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Correctness: every party learns y = f(x,, X,, X,)
Security: even if a party is dishonest, it only learns the output y, but nothing else
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Our results :

Semi-honest case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

malicious case

ZK proofs with RAM efficiency

plug into GP’15

GP’15 2 round fully adaptive MPC becomes RAM-efficient
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Static vs Adaptive Security

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed
before the protocol starts

‘ f(x1, X, X ) =
X, @ X,

Adaptive security:
parties may become dishonest
during the execution of the protocol

; f(Xx,, X,, X,)
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Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x., ..., X )
2. simulate r, of corrupted parties, consistent with
communication and x.
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Example: Adaptively Secure Encryption (NCE)

i dummy c® i

rEnc

k

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1.  Sim() — c®, state
2. Sim(state, m) — rSEnC, ks
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Example: Adaptively Secure Encryption (NCE)

i dummy c® i

k

rEnc

Adv gets:
- eitherreal (r, k, c = Enc,(m; r))
- orfake (r°;, ., k°, c°)

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1.  Sim() — c®, state

2. Sim(state, m) —»r°>__ , k®

Enc’

possible for a non-committing encryption (NCE)
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Full adaptive security: ¢ " / ~
e No erasures N > sﬂ{\
e Security even when all parties are corrupted i*/ g 3

Until 2015: # of rounds ~ depth of circuit (CLOS02)

Constant round protocols: CGP15, DKR15, GP15.




Full Adaptive Security: state of the art, semi-honest

# of # of assumptions
parties | rounds
CGP’15 2 2 OWF
subexp iO
DKR’15 n 4 OWF
iO
GP™15 n 2 TDP « the only 2 round MPC
subexp. iO

*need a CRS even for HBC case!
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Full Adaptive Security: state of the art, semi-honest

# of # of assumptions global CRS
parties | rounds

subexp iO
DKR'15 n 4 — X
iO
GP15 n 2 TDP _
subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS 1 local CRS 2 global CRS

s_s 8%  a_s &

N




Full Adaptive Security: state of the art, semi-honest

# of # of assumptions global CRS randomness
parties | rounds hiding

CGP’15 2 2 OWF + +

subexp iO
DKR’15 n 4 OWF + +

iO

GP’15 n 2 TDP - -

subexp. iO (even in HBC case)
Q2: can we achieve randomness hiding? (Evaluation of f(x,, ..., X ; r) hides r even if everyone is corrupted)

choose N = pq
nobody knows p, q




Full Adaptive Security: state of the art, semi-honest

# of # of assumptions
parties | rounds

CGP’15 2 2 OWF

subexp iO
DKR’15 n 4 OWF

iO

GP’15 n 2 TDP

subexp. iO

global CRS

(even in HBC case)

randomness supports
hiding RAM
+ —
+ -

Q3: can we use the fact that f is a succinct RAM program?




Full Adaptive Security: state of the art, semi-honest

# of # of assumptions global CRS randomness supports
parties | rounds hiding RAM

CGP’15 2 2 OWF + + -

subexp iO
DKR’15 n 4 OWF + + -

iO

GP’15 n 2 TDP - - -

subexp. iO (even in HBC case)

Q4: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)
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Full Adaptive Security

# of # of assumptions global CRS randomness supports
parties | rounds hiding RAM
CGP’15 2 2 OWF + + -
subexp iO
DKR’15 n 4 OWF + + -
iO
GP’15 n 2 TDP - - -
subexp. iO (even in HBC case)
This work n 2 OWF + + +
iO
Subsequent work
HPV’16 2 2 hardware tokens no CRS - -
OWF
CPV’16 2 2 NCE* no CRS - -

(n)

(const)



Part |: HBC protocol with global CRS
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First attempt

X, | = Enc,,(x)

B .

- decrypt each |:| using SK
- output f(x1, xn)

y =X, X, ..., X )

- decrypt each |:| using SK
- output f(x, ..., X_)
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- decrypt each D using SK
- check that JOare the same in each ||
- verify each D

- output f(x1, xn)

- decrypt each D using SK
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- verify each D
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Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||

X, | = Commit(x;r) - verify each [_]
- output f(x1, xn)
i = Enc,, (x||Ir ] ].--[])
000 PK\ il
X1 X2 Xn
X1r1 X2,r2’ ann < >
I I HiEN \
X1r1 X2r2 ann
I I od
- decrypt each D using SK < >
- check that JJOare the same in each [_]
- i X .
verify each D each 000 completely determines Xys wees X and therefore y.
- output f(x1, xn)
The adversary cannot mix and match encryptions
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Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
I I od
Adv ) PK GM
m

