
Universally Composable Security:

A Tutorial

Ran Canetti

BU, March 18-19 2016

Intro

• Goal of the event:
– Explain the rationale and workings of the UC framework to

non-cryptographers

– Alterior motive: Extend composable analysis beyond crypto

• People’s backgrounds

• Plan for the event

• Website for products?

• Practicalities: Food, facilities

Lecture plan

Session 1: Background

 The UC framework – general idea

Session 2: Details of the framework

Session 3: Capturing attacks and concerns: examples

Session 4: Introduction of projects

Session 5: Work in groups

What do we want from security analysis?

• Should faithfully represent realistic attacks

• Should specify the security concerns and properties in a
meaningful and precise way

• Should capture “all realistic attacks” in the expected
execution environment.

• Should not be over-restrictive.

• Guarantees should remain meaningful in many (any?)
environment

• Should be technically manageable

Should be modular:
– Simplify the analytic process

– Provide more meaningful security

Advocating a general model for security analysis

Pro:

• Provides better understanding of security

• Better expressibility, analysis is more meaningful

• Enables modularity and composability

• Overall simplification of the analytical work

Con:

• Model can be complex

• Hard to “get it right”

Frameworks for modeling distributed systems

• CSP [Hoare]

• pi-calculus [Milner] spi-calculus [Abadi-Gordon]

• I/O automata [Lynch]

• …

Pros: Much analytical work, verified, support modularity,

some automated analysis

Cons:

• Not easy to model computational concerns

• Modeling a bit restrictive (scheduling, addressing)

Traditional cryptographic modeling

• Semantic security

• Zero Knowledge

• Commitment

• Secure function evaluation

• …

Pro:

– Captures cryptographic security (against

computationally bounded attacks)

– relatively simple

Con: Not modular, security guarantees not always

meaningful in a larger context.

Want:

- The best of both…

- Be able to play on the tradeoff:

Simple/Abstract Concrete/complex

Step 1: model computer systems and attacks

Model should:

• Allow capturing:

– Realistic systems (processors, cores, ram, disks, networks,

processes, os, applications, … delays, time…

randomness…)

– Realistic attacks: network, exploits, side channels, Human

– Information seen by different components

– efficiency, resource bounds

• Allow different levels of abstraction/detail

• Be simple, natural, intuitive…

 Very tricky… the root of many deficiencies

Step 2: Capture security properties

For instance:

• Trace properties (“correctness”): “In each execution, if event

C happens then event E happens”

• Probabilistic statements

• Secrecy /privacy

• Liveness

• Timing of events

• Costs and quantitative tradeoffs

• Combinations of the above

Eg “attack can either learn or modify, but not both”

 “attack can learn/modify, but only after a certain event”

 “success of attack is proportional to the amount of resources expended

Step 3: Prove that a system satisfies a given set
of properties

Questions

• By hand? Automated? How tractable?

• Based on what assumptions?

– Model assumptions

– Computational hardness assumptions

• Proof re-use:

– Modularity?

– Robustness?

The UC approach:
Specification via an Ideal-Service

 The idea:

• The security of a system is reflected only in its effects on

the rest of the external environment.

• Therefore to capture the desired security of system P:

– Write an “ideal system” F that captures the desired effect

– System P is “secure for F” if it “looks the same” as F

to any external environment.

Note: F need not be efficient or even realistically implemented.

All we care about is its responses to the environment.

Specification via an Ideal-Service

 Pro:

• Expressive: Can naturally express any combination of

properties

• Amenable to modular analysis

Con:

• Detailed, sometimes a bit roundabout

Specification via an Ideal-Service: Zoom in

• First attempt:

 P realizes F if for all environment E, E||P ~ E||F

(reminiscent of “observational equivalenve” [Milner])

Correspondence is too tight.. So too restricted…

(eg, ~ is an equivalence relation)

How to relax?

Specification via an Ideal-Service:
Adding simulation

Idea:

• Split the interaction of the system P with the external

world:

– “Application Interface”: the inputs from the users of P

and the outputs to the users of P . (This is the

“functionality” of P).

