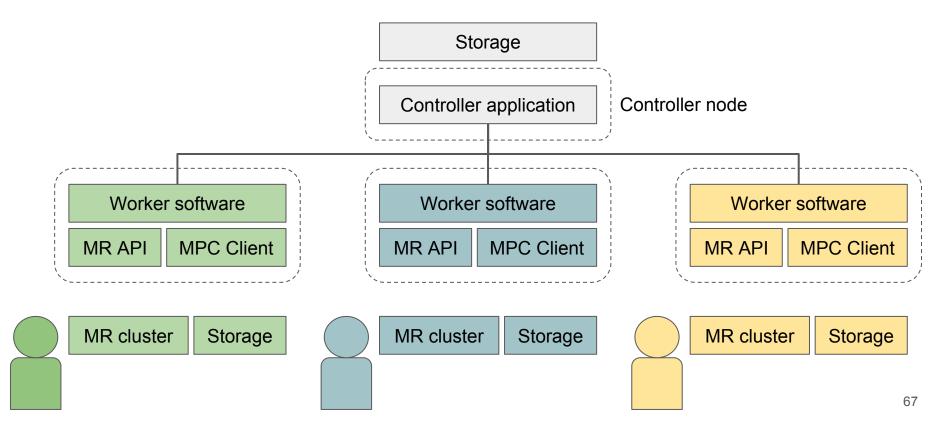
What goes inside a controller node?



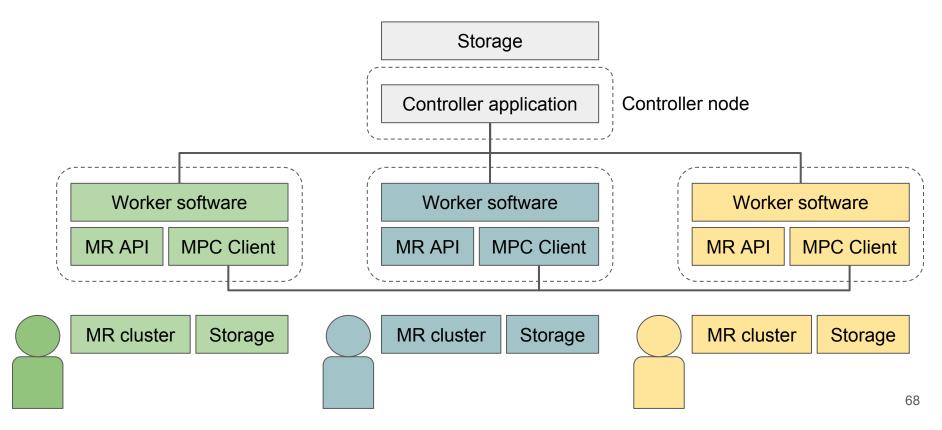
Software to orchestrate task execution + worker configuration



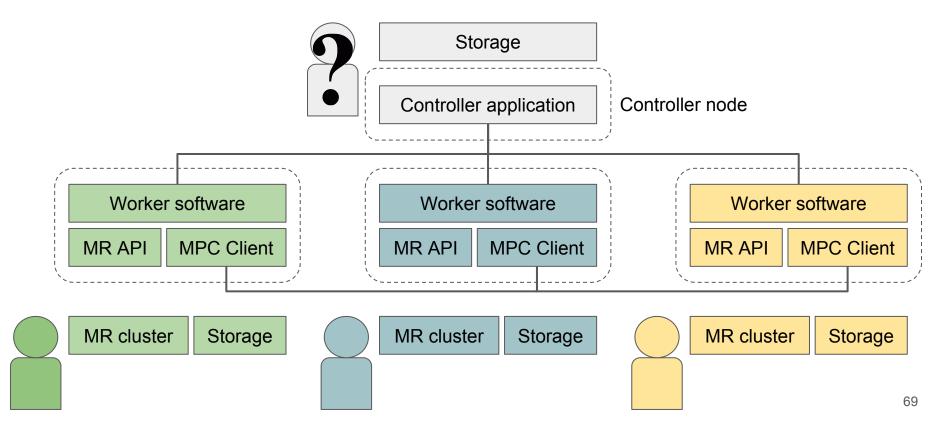
Workers connect to Controller over HTTPS



Use controller to configure and connect MPC clients



Who controls the controller?



And there we have it

Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an execution environment for a compiled Scatter program.

Open future

Extend compiler with static analysis tools.

And more!

