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Purpose: Cancer stands as a significant global public health concern, with traditional therapies potentially yielding severe side effects. 
Peptide-based cancer therapy is increasingly employed for diseases like cancer due to its advantages of excellent targeting, 
biocompatibility, and convenient synthesis. With advancements in computer technology and bioinformatics, rational design strategies 
based on computer technology have been employed to develop more cost-effective and potent anticancer peptides (ACPs). This study 
aims to explore the current status, hotspots, and future trends in the field of computer-aided design of peptides for cancer treatment 
through a bibliometric analysis.
Methods: A total of 1547 relevant publications published from 2006 to 2024 were collected from the Web of Science Core Collection. 
Bibliometric analysis was conducted using tools like CiteSpace, VOSviewer, Bibliometrix, Origin, and an online bibliometric platform.
Results: The research in this field has shown a steady growth trend, with the United States and China making the most significant 
contributions. Currently, ACP research mainly focuses on cell-penetrating peptides related to drug delivery, which are expected to 
become future research hotspots. Beyond that, peptide vaccines associated with immunotherapy are also worthy of attention. In 
addition, molecular dynamics simulation and molecular docking are currently popular research methods. At the same time, deep 
learning is the emerging keyword, indicating its potential for a more significant impact on future peptide design.
Conclusion: Deep learning technology represents emerging research hotspots with immense potential and promising prospects. As 
cutting-edge research directions, cellularly penetrating peptides and polypeptide immunotherapy are expected to achieve break-
throughs in cancer treatment. This study provides valuable insights into the computer-aided design of peptides in cancer therapy, 
contributing significantly to advancing the in-depth research and applications in this area.
Keywords: peptide design, CiteSpace, VOSviewer, visualization, research trend

Introduction
Cancer is a major global public health problem. According to a report by the International Agency for Research on Cancer 
(IARC), there will be approximately 20 million new cases of cancer and 9.7 million deaths from cancer worldwide in 2022.1 The 
current conventional cancer treatments are surgery, radiotherapy and chemotherapy. Treatment choice usually depends on the 
tumor’s type, size, and location, the patient’s overall health, and whether the tumor has spread. If a tumor is detected early, surgery 
is usually the preferred treatment. In most cases, the tumor has spread by the time it is found, and other treatments, such as 
radiotherapy or chemotherapy, are needed necessitating.2 Radiotherapy involves the use of X-rays to destroy cancer cells and 
reduce the size of tumors but is not recommended for tumors diagnosed at an advanced stage or tumors in vulnerable sites. 
Chemotherapy, on the other hand, involves using cytotoxic drugs, either singly or in combination, to target rapidly dividing cells. 
However, chemotherapeutic drugs lack specificity and kill rapidly dividing normal cells, such as those in the intestinal lining.2 
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Consequently, chemotherapeutic drugs can cause damage to the gastrointestinal tract and affect hair follicles and bone marrow, 
leading to alopecia and hematopoietic disorders. In addition, chemotherapeutic drugs can cause kidney damage due to their 
excretion through the urine and liver damage resulting from their metabolism and detoxification in the liver.3 This underscores 
the pressing need for more effective anti-tumor drug candidates with fewer side effects. With the discovery of increasing protein 
receptors, peptide receptors, and protein-associated pathways, peptide anticancer drugs offer significant promise.4

Since the discovery of insulin in 1921, peptides have been developed to treat various diseases, including cancer, 
immune disorders, metabolic disorders, viral infections, cardiovascular disease, and osteoporosis.5 The term “peptide 
drugs” refers to medications designed and synthesized based on peptides, and ACPs specifically refer to peptides with 
anticancer activities. ACPs possess numerous advantages over traditional chemotherapeutic drugs. With their good 
targeting, biocompatibility, and ease of synthesis, ACPs exhibit great potential in cancer therapy.4,6 Over the past 60 
years, peptide approvals for cancer therapy have steadily increased. The global market for peptide therapeutics has grown 
at an average rate of 7.7%. Around 17% of approved peptides are used in cancer therapy, including octreotide, lanreotide, 
and pasireotide, which have been approved to treat neuroendocrine tumors, and degarelix, which has been approved for 
the treatment of prostate cancer.7–9 Since natural peptides have the disadvantages of poor chemical-physical stability as 
well as short circulating plasma half-lives, both their stability and bioactivity must be optimized by modification methods 
such as main-chain reconstruction (amino acid substitution) or side-chain modification (cholesterol modification, 
phosphorylation, polyethylene glycol modification) before being used as a drug.10,11