– All the rest: consumed resources , communication,

internal leakage of information, etc.

• Allow “fudging” E’s view of the non-API interaction:

Def: P realizes F if there exists S such that for all E,

E||S||F ~ E||P

Recap: Simulation-based security specification

System P realizes specification F if there exists S such

that for all E, ExecE,P ~ ExecE,S,F

(ExecE,… returns the output of E from the execution …)

API

S
id

e
-

e
ffe

c
ts

API
S

id
e

-

e
ffe

c
ts

E

S

P

~
S

id
e

-

e
ffe

c
ts

E

F

Specification via an Ideal-Service:
Adding simulation

Def: P realizes F if there exists S such that for all E,

 ExecE,P ~ ExecE,S,F

Rationale for adding S:

• “Any manipulation that P can do to E, could have done

also by F (by adding S to E). Furthermore this can be

done without modifying the API of F.”

Or:

• “Any manipulation that E can do to P, could have done

also to F (by using S). Furthermore this can be done

without modifying the API of F.”

Definition is no longer symmetric

Compare with cryptographic-style simulation:
Semantic Security of Encryption

Semantic security of encryption:

Want to capture “Enc(m) gives no knowledge on m”

• Game-based: An encryption algorithm Enc is sem. Secure if no

(feasible) A wins w.p. >1/2+negl in game:

 A m1,m2

 A Enc(mb) b{1,2}

 A b’, wins if b’=b

• Simulation-based:

For any A there is a simulator S such that for all m,

 Enc(m) ~ S(|m|)

Thm: Enc is Sim-Sem-Sec iff it is Game-Sem-Sec.

Cryptographic-style simulation:
Zero-Knowledge & WI

[P,V] is an interactive protocol where P,V have joint input x, P has secret

input w, (and V wants to learn whether R(x,w) for some relation R)

Want to capture “Interaction with P does not give V any knowledge on w”

• [P,V] is zero knowledge if for all V* there is a simulator S such that for

all V*,x,w, [P(x,w),V*(x)] ~ S(x)

• [P,V] is “witness indistinguishable” (WI) if for all V*, x,w1,w2

 [P(x,w1),V*(x)] ~ [P(x,w2),V(x)]

Thm: ZK WI, but not vice versa!

Differences from “traditional” cryptographic
simulation

– Captures both secrecy and “correctness” guarantees

– Focus on the effect on the environment, rather than on

protocol

– Require a single simulator (as opposed to a simulator

per adversary)

Partial credits to this definitional style:

[Goldreich Micali Wigderson87,Goldwasser Levin

90,Micali Rogaway 91, Beaver 91, Canetti 92-95-00-

01,Pfitzmann-Waidner 93-98-00…]

Recap: Simulation-based security specification

System P realizes specification F if there exists S such

that for all E, ExecE,P ~ ExecE,S,F

API

S
id

e
-

e
ffe

c
ts

API
S

id
e

-

e
ffe

c
ts

E

S

P

~
S

id
e

-

e
ffe

c
ts

E

F

Example:
Authenticated message transmission

Fauth:

• On input (Send,m,”B”) from “A”, output (Sent,m,”A”) to “B”.

F has no side-effects, S needs to generate side-effects on

its own, without knowing anything…

Need to relax:

Example:
Authenticated message transmission

Fauth:

• On input (Send,m,”B”) from “A”, leak (A,B,m) to S

• When S returns “ok”, output (Sent,m,”A”) to “R”.

S learns A,B,m, and *can delay delivery*

(Analysis of MAC-based protocol on board)

Example:
Secure message transmission

Fsmt:

• On input (Send,m,”B”) from “A”, leak (A,B,|m|) to S

• When S returns “ok”, output (Sent,m,”A”) to “B”.

S learns A,B,|m|, and *can delay delivery*

(Analysis of Enc-based protocol on board)

How to model leaky/imperfect encryption?

