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So what’s MapReduce?
Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed, parallel execution environment for 
those tasks.
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It’s a really big deal!
Programming paradigm to specify data analytics tasks.

Backend infrastructure as a highly-distributed execution environment for those 
tasks.

Largest Apache Spark cluster is 8000 nodes.

200 node Spark cluster sorted 100TB of data in 23 minutes.
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Word count in five lines
text_file = spark.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

             .map(lambda word: (word, 1)) \

             .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")
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Programmer doesn’t have to worry about
How the data is distributed across the cluster

Managing data operations performed by each machine

Fault tolerance

The distributed nature of the platform
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MapReduce is a great example of 
separation of concerns.
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What does multi-party computation give us?
Given multiple parties p1, p2, …, pn with private inputs x1, x2, …, xn

Need to compute f(x1, x2, …, xn)

Without revealing more than the outputs of f

Sounds a bit like a magic trick...
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Quick example: the sum of secrets
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Split secrets into “shares”

15



Distribute shares
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Add shares, (this results in more shares)
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Recombine shares
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Lo and behold
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MPC is 
magic!

MapReduce 
is pretty cool!



21

So what?



Let’s think about pay (in)equity for a moment
Each company can use MapReduce to find the salary differences in their own 
data.

The companies can use MPC to find the collective difference without revealing 
their data.

22



Let’s think about pay (in)equity for a moment
Each company can use MapReduce to find the salary differences in their own 
data.

→ Lots of computation

The companies can use MPC to find the collective difference without revealing 
their data.

→ Just one addition
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Why bother splitting tasks up like that?
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Performance!
Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.
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Usability
Practical MPC frameworks are slow.

MPC frameworks optimize MPC, they don’t optimize local computation.

Data analysts don’t know about MPC (or think they do).

MPC frameworks require a steep learning curve (trust me...).

Direct disconnect between user expertise and available tools.

              What about separation of concerns?
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Let’s put MapReduce and 
MPC together!



Scatter
Programming Support for an Integrated Multi-Party

Computation and MapReduce Infrastructure
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The main components of Scatter
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing 
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a compiled Scatter program.
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Let’s explore Scatter top-down
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing 
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a compiled Scatter program.
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MapReduce primer coming up!
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MapReduce is all about key-value stores
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bear, 1 bear, 2

wolf, 2



MR operations are functions on key-value stores
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Pay equity in Scatter
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(+, filter("m", data))
 6: f := reduce(+, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
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Declaring the key-value store
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(+, filter("m", data))
 6: f := reduce(+, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
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What about MPC?
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What about MPC?
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Two main constructs Scatter, and Gather.

(Finally, the mystery is lifted.)



Scatter: make secret and share
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Split* values into shares
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* using the MPC backend secret sharing implementation



Send and receive shares
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Now let’s say we want to reduce(+)

41

bear, 1 bear, 2 deer, 2

bear, s1

bear, t1

deer, u1

bear, s2

bear, t2

deer, u2

bear, s3

bear, t3

deer, u3



Now let’s say we want to reduce(+)
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Gather: collect and reveal
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Send shares to specified participant
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bear, 1 bear, 2 deer, 2

bear, 
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deer, u1

bear, 
s2+t2

deer, u2

bear, 
s3+t3

deer, u3



Recombine shares
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bear, 1 bear, 2 deer, 2

bear, 3

deer, 2



Complete pay equity Scatter program
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(x, y, +, filter("m", data))
 6: f := reduce(x, y, +, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
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Each company will execute this locally
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(lambda x,y: x+y, filter("m", data))
 6: f := reduce(lambda x,y: x+y, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
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The companies will need to perform an MPC
 1: type gender = str
 2: type salary = int
 3: data := store(gender, salary)
 4:
 5: m := reduce(lambda x,y: x+y, filter("m", data))
 6: f := reduce(lambda x,y: x+y, filter("f", data))
 7: d := m - f
 8:
 9: s := gather(reduce(lambda x,y: x+y, scatter(d)))
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What to do with a Scatter program?
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing 
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a compiled Scatter program.
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Our current target frameworks

5050

“a fast and general engine for 
large-scale data processing”

MPC framework that allows 
for Shamir secret sharing, 
arithmetic, and comparison 
over secret shares 



Let’s compile Scatter code to PySpark*
 5: own m := reduce(lambda x,y: x+y, 
                                 filter("m", data))
 6: own f := reduce(lambda x,y: x+y, 
                               filter("f", data))
 7: own d := m - f

m = data.filter(lambda x: x[0] == 'm')\

        .reduceByKey(lambda x, y: x + y)\

        .collect()

f = data.filter(lambda x: x[0] == 'f')\

        .reduceByKey(lambda x, y: x + y)\

        .collect()

d = ('d', m[0][1] - f[0][1])

51* Apache Spark’s Python API



Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
                              scatter(d)))

def input(in_handle):

    return in_handle.read()

def output(result, out_handle):

    out_handle.write(result)

def reduceByKey(lmbd, kv_store):

    distinct_keys = set(map(lambda x: x[0], kv_store))

    res = []

    for k in distinct_keys:

        pairs_for_key = filter(lambda x: x[0] == k, kv_store)

        values_for_key = map(lambda x: x[1], pairs_for_key)

        v = reduce(lmbd, values_for_key)

        res.append((k, v))

    return res

def run(id, players, in_handle, out_handle):

