
Better 2-round adaptive MPC

Ran Canetti, Oxana Poburinnaya, Muthuramakrishnan Venkitasubramaniam

Secure Multiparty Computation[Yao’82]

2

f(x1, x2, x3)

x1

x2x3

Secure Multiparty Computation[Yao’82]

3

f(x1, x2, x3)

x1

x2x3

Correctness: every party learns y = f(x1, x2, x3)
Security: even if a party is dishonest, it only learns the output y, but nothing else

Our results :

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

Semi-honest case

Our results :

GP’15 2 round fully adaptive MPC becomes RAM-efficient

Semi-honest case

malicious case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

Our results :

ZK proofs with RAM efficiency

GP’15 2 round fully adaptive MPC becomes RAM-efficient

plug into GP’15

Semi-honest case

malicious case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

Static vs Adaptive Security

7

f(x1, x2, x3)

x1

x2x3

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed

before the protocol starts

Static vs Adaptive Security

8

f(x1, x2, x3)

x1

x2x3

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed

before the protocol starts

f(x1, x2, x3)

x1

x2x3

Adaptive security:
parties may become dishonest

during the execution of the protocol

Static vs Adaptive Security

9

f(x1, x2, x3)

x1

x2x3

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed

before the protocol starts

f(x1, x2, x3)

x1

x2x3

Adaptive security:
parties may become dishonest

during the execution of the protocol

Static vs Adaptive Security

10

f(x1, x2, x3)

x1

x2x3

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed

before the protocol starts

f(x1, x2, x3)

x1

x2x3

Adaptive security:
parties may become dishonest

during the execution of the protocol

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively
during the execution

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)

Adaptive Security of MPC

xi ri

xj rj

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x1, …, xn)
2. simulate ri of corrupted parties, consistent with

communication and xi

Example: Adaptively Secure Encryption (NCE)

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:

c = Enc(m; r)

16

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

17

Example: Adaptively Secure Encryption (NCE)

dummy cs

Simulator:
1. Sim() → cs, state

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

dummy cs

18

Example: Adaptively Secure Encryption (NCE)

rEnc k

Simulator:
1. Sim() → cs, state
2. Sim(state, m) → rs

Enc, k
s

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

dummy cs

possible for a non-committing encryption (NCE)

19

Example: Adaptively Secure Encryption (NCE)

rEnc k

Adv gets:
- either real (r, k, c = Enck(m; r))
- or fake (rs

Enc, k
s, cs)

Simulator:
1. Sim() → cs, state
2. Sim(state, m) → rs

Enc, k
s

Full Adaptive Security

Full adaptive security:
● No erasures

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Full Adaptive Security

Full adaptive security:
● No erasures
● Security even when all parties are corrupted

Until 2015: # of rounds ~ depth of circuit (CLOS02)

Constant round protocols: CGP15, DKR15, GP15.

← the only 2 round MPC

*need a CRS even for HBC case!

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions

CGP’15 2 2 OWF
 subexp iO

DKR’15 n 4 OWF
 iO

GP’15 n 2 TDP
 subexp. iO

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions

CGP’15 2 2 OWF
 subexp iO

DKR’15 n 4 OWF
 iO

GP’15 n 2 TDP
 subexp. iO

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS

CGP’15 2 2 OWF
 subexp iO

+

DKR’15 n 4 OWF
 iO

+

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

local CRS

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS

CGP’15 2 2 OWF
 subexp iO

+

DKR’15 n 4 OWF
 iO

+

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS 1 local CRS 2

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS

CGP’15 2 2 OWF
 subexp iO

+

DKR’15 n 4 OWF
 iO

+

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS 1 local CRS 2 global CRS

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS

CGP’15 2 2 OWF
 subexp iO

+

DKR’15 n 4 OWF
 iO

+

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS randomness

hiding

CGP’15 2 2 OWF
 subexp iO

+ +

DKR’15 n 4 OWF
 iO

+ +

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

-

Q2: can we achieve randomness hiding? (Evaluation of f(x1, …, xn; r) hides r even if everyone is corrupted)

choose N = pq

nobody knows p, q

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS randomness

hiding
supports

RAM

CGP’15 2 2 OWF
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

- -

Q3: can we use the fact that f is a succinct RAM program?