Usually, the development of ACP drugs is slow due to the high cost of ACP synthesis and the long experimental screening 
period.12 With the continuous advancement of computer technology and the rapid development of bioinformatics, computer- 
based rational design strategies have been used to develop more economical and effective ACPs, which are expected to 
accelerate the drug discovery process and reduce the cost. Computer-aided peptide design provides modes of prediction to 
evaluate the functional potential of peptides before synthesis by bringing together crucial information such as chemical 
parameters and bioactivities in the sequence.13 For example, network pharmacology analysis is a powerful tool to predict 
potential drug targets and identify drug candidates by integrating knowledge from multiple fields, such as bioinformatics, 
systems biology, and pharmacology, and combining computational tools and data analysis to systematically study the 
interaction networks and complex pathways between drugs and biomolecules;14,15 Machine learning provides an intelligent 
and efficient method to optimize ACP sequences by learning from comprehensive training data.16 The development of ACP 
databases has provided significant support for research in the field of ACPs. Most ACP information is scattered across 
bioactive peptide databases, such as DRAMP, APD, DBAASP, HORDB, CPPsite, and SATPdb.17–22 Although these 
databases offer some ACP information, the data is relatively limited. CancerPPD is an experimentally validated database of 
ACPs and proteins, with data manually collected from published research articles, patents, and other databases, first released in 
2015.23 It provides comprehensive peptide information, including their sources, properties, anticancer activity, N- and 
C-terminal modifications, and conformation. In addition, DCTPep is a novel, open, and comprehensive database for cancer 
therapy peptides, released in 2024.22 It covers a broader range of ACP types, offering more comprehensive data support for 
developing peptide drugs in cancer treatment.

Bibliometric analysis is the quantitative analysis of literature data and measurement characteristics using mathematical and 
statistical methods to understand research progress in a discipline and to analyze the research frontier and hot spot in the 
discipline.24 There is no comprehensive bibliometric analysis of research on computer-aided design methods targeting ACPs in 
oncology. However, scholars have previously analyzed publication trends and research hotspots using bibliometric methods for 
artificial intelligence and bioactive peptides.24,25 We conducted a bibliometric analysis of cancer therapeutic peptides in computer- 
aided design to fill this gap from 2006 to 2024. We visualized and analyzed the literature on computer-aided peptide design and 
provided the research progress, hotspots, and emerging trends to help researchers better grasp the future research direction.

Methods
Data Sources and Search Strategy
To ensure the quality and completeness of the literature, this study chose to conduct a literature search in the Web of 
Science Core Collection (WoSCC). This most popular and authoritative scientific literature database provides broad 

https://doi.org/10.2147/DDDT.S497126                                                                                                                                                                                                                                                                                                                                                                                                                                       Drug Design, Development and Therapy 2025:19 1044

Hou et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



access to important research worldwide. WoSCC is a multidisciplinary database with more than 100 disciplines and is 
widely used for bibliometric studies, providing essential information on journals and other bibliometric indices.26,27

All data were retrieved and exported from WoSCC on 3 December 2024 using the query TS=(computational OR “in silico” 
OR computer NEAR/2 aid* OR computer NEAR/2 assist*) AND TS=(peptide$ OR polypeptide$) AND TS=(cancer* OR 
anticancer* OR tumor* OR tumor* OR oncology OR neoplasm* OR carcinoma*) AND DOP=2006-01-01/2024-12-03, the 
language was set to English and the type of literature was set to articles and reviews. To include as much relevant literature as 
possible, some related, synonymous, and hypogynous words were added to the search expression, such as the alternative 
words tumor and neoplasm for cancer and the hyponym carcinoma, and the initial search returned 2453 publications. Three 
investigators independently screened, validated, and discussed titles, abstracts, keywords, and full text, finally including 1547 
documents (1368 articles, 179 reviews), all completed by December 3, 2024 (Figure 1).

Figure 1 Literature filtration process.
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Data Processing and Collection
The retained documents were recorded as “full records and cited references” and exported as “plain text files” and “tab- 
delimited files” to accommodate different visual analysis software and websites.

Visual Analysis
The visualization software CiteSpace version 6.2.R4 64 bit (Drexel University, USA), VOSviewer version 1.6.19 (Leiden 
University, The Netherlands), and Bibliometrix running on R4.1.3 were used for the analysis. Bibliometrix (https://www. 
bibliometrix.org) and the online bibliometric analysis platform (http://bibliometric.com) were used to visualize the analysis. 
Graphs were generated using the graphing software Origin. Origin is a scientific graphing and data analysis software developed 
by OriginLab and was used in this study to create a bar chart of the number of publications published annually. CiteSpace is 
a widely used bibliometric analysis software that shows the boundaries of the field and analyzes the links between the literature. 
This study mainly used it for clustering analysis, such as clustering of keywords, authors, and institutions. It can perform co- 
occurrence analysis of countries, institutions, journals, co-cited journals, authors and co-cited authors, and keywords in a time 
slice from January 2006 to December 2024.