Example:
Zero Knowledge proofs

Fzk(R):

• On input (Prove,x,w,B) from A, leak (A,B,x,R(x,w)) to S

• When S returns “ok”, output (Verified,A,x,R(x,w)) to B.

B learns whether R(x,w)

S,B learn only R(x,w), w remains secret.

Example:
Key Exchange

Fke:

• On input (KE,B) from A, choose a key k and leak (A,B) to S.

• On input (KE,B) from A, leak (A,B) to S.

• When S returns (ok,P) for P={A,B}, output (A,B,k) to P.

A,B obtain a fresh joint key

S learns that A,B share a key.

Example:
File System with Integrity

Ffsi:

• On input (Init,fname,UID) record (fname,UID)

• On input (W,fname,update-contents,UID’):

 If UID’=UID then update the fname with update-contents,

 else return an error code.

• On input (read,fname,UID) leak fname to S. When S says

ok, return the contents of fname to UID.

Write-control Integrity is guaranteed, no confidentiality

guarantees.

Composition of protocols and systems

What happens to our security guarantees when the

analyzed system runs alongside others?

• How do the systems interact?

– Intentionally?

– Adversarially?

• Do the systems have joint inputs? State? Modules?

• Do they run in parallel? concurrently?

• Does one system use the other?

• Are the systems coordinated? Same system?

What Can Go wrong?

• Protocols reuse state (eg, keying material)

• Security guarantees break due to bad interaction (ZK…)

• Security guarantees become inadequate (NM-Com)

• Security APIs don’t hold up

• …

Example: The Needham-Schroeder
key exchange protocol

 A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

If decryption and identity

Checks are ok then Choose

a random k-bit NB and send

(knows B’s public encryption key EB) (knows A’s public encryption key EA)

If nonce check is ok then

Output NB

Choose a random k-bit
NA

If identity and nonce

checks are ok then

output NB and send

The protocol satisfies the requirements:

• Key agreement: If A, B locally output a key with each other,

 then this key must be NB. (Follows from the “untamperability”

 of the encryption.)

Key secrecy: The adversary only sees encryptions of the key,

 thus the key remains secret. (Follows from the secrecy

of the encryption.)

Indeed, the protocol complies with early notions of security

(e.g. [Dolev-Yao83, Bellare-Rogaway93,

Datta-Derek-Mitchell-Warinschi06]).

Using the key for encrypting messages

 A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

Assume that the protocol is “composed” with an encryption protocol
that uses the generated key to encrypt messages. Furthermore:
-The encryption protocol is one-time-pad
-The message is either “buy” or “sell”:

NB+M

An attack against the composed protocol:

A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

C=NB+M

ENCEB(C')

E can check whether
C=NB+ “sell”, or C=NB+
“buy”:

Let C'=C+”sell”.

E

Note: If M= ”sell” then C'=(NB+”sell”)+”sell”=NB. Else C' != NB.

Thus, B accepts the exchange if and only if M= “sell”.

The problem: The adversary uses B as
an “oracle” for whether it has the right key.

But the weakness comes to play only in
conjunction with another protocol (which gives
the adversary two possible candidates for the key...)

Consequently, need to explicitly incorporate the
encryption protocol in the analysis of the key
exchange protocol...

Want: A way to argue about the propagation of
security in such situations

The methodology: Security preserving composition.

Will see:

 • A (single) composition operation on systems

• Can express most other composition methods

• Preserves security

The composition operation: Universal Composition
Ingredients:

• Protocol (system) π that realizes ideal service φ

• Protocol (System) ρ that makes API calls to φ

Result: A protocol ρφπ Where:

• the calls to φ are replaced by calls to π

• Values returned from π are treated as coming from φ

Note:

• Just like subroutine substitution in sequential algorithms, except that

 each protocol/system may have many participants. (Still, calls are

 made locally by each participant.)

• There may be multiple instances of φ and π.

• φ and π have similar API but very different “non-API” behavior

 (number of parties components, communication etc)

The universal composition operation

API

S
id

e
-

e
ffe

c
ts

API

E

ρ
 S

id
e

-

e
ffe

c
ts

E

ρ

…
…

Note: each protocol can consist on many smaller components and parties.

