
Algorithm 1 (Online):
● Input: robustness-consistency trade-off parameter α ∈ [1, ∞), advertiser 

budgets 𝐵a ∈ ℕ
● Define constants B := minaBa, eB :=                   , and αB :=
● Output: binary solution matrix
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● Generalized assignment problem (GAP) is a well-known problem in combinatorial 
optimization
○ GAP seeks to find the optimal allocation of tasks to agents given a bipartite graph

● Our research focuses within the context of ad allocation, an application of GAP
○ Ad impressions, or single instances of an ad being displayed to a user, must be allocated 

to budget-constrained advertisers

○ In online ad allocation, weights are calculated from user information (demographics, 
search queries, etc.) and arrive in real-time

○ In offline ad allocation, all weights are calculated and known beforehand 
● We implement and compare an online algorithm integrating predictions and an offline 

algorithm with optimized parameters 
○ These algorithms are analyzed for performance and efficiency on different data
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Synthetic Data:
● Randomly assigned each impression a type using  an exponential distribution, 

where each type is weighted differently by each advertiser
● Randomly assigned each advertiser a budget from an uniform distribution
● Created a weights array by using a nested for loop, first looping through each 

advertiser a, then each impression i, to get the weight of i for a
● Returned a list of advertisers, impressions, and weights

Fig 2. visualization of the weights array
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CVXOPT:
● Python-based linear program solver used for convex optimization
● Returns the solution matrix

Testing:
● Other data: used corrupted and big data

○ Corrupted data: made by tampering with weights matrix (randomly 
removing edges, multiplying values by 100, etc.)

○ Big data: used and cleaned from Stanford Large Network Dataset 
Collection

● Fine-tuning parameters: generated heatmaps tuning λ and ϵ, where color 
represents varying objective values

● Thresholds: created lowest weight threshold update and uniform average 
threshold steps to compare against conservative paper method for Alg. 1

● Comparison: calculated objective values by dotting weights matrix with 
solution matrix for each algorithm and CVXOPT on same data instances

Fig 1. a bipartite graph representing advertisers and impressions

Fig 5. Graph comparing performance 
and efficiency for Alg. 1, Alg. 2, and 
CVXOPT on big data for up to 60 
advertisers incrementing by 3 and a 
pre-determined number of impressions

Fig 4. Graph comparing performance and efficiency for 
Alg. 1 using conservative, lowest weight, and uniform 
average update threshold steps for 100 advertisers and up 
to 10,000 impressions incrementing by 100

Fig 3. Heatmap, took ~90 minutes. Looped through epsilon 
(x-axis), starting at 0.01 and ending at 1.0 in increments of 
0.05. Looped through lambda (y-axis), starting at 0.05 and 
ending at 1.0 in increments of 0.05. Set rounds = 50

Fig 6. Graph comparing performance 
and efficiency for Alg. 1, Alg. 2, and 
CVXOPT on corrupted data for 50 
advertisers and up to 5,000 impressions 
incrementing by 100

Fig 7. Graph comparing performance and 
efficiency for Alg. 1, Alg. 2, and CVXOPT 
on synthetic data for 20 advertisers and 
up to 400 impressions incrementing by 
10

Tuned Parameters: looking at Fig. 3, we identify that the Alg. 2 reaches optimal objective values 
when λ = 0.25 and ϵ = 0.21
Best Threshold: looking at Fig. 4, we determine that the conservative threshold update step 
outperforms the lowest weight and uniform average threshold update steps
Comparison on Performance and Efficiency: looking at Fig. 6, we see that Alg. 1 and Alg. 2 have 
similar performances. In Fig. 7, we see that Alg. 2 outperforms Alg. 1 on corrupted and synthetic 
data. Alg. 1 outperforms Alg. 2 on big data in Fig. 5; this could be attributed to Alg. 1’s binary nature
Future Work: 
● Incorporated mathematical predictions in Alg. 1, can shift to machine learning for “smarter” 

predictions in both algorithms 
● Application of algorithms to bipartite graphs in other fields

Algorithm 1:
For each a, initialize βa ← 0

For each arriving i
Find expected a via argmaxa(wai - βa) 
and find predicted a using pred 
method
Set a to argmaxa(αB(wa(PRD)i - βa(PRD)), 
(wa(EXP)i - βa(EXP)))
Allocate i to a and remove least 
valuable i if Ba is exceeded
Update βa ←

Algorithm 2:
For rounds in R 

For each i, set allocation x

alloc
a
 ≤

alloc
a
 ≥

For each a, update βa

For each a over budget
Reduce xi, a until budget is met

Algorithm 2 (Offline):
● Input: bipartite graph G of advertisers a, impressions i, and weights r, 

advertiser budgets Ca, parameters λ, ϵ ∈ (0, 1), and number of rounds R
● Initialize  βa =                    , for all a ∈ A and set             =
● Output: fractional solution matrix

https://doi.org/10.48550/arXiv.2302.01827
https://proceedings.mlr.press/v80/agrawal18b/agrawal18b.pdf
https://snap.stanford.edu/data/wiki-Elec.html