VOSviewer was used in this study to mine, map, and cluster literature data, analyze bibliographic linkage metrics between 
countries/regions, institutions, and authors, cluster keywords, and present images through network and overlay visualization. 
VOSviewer was used in this study for the mining, mapping, and clustering of literature data, the analysis among countries/ 
regions, institutions, authors, and keywords, and the presentation of images through network and overlay visualization. In 
addition, we carried out the basic country, author, and institution analysis and created network diagrams, etc., using the online 
bibliometric analysis website (http://bibliometric.com). We also analyzed and mapped the number of publications in each 
country, collaborations between governments, etc., using the Bibliometrix software (https://www.bibliometrix.org) run in 
R4.1. Scimago Graphica and PyCharm Community Edition 2022.2.1 have also been used to produce geographic cooperation 
maps, collaboration networks of authors, and keyword clouds, respectively.

Results
Publication of Annual Trend
The global publication volume of a specific field sorted by year is a crucial indicator for assessing the progress in that 
field. A total of 1547 publications from 2006 to 2024 were retrieved from the WoSCC database. To reflect the changes in 
the number of publications over the past 19 years, a statistical chart is plotted (Figure 2), from which we find that the 
global publication volume is exhibiting a steadily increasing trend overall.

Analysis of National (Regional) Cooperation
To identify the countries/regions that have published many influential papers on the computer-aided design for peptides 
in the cancer therapeutics field, we analyzed the cooperation among countries/regions. The national cooperation network 
(Figure 3A) has 80 nodes and 592 edges, with a network density of 0.1873. As shown in Figure 3B, the larger the nodes, 
the greater the number of publications; the lighter the color, the more recent the publications. Figure 3B presents the top 
10 countries ranked by centrality and publication volume. By the most literature and the greatest influence, the United 
States ranks first with 401 publications and a centrality of 0.32, followed by China (355 publications and a centrality of 
0.19), India (172 publications and a centrality of 0.04, Iran (117 publications and a centrality of 0.01) and Germany (111 
publications and a centrality of 0.06). Apart from these countries, countries with significant centrality (>0.10) include 
Italy (104 publications and a centrality of 0.13) and Pakistan (47 publications and a centrality of 0.11).

Over the past 19 years, 80 countries have contributed to research linked to computer-aided design for the ACPs field. 
We created a cooperation network using visualization software in countries researching this field (Figure 3C). Most 
research collaborations are between North America, Europe, and Asia. The thickest line connects the United States and 
China, representing their closest cooperation. Furthermore, these two countries, with total link strengths of 276 and 126, 
emerge as the closest national cooperators in academic research. Figure 3D represents a network of international 
cooperation. The United States and China exhibit the most notable contributions regarding the quantity of publications 
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and maintain closer connections with the others. The most cited review from The United States focuses on the predictive 
methods for the coding potential of ncRNAs and the approaches for peptide recognition. CircRNAs encode tumor-related 
functional peptides and their molecular mechanisms of Cancer-promoting and cancer-suppressing effects.28 The second 
most cited paper investigates a sequence-based identification tool for ACPs, iACP, which outperforms the method of 
Hajisharifi et al in both accuracy and Matthew’s correlation coefficient as demonstrated by the Jackknife test. This 
indicates that the current predictive factors achieve a higher overall success rate and more excellent stability.29 The third 
and the fourth papers explore the Epitope landscape in breast and colorectal cancer.30 Chinese researchers focus on 
developing ACP prediction factors or tools, such as Li’s ACPred-FL developed in 2018, which accurately predicts ACPs 
based on sequence information.31 It is noteworthy that the two most cited papers by Chinese researchers are also among 
the top three cited papers in the United States, highlighting the extensive research collaboration between China and the 
United States in this field. Given the increasing global incidence of cancer, deeper and broader inter-institutional and 
international cooperation is particularly crucial.

Analysis of Institutions
Nodes of varying sizes represent institutions with different publication counts, while the node’s color correlates with the 
average publication time (Figure 4). University of California System in the US, with 37 publications, holds the highest 
publication count and occupies a central position in the network visualization map. Following the University of 
California System, the Helmholtz Association and the German Cancer Research Center from Germany rank second 
and third with 32 and 25 publications, respectively. Also in the top 5 are Le Reseau International des Institut Pasteur 
(RIIP) from France and the Chinese Academy of Sciences, each with 22 publications. RIIP has the most recent 
publications with an average publication time of 2017, closer than the other four institutions.