    Zp = GF(104729)

    kv_store = input(in_handle)

    filtered = filter(lambda x: x[0] == 'diff', kv_store)

    mapped = map(lambda x: x[1], filtered)

    private_kv_store = sorted(mapped, key=lambda x: x[0])

def protocol(rt):

        def exchange_key_stores(rt):

            def create_shared_key_stores(keys, player_mask):

                keys_to_sharers = zip(

                    [chr(k) for k in keys], player_mask)

                return keys_to_sharers
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Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
                              scatter(d)))

def key_store_sizes_ready(key_store_sizes):

                return [int(ks) for ks in key_store_sizes]

            def share_keys(key_store_sizes, rt, Zp):

                sorted_keys = []

                player_mask = []

                for player in rt.players:

                    key_store_size = key_store_sizes[player - 1]

                    for i in xrange(key_store_size):

                        if rt.id == player:

                            key = ord(private_kv_store[i][0])

                        else:

                            key = None

                        sorted_keys.append(rt.shamir_share(

                            [player], Zp, key, threshold=0))

                        player_mask.append(player)

                gathered_keys = gather_shares(

                    [rt.open(k) for k in sorted_keys])

                return gathered_keys.addCallback(create_shared_key_stores,

                                                 player_mask)

            shared_key_store_sizes = rt.shamir_share(

                players, Zp, len(private_kv_store), threshold=0)

            opened_key_store_sizes = map(rt.open, shared_key_store_sizes)

            key_store_sizes = gather_shares(

                opened_key_store_sizes).addCallback(key_store_sizes_ready)
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Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
                              scatter(d)))

keys_to_sharers = key_store_sizes.addCallback(

                share_keys, rt, Zp)

            return keys_to_sharers

        def distribute_shares(rt, Zp, private_kv_store, keys_to_sharers):

            private_value_queue = collections.deque(

                map(lambda x: x[1], private_kv_store))

            shared_kv_store = []

            for key, sharer in keys_to_sharers:

                if sharer == rt.id:

                    value = rt.shamir_share(

                        [sharer], Zp, private_value_queue.popleft())

                else:

                    value = rt.shamir_share([sharer], Zp)

                shared_kv_store.append((key, value))

            return shared_kv_store

        def open_shares(rt, kv_store, keys_to_owners, result_handler):

            owner_queue = collections.deque(

                map(lambda x: x[1], keys_to_owners))

            opened_res = filter(lambda x: bool(x[1]), [(k, rt.open(v, owner_queue.popleft()))

                                                       for k, v in kv_store])

            expected_keys = sorted(map(lambda x: x[0], opened_res))

            result_kv_store = []

            for k, v in opened_res:

                v.addCallback(

                    result_handler, k, result_kv_store, expected_keys)
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Let’s compile Scatter code to Viff
9: own s := gather(reduce(lambda x,y: x+y,
                              scatter(d)))

 rt.wait_for(*(map(lambda x: x[1], opened_res)))

        def got_result(value, key, result_kv_store, expected_keys):

            result_kv_store.append((key, int(value.signed())))

            if expected_keys == sorted([x[0] for x in result_kv_store]):

                output(result_kv_store, out_handle)

        def _run(keys_to_sharers):

            dist_keys = set([x[0] for x in keys_to_sharers])

            keys_to_owners = [(k, [x[1] for x in keys_to_sharers])

                              for k in dist_keys]

            shared_kv_store = distribute_shares(

                rt, Zp, private_kv_store, keys_to_sharers)

            summed_diff = reduceByKey(lambda x, y: x + y, shared_kv_store)

            open_shares(rt, summed_diff, keys_to_owners, got_result)

        exchange_key_stores(rt).addCallback(_run)

    pre_runtime = create_runtime(id, players, 1)

    pre_runtime.addCallback(protocol)

    reactor.run()

run(id, players, in_handle, out_handle)
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Phew, we have executable code!
Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those 
operations.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a Scatter program.
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Executable where?
Programming language to (unified) specify MapReduce and MPC operations.

Support for actual MapReduce and MPC frameworks that can execute those 
operations.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a Scatter program.
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Let’s build our backend.
Give each client the computational resources to:

● run local MapReduce tasks on their data 
● participate in MPC rounds to process data across companies
● coordinate those two actions

Let’s build a worker node.
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What does each company start with?

Storage StorageStorage
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Worker node Worker node Worker node



What do companies need to run MapReduce code?

Storage StorageStorageMR cluster MR clusterMR cluster

 MR API  MR API MR API
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Worker node Worker node Worker node



What do companies need to run MPC code?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MPC ClientMPC Client MR API  MR API MR API
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Worker node Worker node Worker node



What about coordinating program execution?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MPC ClientMPC Client MR API  MR API MR API

Worker application Worker application Worker application
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Worker node Worker node Worker node



Bundle up the software, we have our worker nodes!

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker application

MPC Client MR API

Worker application

MPC Client MR API

Worker application
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Almost done...
We have a distributed system.

We need to coordinate task execution not only within worker nodes but also 
across worker nodes. (Why?)

Let’s build a controller node.
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What goes inside a controller node?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

Storage
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Controller node



Software to orchestrate task execution + worker 
configuration

Storage StorageStorageMR cluster MR clusterMR cluster

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

MPC ClientMR API

Worker software

Controller application

Storage
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Controller node



Workers connect to Controller over HTTPS

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage
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Controller node



Use controller to configure and connect MPC clients

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage
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Controller node



Who controls the controller?

Storage StorageStorageMR cluster MR clusterMR cluster

MPC Client MR API

Worker software

MPC Client MR API

Worker software

MPC Client MR API

Worker software

Controller application

Storage
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Controller node



And there we have it
Programming language to specify MapReduce and MPC operations.

Compiler to convert Scatter programs to tasks that are executable in existing 
MapReduce and MPC frameworks.

Backend platform running those MapReduce and MPC frameworks to act as an 
execution environment for a compiled Scatter program.
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Open future
Extend compiler with static analysis tools.

And more!
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