
Software-Configured
Compute Environments

Ulrich Drepper <drepper@redhat.com>

November 2018

2

Driving Factors

Complexity Cost

Performance

Standardized
Components

Abstraction

Scaling

3

Limitations

Complexity Bargain

Performance

4

More Realistic

Complexity Bargain

Performance

5

“Automatic”

Complexity Bargain

Performance

Dennard Scaling

6

“Automatic”

Complexity Bargain

Dennard Scaling

Performance

7

“Automatic”

Complexity Bargain

Dennard Scaling

Performance

8

Abstraction Problem

int cnt1;
int cnt2;

int main() {
 auto f1 = [](){ while (! f1done) { ++cnt1; f1work(); } };
 auto f2 = [](){ while (! f2done) { ++cnt2; f2work(); } };
 std::thread t1(f1), t2(f2);
 t1.join();
 t2.join();
}

9

Abstraction Problem

int cnt1;
int cnt2;

int main() {
 auto f1 = [](){ while (! f1done) { ++cnt1; f1work(); } };
 auto f2 = [](){ while (! f2done) { ++cnt2; f2work(); } };
 std::thread t1(f1), t2(f2);
 t1.join();
 t2.join();
}

(Possibly) False Sharing

10

Breaking the Abstraction

Matrix Multiplication

11

Breaking the Abstraction

Matrix Multiplication Partial !!

12

While We Are at Matrix Math…

Eigen::Matrix<M,N> m1;
Eigen::Matrix<N,P> m2;
auto m3 = m1 * m2;

Quality of Implementation

13

While We Are at Matrix Math…

Eigen::Matrix<M,N> m1;
Eigen::Matrix<N,P> m2;
auto m3 = m1 * m2;

Quality of Implementation

● Scalar
● SIMD
● “real” vectors (à la Cray)
● Offloaded

● Transfer in&out
● Keep on device

● …

14

One-Size-Fits-All Architecture

L2 TLB

4k+2M: 12-way
4k+2M: 1536 entries
1G:4-way 16 entries

Branch

2× 64-entry Instruction Decode Queue (IDQ)

224-entry ReOrder Buffer (ROB)

97-entry Unified Reservation Station (RS)

Port 7

Store Address

Port 6

Integer
ALU/Shift

Port 1

Integer
ALU/LEA

FMA
Vector

Multiplication

Vector Integer
ALU

Vector
Addition

and Conversion

Port 2

Load Address
Store Address

Port 3

Load Address
Store Address

Port 4

Store DataInteger
ALU

Port 5

Vector Integer
ALU

256b Vector
Shuffle

Port 0

Integer
ALU

FMA
Vector

Multiplication

Vector Integer
ALU

Vector
Addition

and Conversion

Divide

Branch

Vector
Shift

8-way 32k L1 Data Cache

8-way 256k
Unified

L2 Cache

Microcode
Store ROM

1536-entry Decoded
Stream Cache (DSB)

Legacy Decode
Pipeline

Loop Stream
Detector

8-way 32k L1
Instruction CacheBranch Prediction

Unit

4 µops/cycle 6 µops/cycle 5 µops/cycle

Register Alias
and Allocation

Table

1
8

0
-e

n
tr

y
 I
n

te
g

e
r

R
e
g

is
te

r
Fi

le

1
6

8
-e

n
tr

y
 F

P
 R

e
g

is
te

r
Fi

le

56-entry Store Buffer

Instruction TLB

2× 20-entry
Instruction Queue

Pre-Decode

Instruction
Cache Tag

µop
Cache Tag

72-entry Load Buffer

Vector
Shift

Slow Integer
Arithmetic

Slow LEA

Data TLB
4k: 4-way 64 entries
2M: 4-way 32 entries
1G: 4-way 4 entries

Uncore

32B/cycle

2× 32B/cycle

64B/cycle

Zeroing Idioms
Move Elimination

6 instructions/cycle

5 instructions/cycle

4k: 8-way 128 entries
2M: fully associative
2M: 8 entries

6 µops/cycle in-order
out-of-order

15

Cache Number Explosion
CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

2x UPI x20 PCIe x16 PCIe x16 On Pkg 1x UPI x20 PCIe x16
DMI x4 PCIe x16

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

SKX Core

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

CHA/SF/LLC

SKX Core

2x UPI x20 PCIe x16 PCIe x16 On Pkg 1x UPI x20 PCIe x16
DMI x4 PCIe x16

DRAM

DRAMNVRAM

NVRAM

CHA/SF/LLC

L2
L1D

L1I

➎ ➊

➋➌

➍
➐

➏

➑

➒

➓

Many different access times:

1+2 Level 1 Cache
3 Level 2 Cache
4 Last Level Cache
5 Caches on neighboring core
6 Caches on distant core
7 Local DRAM
8 Local NVRAM
9 Cache on remote cores
10 On var remote core
11 RAM attached to remote

socket
12 NVRAM attached to remote

socket ⓬⓫

16

Hot Issue in NNs

Data types
• FP8, FP16, FP32, FP64
• Int4, Int8, Int16, Int32
• Coarse granularity

Why not FP12?