Analysis of Journals and Co-Cited Journals
Figure 5A and B present a global analysis overlay of citing and cited journals. The nodes in the graphs represent over 
10,000 journals included in the Journal Citation Reports (JCR) based on the 2011 Science and Social Science Citation 

Figure 2 Trends in annual and accumulated publications from 2006 to 2024.
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Indices (SSCI). Journals from which the publications in this study originate are categorized into different subjects by 
color, while journals not included are displayed in a background color (grey). These analyses provide insights into the 
diversity of disciplines covered by the journals. The top 5 citing journals regarding weight (representing publication 
count) are Scientific Reports, Molecules, Nature Biotechnology, Computational Structural Biotechnology Journal, and 
Briefings in Bioinformatics (Figure 5A). In contrast, the top 5 cited journals regarding weight are Nucleic Acids 
Research, Proceedings of the National Academy of Sciences of the United States of America, Nature, PLOS One, and 
Journal of Biological Chemistry (Figure 5B).

In the journal overlay diagram (Figure 6), the left side represents citing journals, indicating the forefront of 
disciplines. In contrast, the right side represents cited journals, representing the foundational aspects of the disciplines. 
These journals are divided into several topics based on research areas. Each point represents a journal, and the lines 
indicate citation relationships: ellipses represent journals covering a specific topic. Publications in the molecular biology 
and immunology fields in citing journals are notably influenced by molecular, biological, chemical, materials, physical, 
and genetic publications. Through this analysis, the historical development of a research field can be inferred, guiding the 
forefront of the field’s growth and the required references for research.

Figure 3 (A) Knowledge map visualized by CiteSpace; (B) Total publications and centrality of the top 10 countries; (C) Geographic cooperation map visualized by Scimago; 
(D) Cooperation network of countries.
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Co-Authorship Analysis
By setting author collaboration conditions in VOSviewer (maximum number of authors per document=7), 75 prolific authors 
were selected for visual analysis. A cooperation network graph of 75 nodes and 89 edges was generated using Scimago 
Graphica (Figure 7). Authors such as Shoombuatong Watshara, Nantasenamat Chanin, Banerjee Ipsita A, Charoenkwan 
Phasit, and Manavalan Balachandran exhibited leading publication volume and link strength, indicating extensive coopera-
tion with the others. Among the most prolific authors from 2006 to 2024, Navid Nezafat has published 13 papers in this field, 
primarily focusing on in silico design of peptides vaccine. The second most productive author, David Gfeller, is committed to 
deciphering HLA-I motifs and developing new computational strategies to predict HLA-I alleles to improve neoantigen 
prediction. The most prolific author is Stefan Stevanovic. His research involves using immunopeptidomics to identify novel 
epitopes for cancer therapy. Collaborating with these researchers would provide valuable insights into this evolving area.

Analysis of Highly Cited Literature in the Past Three Years
Citation analysis is a crucial indicator of paper quality, reflecting global impact and attention. Table 1 lists the top 
10 highly cited publications in the past three years, mostly from 2021, each of which has been cited more than 40 times. 
The paper “Cancer proteogenomics: current impact and future prospects” had the highest citation count of 99. Among 
them, six papers are related to computational tools or deep learning, reflecting recent research trends in this field. In the 
field of computer-aided peptide design for cancer therapy, highly cited publications are predominantly found in journals 
related to molecular, biological, chemical, materials, physical, and genetic disciplines (Figure 6). An analysis of the WoS 
Citation Report for the past 10, 5, and 3 years indicates a rapid increase in publication volume in the categories of 
Mathematical Computational Biology and Computer Science Interdisciplinary Applications.

Analysis of Keywords
Keywords Co-Occurrence Analysis
A total of 539 keywords were filtered in this study. Using CiteSpace, a co-occurrence network map was presented to 
identify research hotspots. (Figure 8A). A word cloud was also created using the top 100 keywords between 2006 and 
2024, with font size indicating frequency (Figure 8B). Keywords with frequencies more than 100 include “prediction”, 
“molecular dynamics simulation”, “identification”, “cancer”, “peptide”, “expression”, “protein”, “binding”, and 

Figure 4 Institutional collaboration network visualization map generated by Citespace.
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Figure 5 (A) Overlay visualization map of citing journals analysis. (B) Overlay visualization map of cited journals analysis.
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Figure 6 Dual-map of the overlay of journals.

Figure 7 Collaboration network of authors.
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“molecular docking” (Table 2). The keyword with the highest centrality is “identification”, followed by “peptide”, 
“molecular dynamics simulation”, “cancer”, and “binding”, respectively.

