
Algorithm 1 (Online):
● Input: robustness-consistency trade-off parameter α ∈ [1, ∞), advertiser

budgets 𝐵a ∈ ℕ
● Define constants B := minaBa, eB := , and αB :=
● Output: binary solution matrix

Online and Offline Optimization Algorithms
for High-Speed Ad Allocation and

Performance Benchmarking

Introduction

Maggie Zhang1,4, Arav Chadha1, 4, Lindsay Kossoff2, 4, Isabella De La Garza3, 4, Alina Ene4

Canyon Crest Academy, 5951 Village Center Loop Rd, San Diego, CA 921301, Holton-Arms School, 7303 River Rd, Bethesda, MD 208172,
United High School, 2811 United Ave, Laredo, TX 780453, Boston University, Commonwealth Ave, Boston, MA 022154

MethodsMethods

Results

Discussion/Conclusion

References

ReferencesAcknowledgements

● Generalized assignment problem (GAP) is a well-known problem in combinatorial
optimization
○ GAP seeks to find the optimal allocation of tasks to agents given a bipartite graph

● Our research focuses within the context of ad allocation, an application of GAP
○ Ad impressions, or single instances of an ad being displayed to a user, must be allocated

to budget-constrained advertisers

○ In online ad allocation, weights are calculated from user information (demographics,
search queries, etc.) and arrive in real-time

○ In offline ad allocation, all weights are calculated and known beforehand
● We implement and compare an online algorithm integrating predictions and an offline

algorithm with optimized parameters
○ These algorithms are analyzed for performance and efficiency on different data

I would like to express my deepest gratitude to Dr. Alina Ene for her unwavering
support, patience, and mentorship throughout this entire research opportunity. I
would also like to thank my lab partners for all their incredible support and
collaboration.

[1] Spaeh, F. and Ene, A. Online ad allocation with predictions. May 26, 2023.
https://doi.org/10.48550/arXiv.2302.01827 (accessed August 6, 2024).
[2] Agrawal, S.; Mirrokni, V.; Zadimoghaddam, M. Proportional Allocation: Simple,
Distributed, and Diverse Matching with High Entropy. 2018.
https://proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf (accessed August 6, 2024).
[3] Andersen, M.; Dahl, J.; Vandenberghe, L. CVXOPT, version 1.3, 2023.
[4] Leskovec, J. and Krevl, A. Wikipedia adminship election data, 2008. Stanford Large
Network Dataset Collection. https://snap.stanford.edu/data/wiki-Elec.html (accessed August
6, 2024).

Synthetic Data:
● Randomly assigned each impression a type using an exponential distribution,

where each type is weighted differently by each advertiser
● Randomly assigned each advertiser a budget from an uniform distribution
● Created a weights array by using a nested for loop, first looping through each

advertiser a, then each impression i, to get the weight of i for a
● Returned a list of advertisers, impressions, and weights

Fig 2. visualization of the weights array

2

4
7

0
1

3
5

Advertisers, a Impressions, i

weights, wai

1
2

3

1

CVXOPT:
● Python-based linear program solver used for convex optimization
● Returns the solution matrix

Testing:
● Other data: used corrupted and big data

○ Corrupted data: made by tampering with weights matrix (randomly
removing edges, multiplying values by 100, etc.)

○ Big data: used and cleaned from Stanford Large Network Dataset
Collection

● Fine-tuning parameters: generated heatmaps tuning λ and ϵ, where color
represents varying objective values

● Thresholds: created lowest weight threshold update and uniform average
threshold steps to compare against conservative paper method for Alg. 1

● Comparison: calculated objective values by dotting weights matrix with
solution matrix for each algorithm and CVXOPT on same data instances

Fig 1. a bipartite graph representing advertisers and impressions

Fig 5. Graph comparing performance
and efficiency for Alg. 1, Alg. 2, and
CVXOPT on big data for up to 60
advertisers incrementing by 3 and a
pre-determined number of impressions

Fig 4. Graph comparing performance and efficiency for
Alg. 1 using conservative, lowest weight, and uniform
average update threshold steps for 100 advertisers and up
to 10,000 impressions incrementing by 100

Fig 3. Heatmap, took ~90 minutes. Looped through epsilon
(x-axis), starting at 0.01 and ending at 1.0 in increments of
0.05. Looped through lambda (y-axis), starting at 0.05 and
ending at 1.0 in increments of 0.05. Set rounds = 50

Fig 6. Graph comparing performance
and efficiency for Alg. 1, Alg. 2, and
CVXOPT on corrupted data for 50
advertisers and up to 5,000 impressions
incrementing by 100

Fig 7. Graph comparing performance and
efficiency for Alg. 1, Alg. 2, and CVXOPT
on synthetic data for 20 advertisers and
up to 400 impressions incrementing by
10

Tuned Parameters: looking at Fig. 3, we identify that the Alg. 2 reaches optimal objective values
when λ = 0.25 and ϵ = 0.21
Best Threshold: looking at Fig. 4, we determine that the conservative threshold update step
outperforms the lowest weight and uniform average threshold update steps
Comparison on Performance and Efficiency: looking at Fig. 6, we see that Alg. 1 and Alg. 2 have
similar performances. In Fig. 7, we see that Alg. 2 outperforms Alg. 1 on corrupted and synthetic
data. Alg. 1 outperforms Alg. 2 on big data in Fig. 5; this could be attributed to Alg. 1’s binary nature
Future Work:
● Incorporated mathematical predictions in Alg. 1, can shift to machine learning for “smarter”

predictions in both algorithms
● Application of algorithms to bipartite graphs in other fields

Algorithm 1:
For each a, initialize βa ← 0

For each arriving i
Find expected a via argmaxa(wai - βa)
and find predicted a using pred
method
Set a to argmaxa(αB(wa(PRD)i - βa(PRD)),
(wa(EXP)i - βa(EXP)))
Allocate i to a and remove least
valuable i if Ba is exceeded
Update βa ←

Algorithm 2:
For rounds in R

For each i, set allocation x

alloc
a
 ≤

alloc
a
 ≥

For each a, update βa

For each a over budget
Reduce xi, a until budget is met

Algorithm 2 (Offline):
● Input: bipartite graph G of advertisers a, impressions i, and weights r,

advertiser budgets Ca, parameters λ, ϵ ∈ (0, 1), and number of rounds R
● Initialize βa = , for all a ∈ A and set =
● Output: fractional solution matrix

https://doi.org/10.48550/arXiv.2302.01827
https://proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf
https://snap.stanford.edu/data/wiki-Elec.html