17

Kernel Steering

Core 0 Core 1 Core 2 Core 3

Interrupt
Logic

☑☑☒☑

PCIe
Hub

Scheduler
☑☑☒ ☒

CPU

OS

MC MC

PI
D

22
3

PI
D

97
5

PI
D

10
79

PI
D

57

PI
D

41
00

PI
D

1

PCIe Slot

Hardware
Software

System Level
User Level

☑☑☒☒

☑☒

☑☑☒☒

☑☒

☒☒☑☑

☒☑

☑☑☒☒

☑☒

☒☒☑☑

☒☑

☑☑☑☑

☑☑

● Execution
● Processes
● Kernel Threads

● Memory
● Interrupts

18

Predictability Matters!

CDF

PDF

19

Phy

IP

ICMP SCTP

UDP TCP

Buffer

Socket
Buffer

PCI virtual function
IO Port + DMA Range

PCI virtual function
IO Port + DMA Range

Process Process

OS

NIC

TCP
IP

Phy

Firmware

Q
ue

ue

Q
ue

ue

Normal Networking

20

Kernel Bypass

Phy

IP

ICMP SCTP

UDP TCP

Buffer

Socket
Buffer

PCI virtual function
IO Port + DMA Range

PCI virtual function
IO Port + DMA Range

Process Process

OS

NIC

TCP
IP

Phy

Firmware

Q
ue

ue

Q
ue

ue

21

Real-Time

One Approach

Real-Time Kernel

RT
 P

ro
ce

ss

RT
 P

ro
ce

ss

RT
 P

ro
ce

ss

Linux Kernel
Process

Li
nu

x
Pr

oc
es

s

Li
nu

x
Pr

oc
es

s

What If …?

23

Adjust Compute Environment
Dynamically for each Process

24

Bump-In-The-Wire

PC
Ie

GPGPU

Accelerator

NIC

NIC

CPU
Internet

Intranet PC
Ie

GPGPU

FPGA

NIC
CPU

Internet

Intranet

25

Bump-In-The-Wire

Instead of kernel bypass:
• Implement function on FPGA
• Implement decoding on FPGA

• Reduced communication with host
• Complex operations on host

PC
Ie

GPGPU

FPGA

NIC
CPU

Internet

Intranet

26

Cache Allocation

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

PID1TID1 PID2TID1 PID2TID2 PID3TID1

L3

Restrict shared resource use
● Some hardware support available
● Not process property
● Static configuration

27

Cache Allocation

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

PID1TID1 PID2TID1 PID2TID2 PID3TID1

L3L3 L3

Reconfigure hardware
● Generate softcore processor for

problem
● For VMs/containers, not

processes
● Common hypervisor?

28

Deploy Unikernels

• Normal OS on bare metal

PCIe Hub

Driver

CPU

Kernel

normal
process

normal
process

normal
process

29

Deploy Unikernels

• Normal OS on bare metal
• Direct access to devices

• Virtual functions
• SR-IOV

• Consecutive memory range
• Dedicated CPU sockets or cores

PCIe Hub

Driver

CPU

Kernel

normal
process

normal
process

normal
process

realtime
process

Architecture

SMART
SWITCH

Softcore

User
Application

Routing
Table

Softcore
Instruction

Memory

Softcore
Programmer

Network Stack

Network Stack
Network

Crypto

CPU NIC

PCIe

(from Ahmed’s slides)

Summary

32

Tasks

• CPU research
• Softcore implementation
• Reconfigurable with IP blocks addressed

through custom instructions
• Accelerator IP blocks
• Cache isolation

• Integrated development platform
• Open source HDL toolchain
• Integration of softcore as accelerator in

OpenMP/…
• Research compiler techniques

• C/C++ vectorization
• DSL, translate to C/C++
• Unikernel binary generation

• OS research
• Run unikernels as executables

• Dedicated resources
• For efficiency, latency, RT

• (automatic) configure cache isolation
• FPGA “OS” research

• API, basic services, security
• Toolchain to create services

• Runtime research
• Automatic parallelization control
• Automatic resource allocation and deallocation
• Automatic selection of accelerator and workload

split

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNewslinkedin.com/company/red-hat

THANK YOU