Keyword Burst Analysis
Keyword burst analysis refers to a significant increase in the frequency of a keyword within a short period, reflecting 
changes in research hotspots and emerging trends in specific research areas. By analyzing the top fifty keywords with 
burst strength (Figure 9A), we identified 5 emerging keywords: “server”, “mechanisms”, “deep learning”, “system”, and 
“cell-penetrating peptides”. Moreover, we created a keyword heat map using R software, showing the temporal changes 
of 30 high-frequency keywords (Figure 9B). We standardized the frequency of keywords to range between 0 and 1. Each 
cell represents the frequency of a word within a year, with colors ranging from black to yellow, where black indicates the 
lowest frequency and yellow indicates the highest. Notably, in recent years, keywords such as “machine learning”, 
“cancer”, “immunotherapy”, “bioinformatics”, “drug discovery”, and “neoantigen” have been frequently observed.

Keyword Cluster Analysis
Keyword cluster diagrams help visualize different research focuses within a specific field, reflecting the composition of various 
research topics. By conducting cluster analysis on keywords, we obtained 8 clusters (Figure 10). The smaller the number in the 
cluster label, the more keywords it contains. The cluster modularity value (Q) = 0.3646 > 0.3 indicates effective clustering, and 
the cluster silhouette index (S) = 0.6684 > 0.5 suggests reasonable cluster analysis results. In the keyword cluster network, we 
can roughly categorize the clusters into three groups: #6 human papillomavirus focuses on research objects of peptide therapy; 
#1 cancer immunotherapy, #3 targeted therapy, #4 identification and #5 expression emphasizes studies on mechanisms of tumor 
treatment; #0 molecular dynamics and #2 machine learning focus on computer-aided methods for peptide design.

Discussion
Global Research Trend
The number of publications on computer-aided ACP therapy has steadily increased from 2006 to 2024. Over 88% of 
these publications are research articles, highlighting the importance of producing more original research with high 
potential in this field. The United States has the highest publication output and centrality, followed by China. Its 3 most 
cited papers focus on the predictive methods for tumor-related functional peptides, identification tools for ACPs, epitope 
landscape in cancer and neoantigen prediction.28–30 Chinese researchers focus more on developing ACP prediction 

Table 1 The Top 10 Most Cited Publications During the Period of 2022–2024

Rank Document Citations Year

1 Cancer proteogenomics: current impact and prospects 99 2022

2 circMRPS35 promotes malignant progression and cisplatin resistance in carcinoma 72 2022

3 A review on antimicrobial peptides databases and the computational tools 59 2022

4 Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal 

positional encoding

58 2023

5 Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform 52 2023

6 Pan-Peptide Meta-Learning for T-cell receptor-antigen binding recognition 50 2023

7 Challenges in neoantigen-directed therapeutics 50 2023

8 Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks 50 2022

9 Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on 
immunoinformatics approaches

48 2022

10 Identifying multi-functional bioactive peptide functions using multi-label deep learning 41 2022
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factors or tools.31 Furthermore, there is significant collaboration between researchers in the United States and China, and 
this trend is expected to persist. Given the increasing global cancer incidence, more profound and broader inter- 
institutional and international cooperation is particularly crucial. Notably, interdisciplinarity is a prominent feature, 
with cutting-edge molecular biology and immunology studies relying heavily on computational assistance. These studies 

Figure 8 (A) The co-occurrence network of keywords. (B) The keyword clouds.
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also reference computer science, algorithms, systems, chemistry, materials science, physics, and genetics literature. We 
identified the top 10 most cited publications from the past three years, of which six focus on model predictions about 
peptides or protein sites. This indicates that computational platforms, predictive models, and databases are increasingly 
gaining attention.

Research Hotspots and Frontiers
In the keyword cluster network, the clusters can be roughly divided into three categories: research objects of peptide 
therapy, studies on tumor treatment mechanisms, and computer-aided peptide design methods. The keyword cluster 
analysis reveals that cancers associated with the human papillomavirus are the most extensively studied. The principal 
mechanism of peptide anti-cancer activity is illustrated in Figure 11.32–38 Literature analysis reveals that the current 
peptide design for anticancer mechanisms primarily focuses on cell-penetrating peptides, and immunotherapy is also an 
extensively researched area. In specific studies, cell-penetrating peptides are commonly employed in the design of drug 
delivery systems, while immunotherapy is predominantly directed toward peptide vaccine research.

