Better 2-round adaptive MPC

Ran Canetti, Oxana Poburinnaya, Muthuramakrishnan Venkitasubramaniam

Secure Multiparty Computation[Yao'82]

x, | &)

f(x,, X,, X;)

Secure Multiparty Computation[Yao'82]

@>

Correctness: every party learns y = f(x,, X,, X,)
Security: even if a party is dishonest, it only learns the output y, but nothing else

Our results :

Semi-honest case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

Our results :

Semi-honest case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

malicious case

GP’15 2 round fully adaptive MPC becomes RAM-efficient

Our results :

Semi-honest case

2 round fully adaptive MPC with useful properties (randomness-hiding, RAM-efficient, global CRS...)

malicious case

ZK proofs with RAM efficiency

plug into GP’15

GP’15 2 round fully adaptive MPC becomes RAM-efficient

Static vs Adaptive Security

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed
before the protocol starts

Static vs Adaptive Security

when do parties become dishonest?

Static security: Adaptive security:
a set of dishonest parties is fixed parties may become dishonest
before the protocol starts during the execution of the protocol

.,

@

[f(X1’ X2’ X) @ \ f(X‘I’ X2, X) @
< | @ ® |~ < | @ ® |~

Static vs Adaptive Security

when do parties become dishonest?

Static security: Adaptive security:
a set of dishonest parties is fixed parties may become dishonest
before the protocol starts during the execution of the protocol

‘ f(x1, X, X) = ‘ f(x1, X, X) =
. ® = . ® =

Static vs Adaptive Security

when do parties become dishonest?

Static security:
a set of dishonest parties is fixed
before the protocol starts

‘ f(x1, X, X) =
X, @ X,

Adaptive security:
parties may become dishonest
during the execution of the protocol

; f(Xx,, X,, X,)

10

Adaptive Security of MPC

Adaptive corruptions:
g g adversary can decide who to corrupt adaptively during the
execution

Adaptive Security of MPC

execution

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

Simulator:

1. simulate communication (without knowing x., ..

., xn)

Adaptive Security of MPC

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

execution

1. simulate communication (without knowing x., ..

Simulator:

., xn)

Adaptive Security of MPC

execution

Adaptive corruptions:

adversary can decide who to corrupt adaptively during the

Simulator:

1. simulate communication (without knowing x., ..

., xn)

Adaptive Security of MPC

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. simulate communication (without knowing x., ..., X)
2. simulate r, of corrupted parties, consistent with
communication and x.

Example: Adaptively Secure Encryption (NCE)

@) c=Enc(m;r)) Adaptive corruptions:
@ adversary can decide who to corrupt adaptively during the
execution

Simulator:

Example: Adaptively Secure Encryption (NCE)

&) dummy ¢® @ Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. Sim() — c®, state

Example: Adaptively Secure Encryption (NCE)

i dummy c® i

rEnc

k

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. Sim() — c®, state
2. Sim(state, m) — rSEnC, ks

18

Example: Adaptively Secure Encryption (NCE)

i dummy c® i

k

rEnc

Adv gets:
- eitherreal (r, k, c = Enc,(m; r))
- orfake (r°;, ., k°, c°)

Adaptive corruptions:
adversary can decide who to corrupt adaptively during the
execution

Simulator:
1. Sim() — c®, state

2. Sim(state, m) —»r°>__ , k®

Enc’

possible for a non-committing encryption (NCE)

19

Full Adaptive Security

Full adaptive security:
e No erasures

Full Adaptive Security
v—1

Full adaptive security: i/m g

e No erasures \@//
4

e Security even when all parties are corrupted g

Full Adaptive Security

§

{4
& \ZQ
Full adaptive security: i%i /o
e No erasures N 7 sﬁi\
i ¢

e Security even when all parties are corrupted "’ g

Full Adaptive Security

i N

Full adaptive security: ¢ " / ~
e No erasures N > sﬂ{\
e Security even when all parties are corrupted i*/ g 3

Until 2015: # of rounds ~ depth of circuit (CLOS02)

Constant round protocols: CGP15, DKR15, GP15.