The universal composition theorem

API

S
id

e
-

e
ffe

c
ts

API

S
id

e
-

e
ffe

c
ts

E

S
π

~
S

id
e

-

e
ffe

c
ts

E

φ

~
API

S
id

e
-

e
ffe

c
ts

E

ρ

…I

API

S
id

e
-

e
ffe

c
ts

E

ρ

…

The composition theorem:

• If protocol π realizes ideal service φ and protocol ρ

realizes Ideal Service γ, then protocol ρφπ realizes γ.

More generally, protocol ρφπ is “just as secure” as protocol ρ.

Corollaries:

• Allows for modular security analysis

• Allows arguing about security in arbitrary environments

• Gives concurrency “for free”…

Session 2

The actual framework

• The system model: Computing elements,

scheduling, addressing, time bounds

• Model of protocol execution

• Protocol emulation, ideal services

• The composition operation and theorem

 The basic computing unit:

An interactive machine (IM)

• An abstract computing device

• Can model a node (cpu+RAM), a cluster of nodes, a
process, an enclave,…

• Formally, an IM is a TM* with:

– some special tapes (ports):

– Identity tape (with code + id string, id=(pid,sid))

– Input tape

– Incoming communication tape

– Incoming subroutine output tape

– Outgoing message tape

• An “external write” instruction (tbd)
* Can also think of an IM as a program in some higher language,

e.g. Python or Java, with the appropriate data structures.

 A system of IMs

– A system is a pair (I,C) where
• I is an IM

• C is a control function C:{0,1}* {allow,disallow}

– An instance of an IM M is a pair μ=(M,id) where id is the
contents of the identity tape

– A configuration of μ is the entire contents of tape and
control

– An execution is a sequence of configurations:
• In each config a single machien is active, initially I

• Initial config is the initial config of I

• The active machine runs till it performs external write. Then, the
activation is suspended, the message on outgoing tape is
delivered and the recipient machine is activated.

• The execution ends when I halts. The output is output of I.

 Message delivery and order of activations

The information on the outgoing message tape consists of:
• μ - ID of sending machine

• μ’ =(M’,id’) - ID of target machine

• Tape name (input, incoming message, subroutine output)

• r ԑ {0,1} “reveal” bit

• m – message

Effect:

– If C(currrent execution prefix)=disallow then message is not
delivered and I is activated.

– Else:
• If no MI with identity id’ exists in the execution prefix then one is created

and initialized with code M’. (unless M’=@, in which case I gets activated)

• If M’=@ or M’ is the code of the MI with id’ then the message is written to
the appropriate tape of that MI

• Else (Mi with id’ exists but with code different than M’) then μ transitions
to an error state and I is activated next.

Notes

• Number of MI’s is unbounded

• Allows dynamic code generation

• ID of each MI is unique in the system

• Need to know ID of an MI in order to send to it

• Mis know their IDs

• Scheduling is sequential and unfair…

More definitions

• Extended systems:
 C(exec prefix) = new ID and code for source and target

• μ is a subroutine of μ’ if μ wrote to the subroutine output
tape for μ’ or μ’ wrote to the input tape of μ.

• A protocol is an interactive machine.

• An instance of protocol P in an execution prefix is a set
of MI’s with program P and the same SID

Polynomial time

• A machine M is polynomial time if its runtime is bounded
by a polynomial in N, where

 N = # bits written on M’s input tap –

 # bits that M wrote on input tapes of other machines.

• Can see: If all machines in a system of ITMS are
polynomial (and are all bounded by the same polynomial)
then the system halts within polynomial time.

• Parameterized systems: All machines get inputs of at
least some polynomial length.

The model of protocol execution

• The idea: Keep it simple. Run a single instance of the
protocol, with an environment and an adversary.

• Participants: Environment E, adversary A, parties of
protocol π.

– E starts, invokes A, gives inputs to parties of a single instance of

π, obtains outputs from parties of π.

