BOSTON The Association Between REM Sleep Duration and Cognitive Impairment Using VERSITY Wearable Sleep Device

Shridavi Raghavan¹, Kristi Ho², Alexa Burk², Meg Low², Hailey Ames^{2, 3}, Sherral Devine, PhD^{2,3}, Rhoda Au, PhD^{2,3}

¹Abraham Lincoln High School, San Francisco, CA, ²Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, ³Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA

Introduction

Background:

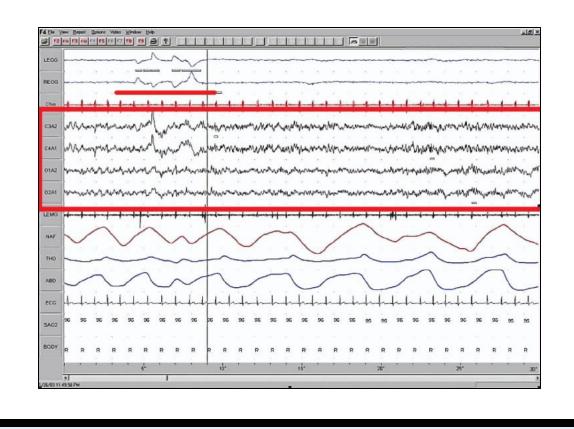
- Current methods of detecting and tracking Alzheimer's Disease (AD)—by collecting biomarkers and administering neuropsychological tests—are difficult and expensive
- Sleep quality, as determined by Rapid Eye Movement (REM) sleep duration, is another potential indicator of AD and cognitive decline²
- **REM sleep** = low-voltage, mixed-frequency (desynchronized) brain wave activity,

Methods

Analyses: Multivariable Logistic Regression (adjusted for age and sex using one night of ring data) **Exposure variable:** REM Sleep Duration **Outcome variable:** Cognitive Impairment

112 participants from the Boston University

rapid eye movements, and reduction in muscle tone¹


• Brain replenishes neurotransmitters which organize neural networks (important for memory consolidation, learning, and problem solving)²

Goal:

• To assess whether REM sleep duration, collected through a wearable sleep device, is associated with cognitive impairment

Hypothesis:

• Heart rate and oxygen data indicating a shorter REM Sleep Duration is associated with cognitive impairment

Figure 1.

The section of the EEG boxed in red displays brain activity during REM sleep.³ It shows mixedfrequency brain wave activity including theta activity which is associated with recall.¹

- Alzheimer's Disease Research Center
- The ring collects heart rate and oxygen data to calculate REM sleep duration
- The odds ratios, 95% confidence intervals, and p-value were calculated and reported

Demographics Table			
Variable	Not Cognitively Impaired N = 106	Cognitively Impaired N = 6	All N = 112
Age, m (sd)	72.77 (9.21)	65.33 (9.61)	72.38 (9.34)
Sex			
Male (N%)	47 (44.34)	1 (16.67)	48 (42.86)
Female (N%)	59 (55.66)	5 (83.33)	64 (57.14)
Education in years, m (sd)	17.104 (2.08)	16.33 (1.51)	17.063 (2.06)
Sleep duration in hours (sd)	7.13 (2.2)	7.64 (0.95)	7.15 (2.15)
REM Sleep Duration in hours, m (sd)	1.30 (0.55)	1.64 (0.76)	1.32 (0.56)