Full Adaptive Security: state of the art, semi-honest

of # of assumptions
parties | rounds
CGP’15 2 2 OWF
subexp iO
DKR’15 n 4 OWF
iO
GP™15 n 2 TDP « the only 2 round MPC
subexp. iO

*need a CRS even for HBC case!

Full Adaptive Security: state of the art, semi-honest

of # of assumptions
parties | rounds

CGP’15 2 2 OWF
subexp iO
DKR’15 n 4 OWF
iO
GP’15 n 2 TDP
subexp. iO

Q1: can we build 2 round MPC with global (non-programmable) CRS?

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS
parties | rounds

subexp iO
DKR'15 n 4 — X
iO
GP15 n 2 TDP _
subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS
parties | rounds

subexp iO
DKR'15 n 4 — X
iO
GP15 n 2 TDP _
subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS
parties | rounds

subexp iO
DKR'15 n 4 — X
iO
GP15 n 2 TDP _
subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS 1 local CRS 2

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS
parties | rounds

subexp iO
DKR'15 n 4 — X
iO
GP15 n 2 TDP _
subexp. iO (even in HBC case)

Q1: can we build 2 round MPC with global (non-programmable) CRS?

local CRS 1 local CRS 2 global CRS

s_s 8% a_s &

N

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS randomness
parties | rounds hiding

CGP’15 2 2 OWF + +

subexp iO
DKR’15 n 4 OWF + +

iO

GP’15 n 2 TDP - -

subexp. iO (even in HBC case)
Q2: can we achieve randomness hiding? (Evaluation of f(x,, ..., X ; r) hides r even if everyone is corrupted)

choose N = pq
nobody knows p, q

Full Adaptive Security: state of the art, semi-honest

of # of assumptions
parties | rounds

CGP’15 2 2 OWF

subexp iO
DKR’15 n 4 OWF

iO

GP’15 n 2 TDP

subexp. iO

global CRS

(even in HBC case)

randomness supports
hiding RAM
+ —
+ -

Q3: can we use the fact that f is a succinct RAM program?

Full Adaptive Security: state of the art, semi-honest

of # of assumptions global CRS randomness supports
parties | rounds hiding RAM

CGP’15 2 2 OWF + + -

subexp iO
DKR’15 n 4 OWF + + -

iO

GP’15 n 2 TDP - - -

subexp. iO (even in HBC case)

Q4: can we build 2 round MPC from weaker assumptions? (e.g. remove the need for subexp. iO)

Full Adaptive Security

of # of assumptions global CRS randomness supports
parties | rounds hiding RAM
CGP’15 2 2 OWF + + -
subexp iO
DKR’15 n 4 OWF + + -
iO
GP’15 n 2 TDP - - -
subexp. iO (even in HBC case)
This work n 2 OWF + + +

i0

Full Adaptive Security

of # of assumptions global CRS randomness supports
parties | rounds hiding RAM
CGP’15 2 2 OWF + + -
subexp iO
DKR’15 n 4 OWF + + -
iO
GP’15 n 2 TDP - - -
subexp. iO (even in HBC case)
This work n 2 OWF + + +
iO
Subsequent work
HPV’16 2 2 hardware tokens no CRS - -
OWF
CPV’16 2 2 NCE* no CRS - -

(n)

(const)

Part |: HBC protocol with global CRS

First attempt

- = Enc,,(x)

First attempt

- decrypt each |:| using SK
- output f(x, ..., X_)

X, | = Enc,,(x)

First attempt

- decrypt each |:| using SK
- output f(x, ..., X_)

X, | = Enc,,(x)

B -

- decrypt each |:| using SK
- output f(x1, xn)

y=f(x1,x2, ...,xn)

First attempt

X, | = Enc,,(x)

B .

- decrypt each |:| using SK
- output f(x1, xn)

y =X, X, ..., X)

- decrypt each |:| using SK
- output f(x, ..., X_)

8 8 ¢

Our protocol

X, | = Commit(x; r.)