The targeting and drug delivery of peptides against cancer are inextricably linked to the various mechanisms of action 
of peptides. The interest in cell-penetrating peptides has increased significantly, with the keyword emerging as one of the 
emerging keywords with the highest burst intensity in recent years. This may be attributed to its ability to deliver loaded 
molecules, such as peptides and small molecules with therapeutic properties, into the cytoplasm of target cells. At 
present, cell-penetrating peptides are extensively employed in the field of tumor-targeted drug delivery.39,40 The 
emerging keyword in 2021–2022 is “peptide vaccine”. Peptide vaccines are cancer immunotherapy that shows significant 
potential for cancer treatment by targeting specific antigens and activating the patient’s immune system to produce 
a particular response to cancer cells. In recent years, immunotherapy has attracted considerable attention in cancer 
treatment. Peptide vaccines have the potential to be a breakthrough due to their multiple advantages. These include their 
specificity for cancer cells, potential to stimulate long-term immune memory, ease of production and scale-up, and 
relatively low toxicity.41 Consequently, peptide vaccines may have great potential in cancer immunotherapy. Mahdevar 
and his team employed an immunoinformatics approach to successfully design a novel multi-epitope vaccine for breast 
cancer, demonstrating significant efficacy and therapeutic potential.42 Sanami and her team also designed a multi-epitope 
vaccine with therapeutic potential for cervical cancer with the aid of immunoinformatics.34 Unfortunately, numerous 
studies on peptide-based vaccines have not been successful in clinical trials due to the immune evasion of tumor cells and 
the loss of tumor antigens.43

The design and optimization of ACPs are essential for enhancing their clinical application potential. Currently, 
modification strategies for ACPs primarily focus on three key areas: improving activity, enhancing stability, and reducing 
toxicity (Figure 12). Firstly, enhancing the activity of ACPs can be achieved through various methods, including amino 

Table 2 Keywords With a Frequency of No Less Than 100

Rank Keywords Counts Centrality

1 Prediction 233 0.05

2 Molecular dynamics simulation 222 0.09

3 Identification 211 0.1

4 Cancer 209 0.09

5 Peptide 179 0.1

6 Expression 169 0.07

7 Protein 166 0.04

8 Binding 154 0.09

9 Molecular docking 133 0.03
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Figure 9 (A) Top 50 keywords with the strongest citation bursts. (B) keyword heat map.
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acid substitution and sequence shortening, construction of hybrid peptides, peptide methylation, lipid modification, and 
glycosylation. For instance, replacing L-amino acids in somatostatin with D-amino acids and shortening the amino acid 
sequence to eight residues successfully yielded octreotide. Research indicates that this modification significantly 
enhances the peptide’s activity and extends its plasma half-life to 1.5 hours.5 Additionally, peptides are prone to 
hydrolysis or degradation in vivo, prompting researchers to employ multiple strategies to improve their stability. 
These strategies encompass peptide cyclization, N-terminal acetylation, C-terminal amidation, lipid modification, 
glycosylation, and polyethylene glycol modification. Researchers have developed scaffolds supported by carbon- 
carbon bonds or other linkages to stabilize the α-helix structure of peptides. ACPs derived from this cyclization 
modification method are known as stapled peptides.44 For example, Walensky et al reported a study in which the 
BCL-2 protein was redesigned into an active fragment with a stapled peptide structure. This redesigned BCL-2 stapled 
peptide fragment can engage in protein-protein interactions within cells and demonstrates enhanced in vivo metabolic 
stability.45

Furthermore, numerous studies have highlighted the significant role of advanced drug delivery technologies and 
nanomedicine in mitigating the cytotoxicity of peptides in vivo. These technologies facilitate the precise delivery of 
drugs to pathological tissues while minimizing side effects in other areas, thereby reducing unnecessary drug action and 
enhancing therapeutic efficacy.46 Peptides can self-assemble or co-assemble with other materials to form multifunctional 
nanomaterials for targeted modification and responsive drug release. These nanomaterials offer advantages such as high 
drug loading, low molecular weight, low immunogenicity, and low production costs and are extensively utilized in 
biomedical fields like tissue engineering and gene therapy.47 For instance, Cheng et al developed a polymer–peptide 
conjugate (PPC) that responds to excessive ROS in the tumor microenvironment. This material can self-assemble into 
nanoparticles and target mitochondria. In a high ROS environment, the polyethylene glycol shell of PPC sheds, releasing 
the cytotoxic peptide KLAK, which forms a nanofiber structure that interacts with mitochondria, inducing apoptosis of 
cancer cells and significantly enhancing the selective cytotoxicity and in vivo tumor suppression effects of the ACP.48

Figure 10 The cluster network of keywords.

https://doi.org/10.2147/DDDT.S497126                                                                                                                                                                                                                                                                                                                                                                                                                                       Drug Design, Development and Therapy 2025:19 1056