Conclusions

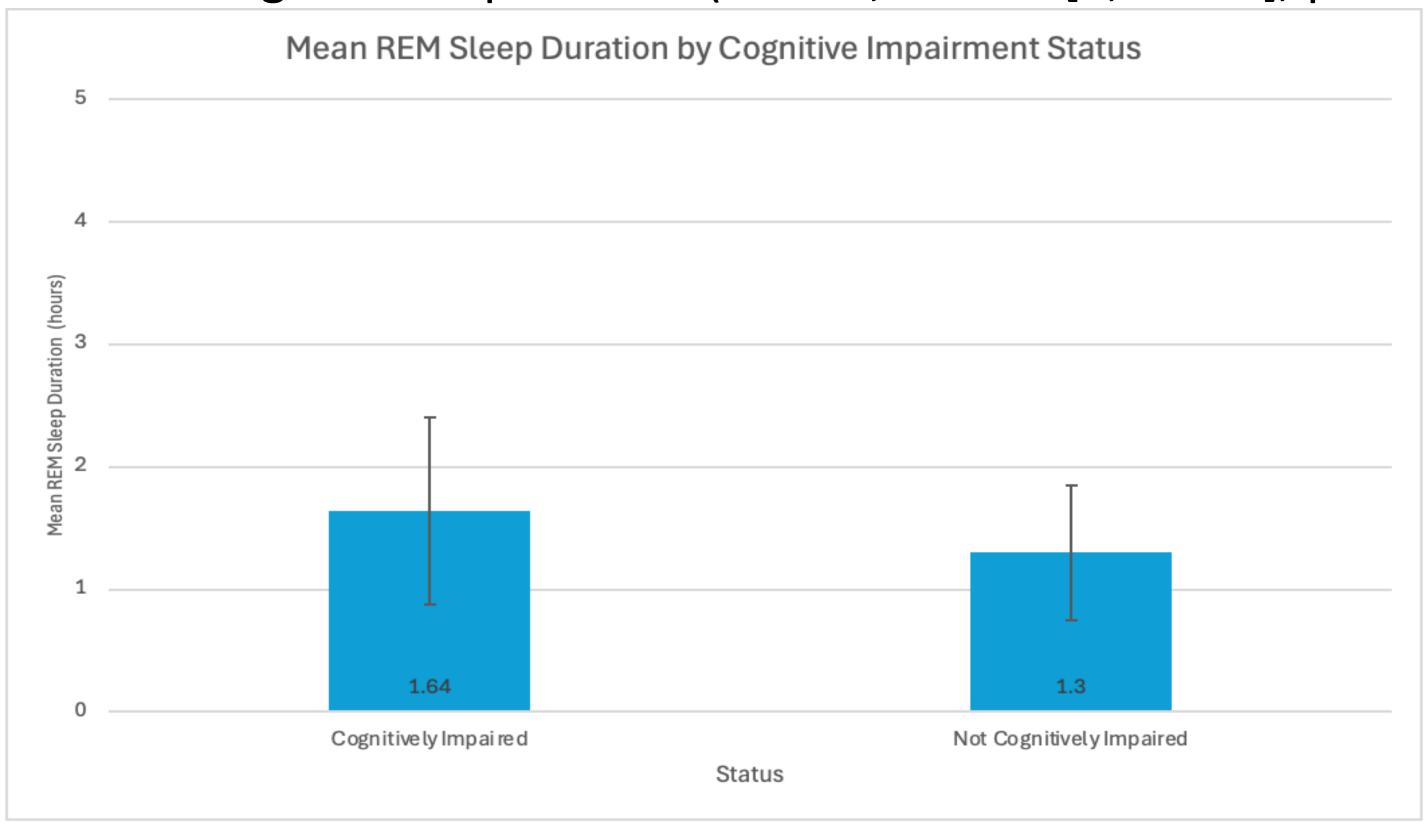
Results

- Of the 112 study participants, only 6 were cognitively impaired
- There was no statistically significant association between REM sleep \bullet duration and cognitive impairment (OR = 1, 95% CI [1, 1.001], p = 0.07)

Discussion:

• There was no statistically significant association between REM sleep duration and cognitive impairment

Strengths:


• The sleep device serves as a potential device to allow researchers to continually gather data and for participants to continually monitor their cognitive health over several years

Limitations:

• Limited sample size, particularly of cognitively impaired patients, skewing the results of the data

Future Directions:

- Implementation of this study on a larger sample size with more cognitively impaired cases

Figure 3.

Mean REM Sleep Duration by Cognitive Status.

• Conducting a longitudinal analysis to identify whether changes in REM Sleep data over time can predict early cognitive decline

References

Acknowledgements

This study was supported by the BU ADRC and the Boston University RISE Internship that helped me receive mentoring and guidance from Rhoda Au, PhD, Kristi Ho, Alexa Burk, and Meg Low for this project. The authors acknowledge the BU ADRC participants for their dedication, and the researchers in BU ADRC for their efforts over the years in the examination of subjects. This work was supported by the National Institute on Aging (2P30AG013846) and the American Heart Association (20SFRN35360180).