! = Enco (1N (1. [)

i gE g e

Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X
i

= Encg (x|inll I)

Commit(x;; r)

LI
X1 X2 L Xn
< D
g g X1r1 X2r2 ann g g
000 pog 0 |0oO0

Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X
i

= Encg (x|inll I)

Commit(x;; r)

HEjN
X1 X2 L Xn
X1r1 X2r2 ann < >
000 pog . [poo g g g g
X1r1 X2r2 ann
gog oog . HEn
- decrypt each D using SK < >
- check that JJOare the same in each ||
- verify each D

- output f(x1, xn)

Our protocol

X
i

H|E|N

XM Sz

OO0 oo

Commit(x;; r)

= Encg (x|inll I)

Xn rn

HjEn

- decrypt each D using SK
- check that JOare the same in each ||
- verify each D

- output f(x1, xn)

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

X1 X2 Xn
< D
g g X1I'1 x2r2 ann g g
000 oog | [poo
< D

Our protocol

- decrypt each D using SK
- check that JJOare the same in each ||

X, | = Commit(x;r) - verify each [_]
- output f(x1, xn)
i = Enc,, (x||Ir]].--[])
000 PK\ il
X1 X2 Xn
X1r1 X2,r2’ ann < >
I I HiEN \
X1r1 X2r2 ann
I I od
- decrypt each D using SK < >
- check that JJOare the same in each [_]
- i X .
verify each D each 000 completely determines Xys wees X and therefore y.
- output f(x1, xn)
The adversary cannot mix and match encryptions

Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
g g X1r1 X2I'2 ann g g
I I od

Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
I I od

Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
I I od
Adv) PK GM
m

~ PK, SK
¢ = Enc(m) or simulated ¢

Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
I I od
Adv) PK GM
m

= PK, SK
¢ = Enc(m) or simulated ¢, SK S

Wanted: Encryption

- decrypt each D using SK
- check that JJOare the same in each ||
- verify each D

- output f(x, ..., X_)

Problem:
cannot use security of encryption
since SK is in the program X1 X2 Xn
I I od
Adv) PK GM
m

> PK, SK
¢ = Enc(m) or simulated ¢, SK{c} S

PRE

- decrypt each D using SK
- check that JJOare the same in each ||

- verify each D
- output f(x1, xn)

Problem:

cannot use security of encryption
since SKis in the program 1 2 n

Solution: ‘ ‘ < 4
Puncturable randomized encryption (PRE) % g

(from iO and OWFs) 000 OO0 000

Property:
simulation-secure Adv PK GM
even when almost all SK is known m

-~ PK, SK
¢ = Enc(m) or simulated ¢, SK{c} ’

Achieving globality and full adaptive security

Simulation: not global

. o
ﬂB @“ oot oo oo “g

Achieving globality and full adaptive security

Simulation: not global
8% oog pon Qoo gg
KSW’14

Solution: Modify the protocol to sample PK, during the execution. crr16

Achieving globality and full adaptive security

Simulation: not global

83 Dodood - [ooO gg

Solution: Modify the protocol to sample PK, during the execution.

L &P~
> ~

nod odd - odo

How to make the protocol RAM-efficient

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

F(x,, ..., X ; r) = garbled f, garbled Xys enes X

1,

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:
ey X r) = garbled f, garbled Xys enes X

Any MPC protocol

RAM-efficient

EEI garbling —
(e.g. CH16)

RAM-efficient
protocol

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:
ey X r) = garbled f, garbled Xys enes X

Any MPC protocol

RAM-efficient

EEI garbling —
(e.g. CH16)

RAM-efficient
protocol

Only works for n-1 corruptions!

How to make the protocol RAM-efficient

F(x

1,

Ishai-Kushilevitz paradigm:
use MPC to evaluate garbling:

Any MPC protocol

ey X r) = garbled f, garbled Xys enes X
oL RAg'\g'r‘;T;'rfée”t RAM-efficient
(eg.CH16) | | Pprotocol

Only works for n-1 corruptions!
For full adaptive security:

randomness-hiding
MPC protocol

RAM-efficient

EBj garbling RAM-efficient
(eg.CH16) | PABIEEE!