Hou et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Encouragingly, several designed peptides have already been utilized in cancer therapy. Among them, two types of 
Peptide-drug conjugates (PDCs), namely Lutathera and melflufen, have commenced clinical application. Lutathera 
([177Lu]Lu-DOTA-(Tyr3)-octreotate) is the First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor 
Radionuclide Therapy.49,50 The radionuclide 177Lu is complexed by the bifunctional chelator DOTA, which is bound to 
the somatostatin affine peptide (Tyr3)-octreotate. Melphalan flufenamide (melflufen) is a first-in-class PDC that consists 
of melphalan conjugated to the peptide para-fluro-l-phenylalanine developed by Oncopeptides for the treatment of 
multiple myeloma and amyloid light-chain amyloidosis.51,52 A rationally designed peptide-conjugated gold/platinum 
nanosystem is also used for cancer therapy. Based on bimetallic nanoparticles named Au@Pt, the nanosystem was 
conjugated with a rationally designed peptide (LyP-1-PLGVRG-DPPA-1).53 The obtained Au@Pt-LMDP nanosystem 
can serve as a matrix metalloproteinase-activated tumor-targeting agent for enhancing tumor photothermal immunother-
apy. While progress has been noted in peptide modification design, several limitations remain. Achieving high activity, 
low toxicity, and strong stability simultaneously for ACPs is challenging. Peptides are prone to degradation by proteases 
in vivo, and while modifications can enhance their stability, they may also introduce new issues. For instance, 
PEGylation can increase the molecular weight of peptides and extend their half-life in the body. Still, it may alter the 
original structure and physicochemical properties of the peptides, thereby affecting their biological activity. Although 
some modifications can enhance the activity of peptides, improper modifications may impair their activity, such as by 
changing the conformation of the peptides, preventing effective binding to receptors. Therefore, researchers need to 
conduct repeated experiments and screenings to identify the most suitable modification strategies for specific ACPs.

Figure 11 The main mechanism of ACPs.
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Between 2006 and 2024, the results of this study’s bibliometric analysis demonstrate an overall increase in the 
number of publications within the relevant literature, with an increasing number of researchers employing various 
computer-aided methodologies to develop novel peptide drugs. Computer-aided drug design has emerged as a highly 
effective technology pivotal in developing new drug molecules. Computer-aided peptide design is primarily divided into 
two categories: structure-based peptide design and ligand-based peptide design (Figure 13). The keyword analysis results 
indicate that molecular dynamics simulation is a frequently employed methodology in this field, with molecular docking 
also commonly utilized. Both techniques are also frequently utilized in structure-based peptide design. Molecular 
docking is a method of modeling the interaction between a drug molecule and a target molecule to determine how 
they bind and the stability of the binding.54 This is a more widely used method in structure-based peptide design.55 

Commonly used molecular docking software includes AutoDock, AutoDock Vina, Gold, and Glide.56–60 The limitations 
of molecular docking were identified almost two decades ago, yet they remain a subject of active research.61 Two key 
components of docking methods are search algorithms and scoring functions. Conformational search algorithms are 
particularly susceptible to limitations when dealing with longer and more pliable ligands, particularly in shallow and less 
chemically characterized binding sites. Furthermore, there is still scope for enhancing the computational accuracy of 
force-field-based scoring functions, given the need for computational efficiency.54,62 Molecular dynamics (MD) simula-
tion is a powerful tool that enables insight into dynamic properties of biomolecular systems. Examples of such systems 
include transfer coefficient simulation, protein folding and stability, ligand binding, and protein complexation.63 MD 
simulation provides important guidance for experiments and thus is widely used. However, it also has some challenges to 
overcome. The phenomena and systems studied by MD simulations are limited by time and spatial scales.64 Furthermore, 

Figure 12 Peptide design strategy. Created in BioRender. B, H. (2025) https://BioRender.com/s80t622.
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Figure 13 Flowchart of computer-aided peptide design methodology. Structure-based peptide design is a powerful approach when the spatial structure of the target is 
known. Leveraging the properties and characteristics of the macromolecule’s spatial structure, structure-based peptide design enables the creation of compounds that 
possess complementary qualities to the desired target site. Homology modeling, molecular docking, and MD simulations are prevalent methodologies in Structure-based 
peptide design.66 Ligand-based drug design is considered an indirect technique primarily because the structure of the biomolecular target is unknown and cannot be reliably 
anticipated using approaches such as homology modeling.67 Pharmacophore modeling and quantitative structure-activity relationships (QSAR) are among the most significant 
and widely employed methods in ligand-based drug discovery.66 Created in BioRender. B, H. (2025) https://BioRender.com/b26j385.
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force field limitations represent a significant challenge.64 Additionally, MD simulation can be a complex computational 
technique for beginners, which can easily lead to biased results without a thorough understanding of its complexity.65