Q4: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Full Adaptive Security: state of the art, semi-honest
of

parties
of

rounds
assumptions global CRS randomness

hiding
supports

RAM

CGP’15 2 2 OWF
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

- -

Full Adaptive Security
of

parties
of

rounds
assumptions global CRS randomness

hiding
supports

RAM

CGP’15 2 2 OWF
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

- -

This work n 2 OWF
 iO

+ + +

Full Adaptive Security
of

parties
of

rounds
assumptions global CRS randomness

hiding
supports

RAM

CGP’15 2 2 OWF
 subexp iO

+ + -

DKR’15 n 4 OWF
 iO

+ + -

GP’15 n 2 TDP
 subexp. iO

-
(even in HBC case)

- -

This work n 2 OWF
 iO

+ + +

HPV’16 2 2 hardware tokens
OWF

no CRS - -

CPV’16 2
(n)

2
(const)

NCE* no CRS - -

Subsequent work

Part I: HBC protocol with global CRS

First attempt

x1 x2 xn...

PK

xi = EncPK(xi)

First attempt

x1 x2 xn...

PK,
- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)
obfuscated

First attempt

x1 x2 xn...

- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)

- decrypt each using SK
- output f(x1, …, xn)

x1 x2 xn...

y = f(x1, x2, …, xn)

PK,

obfuscated

First attempt

x1 x2 xn...

- decrypt each using SK
- output f(x1, …, xn)

xi = EncPK(xi)

- decrypt each using SK
- output f(x1, …, xn)

x1 x2’ xn...

y’ = f(x1, x2’…, xn)

PK,

obfuscated

Our protocol
PK

= EncPK(xi||ri|| ...)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

xiri

Our protocol

= EncPK(xi||ri|| ...)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

xiri

PK,

Our protocol

x1r1 x2r2 xnrn

...

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

y = f(x1, x2, …, xn)

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

xiri

PK,

Our protocol

x1r1 x2’r2’ xnrn

...

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

⊥

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

xiri

PK,

Our protocol

x1r1 x2’r2’ xnrn

...

= EncPK(xi||ri|| ...)

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

⊥

x1 x2 xn...

xi = Commit(xi; ri)

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

each completely determines x1, …, xn and therefore y.
xiri

The adversary cannot mix and match encryptions

xiri

PK,

Wanted: Encryption

x1 x2 xn...

x1r1 x2r2 xnrn

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK,

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK,

Wanted: Encryption

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c

GM

PK, SK

Adv

PK,

Wanted: Encryption

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK

GM

PK, SK

Adv

PK,

Wanted: Encryption

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Adv

PK,

Wanted: Encryption

PRE

x1 x2 xn...

...

- decrypt each using SK
- check that are the same in each
- verify each
- output f(x1, …, xn)

Problem:
cannot use security of encryption

since SK is in the program

PK

m

c = Enc(m) or simulated c, SK{c}

GM

PK, SK

Adv

Solution:
Puncturable randomized encryption (PRE)

(from iO and OWFs)

Property:
simulation-secure

even when almost all SK is known

PK,

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Solution: Modify the protocol to sample PK, during the execution.

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK

KSW’14
CPR’16

Achieving globality and full adaptive security

PK
...

...SK{ }

Simulation: not global

Solution: Modify the protocol to sample PK, during the execution.

PK

x1 x2 xn
...

x1
x2 xn...

SK

SK PK SK

x1 x2 xn
...

x1
x2 xn...

Gen(rgen)

, rgen

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

Only works for n-1 corruptions!

How to make the protocol RAM-efficient
Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x1, …, xn; r) = garbled f, garbled x1, …, xn.

Any MPC protocol
RAM-efficient

garbling
 (e.g. CH’16)

RAM-efficient
protocol

Only works for n-1 corruptions!
For full adaptive security:

randomness-hiding
MPC protocol

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

Our results :

NIZK with RAM efficiency

2 round fully adaptive MPC with nice properties (randomness-hiding, RAM-efficient, global CRS...)

