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Correctness: every party learns y = f(x1, x2, x3)
Security: even if a party is dishonest, it only learns the output y, but nothing else
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Our results : 

ZK proofs with RAM efficiency

GP’15 2 round fully adaptive MPC becomes RAM-efficient

plug into GP’15

Semi-honest case

malicious case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)
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Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the 
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)
2. simulate ri  of corrupted parties, consistent with 

communication and xi



Example: Adaptively Secure Encryption (NCE)
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Simulator:

c = Enc(m; r)
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Example: Adaptively Secure Encryption (NCE)

rEnc k

Simulator:
1. Sim() → cs, state
2. Sim(state, m) → rs

Enc, k
s



Adaptive corruptions:
adversary can decide who to corrupt adaptively during the 
execution

dummy cs

possible for a non-committing encryption (NCE)

19

Example: Adaptively Secure Encryption (NCE)

rEnc k

Adv gets:
- either real (r, k, c = Enck(m; r))
- or fake (rs

Enc, k
s, cs)

Simulator:
1. Sim() → cs, state
2. Sim(state, m) → rs

Enc, k
s
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Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Until 2015: # of rounds ~ depth of circuit (CLOS02)

Constant round protocols: CGP15, DKR15, GP15.



← the only 2 round MPC

*need a CRS even for HBC case!

Full Adaptive Security: state of the art, semi-honest
# of 

parties
# of 

rounds
assumptions

CGP’15 2 2 OWF 
 subexp iO

DKR’15 n 4 OWF
 iO

GP’15 n 2 TDP 
 subexp. iO
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-
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-

Q2: can we achieve randomness hiding? (Evaluation of f(x1, …, xn; r) hides r even if everyone is corrupted)

choose N = pq

nobody knows p, q



Full Adaptive Security: state of the art, semi-honest
# of 

parties
# of 

rounds
assumptions global CRS randomness 

hiding
supports 

RAM

CGP’15 2 2 OWF 
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP 
 subexp. iO

-
(even in HBC case)

- -

Q3: can we use the fact that f is a succinct RAM program?



Q4: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)
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Full Adaptive Security
# of 

parties
# of 

rounds
assumptions global CRS randomness 

hiding
supports 

RAM

CGP’15 2 2 OWF 
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP 
 subexp. iO

-
(even in HBC case)

- -

This work n 2 OWF
 iO

+ + +

HPV’16 2 2 hardware tokens
OWF

no CRS - -

CPV’16 2
(n)

2
(const)

NCE* no CRS - -

Subsequent work



Part I: HBC protocol with global CRS
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x1 x2 xn...

- decrypt each         using SK
- output f(x1, …, xn) 

xi =  EncPK(xi)

- decrypt each         using SK
- output f(x1, …, xn) 

x1 x2’ xn...

y’ = f(x1, x2’…, xn)

PK,

obfuscated
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Our protocol

x1r1 x2’r2’ xnrn

...

=  EncPK(xi||ri||         ...       )

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

⊥ 

x1 x2 xn...

xi =  Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

each            completely determines x1, …, xn and therefore y. 
xiri

The adversary cannot mix and match encryptions

xiri

PK,
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x1 x2 xn...

...

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

Problem: 
cannot use security of encryption 

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Adv

PK,

Wanted: Encryption



PRE 

x1 x2 xn...

...

- decrypt each         using SK
- check that          are the same in each  
- verify each 
- output f(x1, …, xn) 

Problem: 
cannot use security of encryption 

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Adv

Solution: 
Puncturable randomized encryption (PRE)

(from iO and OWFs)

Property:
simulation-secure 

even when almost all SK is known

PK,
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Achieving globality and full adaptive security

PK
...

...SK{                  }

Simulation: not global

Solution: Modify the protocol to sample PK,                 during the execution.       

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK

KSW’14
CPR’16



Achieving globality and full adaptive security

PK
...

...SK{                  }

Simulation: not global

Solution: Modify the protocol to sample PK,                 during the execution.       

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK PK SK

x1 x2 xn
...

x1
x2 xn...

Gen(rgen)

, rgen
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F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient 

garbling
 (e.g. CH’16)

RAM-efficient 
protocol

Only works for n-1 corruptions!
For full adaptive security: 

randomness-hiding 
MPC protocol

RAM-efficient 
garbling

 (e.g. CH’16)

RAM-efficient 
protocol



Our results : 

NIZK with RAM efficiency

2 round fully adaptive MPC with nice properties (randomness-hiding, RAM-efficient, global CRS...)

GP’15 2 round fully adaptive MPC becomes RAM-efficient

plug into GP’15

Semi-honest case
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Part II: Making GP’15 RAM-efficient 



GP’15 doesn’t hide randomness

Any 
randomness-hiding 

MPC protocol

RAM-efficient 
garbling

 (e.g. CH’16)

RAM-efficient 
protocol

Part II: Making GP’15 RAM-efficient 
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Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM +TDPs + statistically-sound NIZK for RAM
→ malicious MPC for RAM (2 round, fully adaptive)

Malicious case: achieving RAM-efficiency

didn’t have before...
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- |proof| ~ |f|RAM - done [Gen09, Gro11]: 
- |proof| ~|w|
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Verify proof for “f(x 1..xn)=y,...”
...
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Obfuscated program in GP’15:
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- |proof| ~ |f|RAM - done
- Verification complexity ~ RAM complexity of f - ?

[Gen09, Gro11]: 
- |proof| ~|w|
- Verify ~ circuit compexity of f

Verify proof for “f(x 1..xn)=y,...”
...
...

Obfuscated program in GP’15:

Prior work on RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
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Malicious case

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits →  statistically-sound NIZK for RAM.

Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM + TDPs+ statistically-sound NIZK for RAM
→ malicious MPC for RAM (2 round, fully adaptive)

Corollary:
Subexp. iO+TDPs → malicious MPC for RAM (2 round, fully adaptive)
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x ∊ L
w

R(*,*) x, w

Accept if Eval(                            ) = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.
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x, w → 

R(*,*)

x, w

x ∊ L

short (~|R|RAM)
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● what if for some r garbling always garbles R ≡ 1
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Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval(                            ) = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1
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● Verifier doesn’t learn anything about w
● No coin tossing - need perfectly correct garbled RAM
● Currently do not have garbled RAM with perfect correctness 
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NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval(                            ) = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R → 

x, w → 

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● CH15 garbled RAM satisfies perfect correctness with abort - enough
● evaluator either gets correct output, or rejects



Summary: two round adaptively secure protocols

Semi-honest case:
● global CRS
● supports RAM
● randomness-hiding (e.g. N = pq)

Malicious case (GP15 + our RAM efficient NIZK):
● RAM-efficient



Questions?


