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Abstract: A number of energy and information-relevant processes, ranging from battery charging 
to memory storage and retrieval, rely on nanomaterial phase transitions induced by solute 
intercalation. However, many of these phase transitions are poorly understood, since observing 
them in nanomaterials – and in particular in individual nanoparticles – is extremely challenging. 
This presentation will describe a novel technique to visualize intercalation-driven phase 
transitions within individual nanoparticles, based on in-situ environmental transmission electron 
microscopy (TEM) and plasmon electron energy loss-spectroscopy (EELS). As a model system, 
we focus on the hydrogenation of palladium nanoparticles. We use the plasmon-EEL signal at 
varying hydrogen pressures as a proxy for hydrogen concentration in the particle. First, we 
investigate the hydriding properties of single-crystalline particles, free from defects and grain 
boundaries, and free from elastic interactions with the substrate. We obtain single particle 
loading and unloading isotherms for particles ranging from approximately 10 nm to 50 nm, 
allowing us to address outstanding questions about the nature of phase transitions and surface 
energy effects in zero-dimensional nanomaterials. We find that hydrogen loading and unloading 
isotherms of single crystals are characterized by abrupt phase transitions and macroscopic 
hysteresis gaps. These results suggest that thermodynamic phases do not coexist in single-
crystalline nanoparticles, in striking contrast with ensemble measurements of Pd nanoparticles. 
Then, we extend our single-particle techniques to explore the hydriding properties of 
polycrystalline and multiply-twinned nanoparticles, including Pd nanorods and icosahedra. In 
contrast to single crystalline nanoparticles, these particles exhibit sloped isotherms and narrowed 
hysteretic gaps. Based on these results, we develop a model to deconvolve the effects of disorder 
and strain on the phase transitions in nanoscale systems. Lastly, we describe techniques to 
generate high-resolution plasmon-EELS (and hence phase) maps of nanoparticles. These 
mapping studies promise unprecedented insight into the internal phase of nanomaterials, and can 
be complemented with diffraction and dark-field imaging studies. We will discuss how these 
results could be used to interpret the thermodynamics of Li-ion insertion in battery electrodes, 
hydrogen absorption in state-of the-art metal hydride catalysts, or ion exchange reactions in 
quantum dot syntheses.  
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