GP’15 2 round fully adaptive MPC becomes RAM-efficient

plug into GP’15

Semi-honest case

malicious case

Part II: Making GP’15 RAM-efficient

GP’15 doesn’t hide randomness

Any
randomness-hiding

MPC protocol

RAM-efficient
garbling

 (e.g. CH’16)

RAM-efficient
protocol

Part II: Making GP’15 RAM-efficient

Malicious case: achieving RAM-efficiency

Theorem (Garg-Polychroniadou’15):
subexponential IO+TDPs → malicious MPC (2 round, fully adaptive)

Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM +TDPs → malicious MPC for RAM? (2 round, fully adaptive)

Malicious case: achieving RAM-efficiency

Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM +TDPs + statistically-sound NIZK for RAM
→ malicious MPC for RAM (2 round, fully adaptive)

Malicious case: achieving RAM-efficiency

didn’t have before...

RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
}

RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
}

- |proof| ~ |f|RAM

- |proof| ~ |f|RAM - done [Gen09, Gro11]:
- |proof| ~|w|

Prior work on RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
}

- |proof| ~ |f|RAM - done [Gen09, Gro11]:
- |proof| ~|w|
- Verify ~ circuit compexity of f

Verify proof for “f(x 1..xn)=y,...”
...
...

Obfuscated program in GP’15:

Prior work on RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
}

- |proof| ~ |f|RAM - done
- Verification complexity ~ RAM complexity of f - ?

[Gen09, Gro11]:
- |proof| ~|w|
- Verify ~ circuit compexity of f

Verify proof for “f(x 1..xn)=y,...”
...
...

Obfuscated program in GP’15:

Prior work on RAM-efficient NIZK

f(x):
For i = 1… 100000000 do {
}

Malicious case

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits → statistically-sound NIZK for RAM.

Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM + TDPs+ statistically-sound NIZK for RAM
→ malicious MPC for RAM (2 round, fully adaptive)

Malicious case

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits → statistically-sound NIZK for RAM.

Theorem (Garg-Polychroniadou’15):
subexponential IO for RAM + TDPs+ statistically-sound NIZK for RAM
→ malicious MPC for RAM (2 round, fully adaptive)

Corollary:
Subexp. iO+TDPs → malicious MPC for RAM (2 round, fully adaptive)

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

Prover Verifier

x ∊ L
w

x ∊ L

garbled RAM:
- allows to compute R(x; w)
- hides R, x, w
- RAM-efficient

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Convince that ∃w such that R(x; w) = 1

Proof ᵨ = R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

Prover Verifier

x ∊ L
w

x ∊ L

R →

x, w →

R(*,*)

x, w

garbled RAM:
- allows to compute R(x; w)
- hides R, x, w
- RAM-efficient

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Proof ᵨ = R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w ● Verifier doesn’t learn anything about w

garbled RAM:
- allows to compute R(x; w)
- hides R, x, w
- RAM-efficient

NIZK + Garbled RAM → NIZK for RAM
Attempt 1

Proof ᵨ = R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

● Verifier doesn’t learn anything about w
● Malicious prover can garble R ≡ 1

Prover Verifier

x ∊ L
w

x ∊ L

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

garbled RAM:
- allows to compute R(x; w)
- hides R, x, w
- RAM-efficient

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

short (~|R|RAM)

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
●

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● garbling: for most random coins of garbling, correctness holds.

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● garbling: for most random coins of garbling, correctness holds.
● what if for some r garbling always garbles R ≡ 1

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● No coin tossing - need perfectly correct garbled RAM
● Currently do not have garbled RAM with perfect correctness

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● CH15 garbled RAM satisfies perfect correctness with abort - enough

NIZK + Garbled RAM → NIZK for RAM
Attempt 2

Prover Verifier

x ∊ L
w

R(*,*) x, w

Accept if Eval() = 1R(*,*) x, w

NIZK proof: “garbling done correctly, for correct R and x”

and if NIZK verifies.

Convince that ∃w such that R(x; w) = 1

R →

x, w →

R(*,*)

x, w

x ∊ L

● Verifier doesn’t learn anything about w
● CH15 garbled RAM satisfies perfect correctness with abort - enough
● evaluator either gets correct output, or rejects

Summary: two round adaptively secure protocols

Semi-honest case:
● global CRS
● supports RAM
● randomness-hiding (e.g. N = pq)

Malicious case (GP15 + our RAM efficient NIZK):
● RAM-efficient

Questions?