Our results :

Semi-honest case

2 round fully adaptive MPC with nice properties (randomness-hiding, RAM-efficient, global CRS...)

malicious case

NIZK with RAM efficiency

plug into GP’15

GP’15 2 round fully adaptive MPC becomes RAM-efficient

Part Il: Making GP'15 RAM-efficient

Part Il: Making GP'15 RAM-efficient

Any RAM-efficient RAM-efficient
randomness-hiding #:,‘3 garbling = rotocol
MPC protocol (e.g. CH16) P

GP’15 doesn’t hide randomness

Malicious case: achieving RAM-efficiency

Theorem (Garg-Polychroniadou’15):
subexponential IO+TDPs — malicious MPC (2 round, fully adaptive)

Malicious case: achieving RAM-efficiency

Theorem (Garg-Polychroniadou’15):
subexponential |10 for RAM +TDPs — malicious MPC for RAM? (2 round, fully adaptive)

Malicious case: achieving RAM-efficiency

didn’t have before...

=

Theorem (Garg-Polychroniadou’15): L
subexponential 10 for RAM +TDPs + statistically-sound NIZK for RAM
— malicious MPC for RAM (2 round, fully adaptive)

Google zero knowledge ram |

=

Press Enter to search.

Go

gle zero knowledge ram |

Press Enter to search.

L

RAM-efficient NIZK

f(x):
For i = 1.. 100000000 do {
}

RAM-efficient NIZK

f(x):
For i = 1.. 100000000 do {
}

lproof| ~ [f[;

Prior work on RAM-efficient NIZK

}

f(x):
For i = 1.. 100000000 do {

|proof| ~ [f|,,, - done

[Gen09, Gro11]:
|proof| ~|w|

Prior work on RAM-efficient NIZK

f(x):
For i = 1.. 100000000 do {
}

- |proof| ~ - done

Iflrawm

[Gen09, Gro11]:
- |proof| ~|w|
- Verify ~ circuit compexity of f

Obfuscated program in GP’15:

Verify proof for “f(x ..x)=y,...

”

Prior work on RAM-efficient NIZK

}

f(x):
For i = 1.. 100000000 do {

|proof| ~ [f|,,, - done
Verification complexity ~ RAM complexity of f - ?

[Gen09, Gro11]:
- |proof| ~|w|
- Verify ~ circuit compexity of f

Obfuscated program in GP’15:

Verify proof for “f(x ..x)=y,...

”

Malicious case

Theorem (Garg-Polychroniadou’15):
subexponential 10 for RAM + TDPs+ statistically-sound NIZK for RAM
— malicious MPC for RAM (2 round, fully adaptive)

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits — statistically-sound NIZK for RAM.

Malicious case

Theorem (Garg-Polychroniadou’15):
subexponential 10 for RAM + TDPs+ statistically-sound NIZK for RAM
— malicious MPC for RAM (2 round, fully adaptive)

Theorem (Our work):
Garbled RAM + NIZK proofs for circuits — statistically-sound NIZK for RAM.

Corollary:
Subexp. iO+TDPs — malicious MPC for RAM (2 round, fully adaptive)

NIZK + Garbled RAM — NIZK for RAM

Attempt 1
Convince that 3w such that R(x; w) =1
Prover Verifier
XEL ' XEL

NIZK + Garbled RAM — NIZK for RAM

Attempt

————————————

1

Convince that 3w such that R(x; w) =1

| —

| garbled RAM:

- allows to compute R(x; w)
- hides R, x, w
RAM-efficient

>

Verifier

"""""""

NIZK + Garbled RAM — NIZK for RAM

Attempt 1

————————————

Convince that 3w such that R(x; w) =1

Prooft=| R() | [X, w

| —

| garbled RAM:

