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Limitations

Complexity Bargain

Performance
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More Realistic

Complexity Bargain

Performance
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“Automatic”

Complexity Bargain

Performance

Dennard Scaling
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“Automatic”
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Dennard Scaling

Performance



7

“Automatic”

Complexity Bargain

Dennard Scaling
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Abstraction Problem

int cnt1;
int cnt2;

int main() {
  auto f1 = [](){ while (! f1done) { ++cnt1; f1work(); } };
  auto f2 = [](){ while (! f2done) { ++cnt2; f2work(); } };
  std::thread t1(f1), t2(f2);
  t1.join();
  t2.join();
}
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Abstraction Problem

int cnt1;
int cnt2;

int main() {
  auto f1 = [](){ while (! f1done) { ++cnt1; f1work(); } };
  auto f2 = [](){ while (! f2done) { ++cnt2; f2work(); } };
  std::thread t1(f1), t2(f2);
  t1.join();
  t2.join();
}

(Possibly) False Sharing
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Breaking the Abstraction

Matrix Multiplication



11

Breaking the Abstraction

Matrix Multiplication Partial !!
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While We Are at Matrix Math…

Eigen::Matrix<M,N> m1;
Eigen::Matrix<N,P> m2;
auto m3 = m1 * m2;

Quality of Implementation
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While We Are at Matrix Math…

Eigen::Matrix<M,N> m1;
Eigen::Matrix<N,P> m2;
auto m3 = m1 * m2;

Quality of Implementation

● Scalar
● SIMD
● “real” vectors (à la Cray)
● Offloaded

● Transfer in&out
● Keep on device

● …
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One-Size-Fits-All Architecture

L2 TLB

4k+2M: 12-way 
4k+2M:  1536 entries 
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8-way 256k 
Unified 

L2 Cache

Microcode 
Store ROM

1536-entry Decoded 
Stream Cache (DSB)

Legacy Decode 
Pipeline

Loop Stream 
Detector

8-way 32k L1 
Instruction CacheBranch Prediction 

Unit
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Register Alias 
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56-entry Store Buffer

Instruction TLB

2× 20-entry 
Instruction Queue 

 

Pre-Decode

Instruction 
Cache Tag

µop 
Cache Tag

72-entry Load Buffer

Vector 
Shift

Slow Integer 
Arithmetic

Slow LEA

Data TLB
4k: 4-way 64 entries 
2M: 4-way 32 entries 
1G: 4-way 4 entries

Uncore

32B/cycle

2× 32B/cycle

64B/cycle

Zeroing Idioms 
Move Elimination

6 instructions/cycle

5 instructions/cycle

4k: 8-way 128 entries 
2M: fully associative 
2M:  8 entries

6 µops/cycle in-order
out-of-order



15

Cache Number Explosion
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Many different access times:

1+2 Level 1 Cache
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Hot Issue in NNs

Data types
• FP8, FP16, FP32, FP64
• Int4, Int8, Int16, Int32
• Coarse granularity

Why not FP12?
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Kernel Steering
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● Execution
● Processes
● Kernel Threads

● Memory
● Interrupts
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Predictability Matters!

CDF

PDF
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Kernel Bypass
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Real-Time

One Approach

Real-Time Kernel
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What If …?
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Adjust Compute Environment 
Dynamically for each Process
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Bump-In-The-Wire

PC
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GPGPU

Accelerator

NIC
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CPU
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Bump-In-The-Wire

Instead of kernel bypass:
• Implement function on FPGA
• Implement decoding on FPGA

• Reduced communication with host
• Complex operations on host

PC
Ie

GPGPU

FPGA

NIC
CPU

Internet

Intranet
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Cache Allocation

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

Core
L1I L1D

L2

PID1TID1 PID2TID1 PID2TID2 PID3TID1

L3

Restrict shared resource use
● Some hardware support available
● Not process property
● Static configuration
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Cache Allocation

Core
L1I L1D

L2
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Core
L1I L1D

L2

PID1TID1 PID2TID1 PID2TID2 PID3TID1

L3L3 L3

Reconfigure hardware
● Generate softcore processor for 

problem
● For VMs/containers, not 

processes
● Common hypervisor?
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Deploy Unikernels

• Normal OS on bare metal

PCIe Hub

Driver

CPU

Kernel

normal
process

normal
process

normal
process
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Deploy Unikernels

• Normal OS on bare metal
• Direct access to devices

• Virtual functions
• SR-IOV

• Consecutive memory range
• Dedicated CPU sockets or cores

PCIe Hub

Driver

CPU

Kernel

normal
process

normal
process

normal
process

realtime
process



Architecture

SMART
SWITCH

Softcore

User
Application

Routing
Table

Softcore
Instruction

Memory

Softcore
Programmer

Network Stack

Network Stack
Network

Crypto

CPU NIC

PCIe

(from Ahmed’s slides)



Summary
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Tasks

• CPU research
• Softcore implementation
• Reconfigurable with IP blocks addressed 

through custom instructions
• Accelerator IP blocks
• Cache isolation

• Integrated development platform
• Open source HDL toolchain
• Integration of softcore as accelerator in 

OpenMP/…
• Research compiler techniques

• C/C++ vectorization
• DSL, translate to C/C++
• Unikernel binary generation

• OS research
• Run unikernels as executables

• Dedicated resources
• For efficiency, latency, RT

• (automatic) configure cache isolation
• FPGA “OS” research

• API, basic services, security
• Toolchain to create services

• Runtime research
• Automatic parallelization control
• Automatic resource allocation and deallocation
• Automatic selection of accelerator and workload 

split
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