– Parties of π generate subroutines, outputs, and send messages
to each other *via the adversary*.

– Adversary obtains messages from parties, and either delivers
some (arbitrarily modified) incoming messages to parties, or
generates output for E.

 (Rules are enforced by the control function.)

The model of protocol execution

Note: The model is very rudimentary:

• Parties communicate only via the adversary

• No “party corruption” operations

Done for sake of simplicity and generality. Will add later.

(Note: Control F erases ID of E is from inputs to parties, and
erases code of parties from outputs to E)

Protocol emulation

Protocol π UC-emulates protocol φ if for all A there

exists S such that for all E*, ExecE,A,π ~ ExecE,S,φ .

(ExecE,… returns the output of E from the execution …)

* Quantify only over “balanced” environments

API
S

id
e

-

e
ffe

c
ts

S

~

S
id

e
-

e
ffe

c
ts

E

φ

API

S
id

e
-

e
ffe

c
ts

A

E

π

Notes

• Security with “dummy adversary”: Above def is
equivalent to one where A is only a channel for E.

• Emulation is transitive: If protocol A UC-emulates protocol
B and B UC-emulates protocol C then A UC-emulates C.

• Quantitative formulations: Measure the complexity
overhead of S vs A, and the probability of distinguishing.

IDEALF: The ideal protocol for ideal service F

 F

 DP DP DP

 S

Dummy parties: Only transfer message from E to parties and back

Communication between A and F is critical!

P UC-realizes F if P UC-emulated IDEALF

Universal composition

Ingredients:

• Protocol π that emulates protocol φ

• Protocol ρ that makes subroutine calls to φ

Result: A protocol ρφπ Where:

• The calls to each MI of φ are replaced by calls to
a MI of π with same id

• Values returned from each MI of π are treated as
coming from a MI of φ with same id

The composition operation (single call to F)

F

The composition operation (single call to F)

F

➔

The composition operation (multiple calls to F)

F

➔

F
F

The composition operation (multiple calls to F)

The composition theorem:

 If protocol π UC-emulates protocol φ,

then protocol ρφπ UC-emulates protocol ρ.

Proof outline: the combined simulator

The distinguishing Environment

Modeling corruptions

• The shell construct: Allows encoding modeling
instructions in a protocol

• Notification to Environment

• Types of corruption:
– Byzantine

– Honest-but-curious

– Fail-stop

– Transient

– Leakage

– Erasures

• Modeling aggregate information

synchronous communication

• On board

Key exchange & secure channels

• Auth + Enc

• KE

• Sig

• Cert

• PKI

• How to multiplex a single PKI over many sessions?

 Use JUC

De-composing “entangled systems”

Q: How can we de-compose systems to “independent
components” even when the components have joint
modules?

A: Can be done when the joint modules “behave like
multiple independent instances” of a simpler module.

Example: Key exchange authenticated using PKI

Multi-session extensions

ρ̂ is the multi-session extension of ρ if it “behaves like
multiple independent sessions of ρ”. That is:

• ρ̂ runs multiple independent sessions of ρ, each with
its own sub-session-id (ssid).

• Upon receiving message m=(s,m’), ρ̂ activates
session s of ρ with input m’.

• When session s of ρ wishes to send message m’, ρ̂
sends (s,m’) to specified recipient.

Universal composition with Joint State (JUC)

Ingredients:

• Protocol π that emulates protocol φ ̂

• Protocol ρ that makes subroutine calls to φ

Result: A protocol ρφ ̂ π Where:

• The calls to (the single instance of) φ ̂ are
replaced by calls to (multiple instances of) π with:

– same pid

– ssid turns into sid

• Values returned from each MI of π are treated as
coming from the MI of φ ̂ with same pid, sid turns to
ssid.

Universal composition with Joint State

π

ρ ρ

 JUC Theorem [C-Rabin03]:

If protocol π UC-emulates protocol φ ̂,

then protocol ρφ ̂ π UC-emulates protocol ρ.

Authenticated filesystem

• On board