- allows to compute R(x; w)
- hides R, x, w
RAM-efficient

%

Verifier

"""""""

Accept if Eval(

R(*,*)

NIZK + Garbled RAM — NIZK for RAM

Attempt 1

Convince that 3w such that R(x; w) =1

@ Proofw=| R() || x,w %

Prover Verifier
L xEL ' XEL
W 1

Accept if Eval(R(* *)

R(*,*) /2 garbled RAM:

X, W — X, W

- RAM-efficient

R
I - allows to compute R(x; w) n , .
\‘ s B e \Verifier doesn’t learn anything about w

NIZK + Garbled RAM — NIZK for RAM

Attempt

1

Convince that 3w such that R(x; w) =1

Prooft=| R() | [X, w

e

X, W—

R- T

| —

| garbled RAM:

- RAM-efficient

- allows to compute R(x; w)
\‘ - hides R, x, w

Verifier

Accept if Eval(R(* *)

Verifier doesn’t learn anything about w
Malicious prover can garble R = 1

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

————————————

Convince that 3w such that R(x; w) =1

R(*,*) X, W

NIZK proof: “garbling done correctly, for correct R and x”

>

Verifier

"""""""

Accept if Eval(

R(*,*)

and if NIZK verifies.

NIZK + Garbled RAM — NIZK for RAM

Attempt

————————————

2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

NIZK proof: “garbling done correctly, for correct R and x”

AN

short (~[R[z)

%

Verifier

"""""""

Accept if Eval(

R(*,*)

and if NIZK verifies.

NIZK + Garbled RAM — NIZK for RAM

Attempt

2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W —

%

Verifier

Accept if Eval(

R(*,*)

and if NIZK verifies.

e Verifier doesn’t learn anything about w

NIZK + Garbled RAM — NIZK for RAM

Attempt

2

Convince that 3w such that R(x; w) =1

R(*,*)

X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W—

Verifier

Accept if Eval(R(* *)

and if NIZK verifies.

e \Verifier doesn’t learn anything about w
e garbling: for most random coins of garbling, correctness holds.

NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
% R(*,*) X, W %
Prover NIZK proof: “garbling done correctly, for correct R and x” Verlfler
xeL | xeL !
WL
Accept if Eval(R(*,*) X, W) =

R R(*,*) and if NIZK verifies.
X, W— X, W e \Verifier doesn’t learn anything about w

e garbling: for most random coins of garbling, correctness holds.

e what if for some r garbling always garbles R = 1

NIZK + Garbled RAM — NIZK for RAM

Attempt

2

Convince that 3w such that R(x; w) =1

R(*,*) X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W—

Verifier

Accept if Eval(R(* *)

and if NIZK verifies.

e \Verifier doesn’t learn anything about w
e No coin tossing - need perfectly correct garbled RAM
e Currently do not have garbled RAM with perfect correctness

NIZK + Garbled RAM — NIZK for RAM

Attempt 2
Convince that 3w such that R(x; w) =1
% R(*,*) X, W %
Prover NIZK proof: “garbling done correctly, for correct R and x” Verlfler
xeL | xeL !
WL
Accept if Eval(R(* *) X. W) =1

R R(*,*) and if NIZK verifies.
X, W— X, W e \Verifier doesn’t learn anything about w

e CH15 garbled RAM satisfies perfect correctness with abort - enough

NIZK + Garbled RAM — NIZK for RAM

Attempt 2

Convince that 3w such that R(x; w) =1

R(*,*)

X, W

NIZK proof: “garbling done correctly, for correct R and x”

R —

X, W—

A

Verifier

Accept if Eval(R(* *)

and if NIZK verifies.

e \Verifier doesn’t learn anything about w
e CH15 garbled RAM satisfies perfect correctness with abort - enough
e evaluator either gets correct output, or rejects

Summary: two round adaptively secure protocols

Semi-honest case:
e (global CRS
e supports RAM
e randomness-hiding (e.g. N = pq)

Malicious case (GP15 + our RAM efficient NIZK):
e RAM-efficient

Questions?