> PK, SK
¢ = Enc(m) or simulated ¢, SK{c} S




PRE

- decrypt each D using SK
- check that JJOare the same in each ||

- verify each D
- output f(x1, xn)

Problem:

cannot use security of encryption
since SKis in the program 1 2 n

Solution: ‘ ‘ < 4
Puncturable randomized encryption (PRE) % g

(from iO and OWFs) 000 OO0 000

Property:
simulation-secure Adv PK GM
even when almost all SK is known m

-~ PK, SK
¢ = Enc(m) or simulated ¢, SK{c} ’




Achieving globality and full adaptive security

Simulation: not global
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Simulation: not global
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Solution: Modify the protocol to sample PK, during the execution.
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How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

Any MPC protocol

ey X r) = garbled f, garbled Xys enes X
oL RAg'\g'r‘;T;'rfée”t RAM-efficient
(eg.CH16) | | Pprotocol

Only works for n-1 corruptions!
For full adaptive security:

randomness-hiding
MPC protocol

RAM-efficient

EBj garbling RAM-efficient
(eg.CH16) | PABIEEE!




Our results :

Semi-honest case

2 round fully adaptive MPC with nice properties (randomness-hiding, RAM-efficient, global CRS...)

malicious case

NIZK with RAM efficiency

plug into GP’15

GP’15 2 round fully adaptive MPC becomes RAM-efficient
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Part Il: Making GP'15 RAM-efficient

Any RAM-efficient RAM-efficient
randomness-hiding #:,‘3 garbling = rotocol
MPC protocol (e.g. CH16) P

GP’15 doesn’t hide randomness
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Malicious case: achieving RAM-efficiency

didn’t have before...

=

Theorem (Garg-Polychroniadou’15): L
subexponential 10 for RAM +TDPs + statistically-sound NIZK for RAM
— malicious MPC for RAM (2 round, fully adaptive)




Google zero knowledge ram |
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Press Enter to search.
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Prior work on RAM-efficient NIZK

}

f(x):
For i = 1.. 100000000 do {

|proof| ~ [f|,,, - done
Verification complexity ~ RAM complexity of f - ?

[Gen09, Gro11]:
- |proof| ~|w|
- Verify ~ circuit compexity of f

Obfuscated program in GP’15:

Verify proof for “f(x ..x )=y,...

”




Malicious case
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Malicious case

Theorem (Garg-Polychroniadou’15):
subexponential 10 for RAM + TDPs+ statistically-sound NIZK for RAM
— malicious MPC for RAM (2 round, fully adaptive)

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits — statistically-sound NIZK for RAM.

Corollary:
Subexp. iO+TDPs — malicious MPC for RAM (2 round, fully adaptive)
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@ Proofw=| R() || x,w %

Prover Verifier
L xEL ' XEL
W 1
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NIZK + Garbled RAM — NIZK for RAM

Attempt

1

Convince that 3w such that R(x; w) =1

Prooft=| R() | [ X, w

e

X, W—

R- T

| —

| garbled RAM:

- RAM-efficient

- allows to compute R(x; w)
\‘ - hides R, x, w

Verifier

___________

Accept if Eval( R(* *)

Verifier doesn’t learn anything about w
Malicious prover can garble R = 1
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NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
% R(*,*) X, W %
Prover NIZK proof: “garbling done correctly, for correct R and x” Verlfler
xeL | xeL !
WL
Accept if Eval( R(*,*) X, W ) =

R R(*,*) and if NIZK verifies.
X, W— X, W e \Verifier doesn’t learn anything about w

e garbling: for most random coins of garbling, correctness holds.

e what if for some r garbling always garbles R = 1




NIZK + Garbled RAM — NIZK for RAM

Attempt

2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W—

Verifier

___________

Accept if Eval( R(* *)

and if NIZK verifies.

e \Verifier doesn’t learn anything about w
e No coin tossing - need perfectly correct garbled RAM
e Currently do not have garbled RAM with perfect correctness
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NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

R(*,*)

X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W—

A

Verifier

___________

Accept if Eval( R(* *)

and if NIZK verifies.

e \Verifier doesn’t learn anything about w
e CH15 garbled RAM satisfies perfect correctness with abort - enough
e evaluator either gets correct output, or rejects




Summary: two round adaptively secure protocols

Semi-honest case:
e (global CRS
e supports RAM
e randomness-hiding (e.g. N = pq)

Malicious case (GP15 + our RAM efficient NIZK):
e RAM-efficient



Questions?