The keywords burst analysis has revealed that integrating deep learning with peptide drug design is becoming an 
emerging research focus. Over the past decade, numerous machine learning-based ACP predictors have been proposed, 
utilizing a wide range of algorithms, including support vector machines (SVM), random forests (RF), K-nearest neighbor 
(KNN), and various ensemble methods.68–72 Notable examples include AntiCP, iACP, ACPP, iACP-gaeNSc, MLACP, 
ACPred, AntiCP 2.0, and ACPred-Fuse.29,73–79 In recent years, the rapid advancement of deep learning has prompted 
researchers to increasingly adopt deep learning-based models, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), for ACP prediction.80,81 Furthermore, some studies have combined machine learning 
and deep learning techniques to improve prediction accuracy, exemplified by the LGBM-OE model.82 Several reviews on 
ACP predictors are available in the literature.83,84

Table 3 lists some deep learning-based ACP predictors in the last three years. In a recent study, Arif et al proposed an 
ensemble-based Cascade Deep Forest (CDF) model named PLMACPred.85 This model combines evolutionary features, 
compositional properties, and protein language model (PLM) encodings. Moreover, it incorporates two-dimensional wavelet 

Table 3 ACP Predictors Based on Deep Learning

Predictor Year Deep Learning Model Reference

ACPNet 2022 Dense Network [81]
RNN

AI4ACP 2022 CNN [80]

ME-ACP 2022 Parallel block of CNN and BiLSTM [88]

MLACP 2.0 2022 CNN [89]

iACP-MultiCNN 2022 Multichannel CNN [90]

cACP-DeepGram 2022 DNN [91]

TriNet 2023 CNN + CAM [92]
Transformer Encoder

BiLSTM

CACPP 2023 CNN [93]
Contrastive Learning

MA-PEP 2024 Multi-head self-attention mechanism [94]
Cross-attention mechanism

Bilinear attention mechanism

AACFlow 2024 AAConv [95]
Multi-layer CNN
Multi-head flow-attention mechanism

PLMACPred 2024 CDF [85]

iACP-DFSRA 2024 ResCNN [86]
Attention

CNBT-ACPred 2024 CNN [87]

CNN_Bi-LSTM

Transformer

Abbreviations: AAConv, Attention Augmented Convolutional Neural Network; BiLSTM, 
Bidirectional Long Short-Term Memory; CAM, Channel Attention Module; CDF, Cascade Deep 
Forest; CNN, Convolutional Neural Network; CNN_Bi-LSTM, Hybrid Convolution and Bidirectional 
Long Short-Term Memory Network; DNN, Deep Neural Network; RNN, Recurrent Neural Network.
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denoising techniques to eliminate noise from the extracted features effectively. PLMACPred demonstrates a remarkable 
performance advantage over most existing models, achieving up to an 18-fold improvement in prediction accuracy. In 
a parallel development, Wang et al proposed the iACP-DFSRA model, which leverages a Residual Convolutional Neural 
Network (ResCNN) to capture local features and attention mechanisms to extract global features.86 These features are 
subsequently integrated through attention, allowing the model to outperform traditional methods across multiple evaluation 
metrics by effectively combining local and global features. Furthermore, Yue et al introduced an innovative three-channel 
ACP predictor, CNBT-ACPred, which integrates a CNN, a hybrid convolution and bidirectional long short-term memory 
network, and a Transformer model.87 The cytotoxicity assay results have demonstrated that the accuracy of CNBT-ACPred in 
predicting ACPs surpasses 90%. Moreover, through the synergy of model predictions and experimental validation, the 
research team has identified tPep14 as a promising candidate for an ACP.

Compared with traditional machine learning methodologies, deep learning models have demonstrated superior capabilities 
in managing complex nonlinear relationships and vast datasets, circumventing laborious feature engineering processes. This 
renders deep learning particularly advantageous in the identification of potential ACPs. Nonetheless, deep learning technology 
confronts several challenges, including reliance on extensive labeled datasets, a lack of model interpretability, and the demand 
for substantial computational resources during large-scale data training and model optimization. These challenges must be 
progressively addressed in future research endeavors. Overall, the application of deep learning in the field of ACP identifica-
tion is continuously overcoming these limitations and revealing significant potential.

Limitations
Due to the limitations of the search method, only English publications from the last 19 years were included in this search. In 
addition, although the Web of Science, as the preferred platform for bibliometric analysis, has extensive and authoritative 
database resources, it cannot cover all journals and publications, which means that a small amount of literature may have been 
omitted from our study. Some recently published high-level publications were not included in the study due to low citation 
frequency or the data analyzed not reaching the analysis threshold, which is also one of the limitations of this review.

Although we adopted strict criteria and procedures during the publication screening process, the limitations of manual 
screening and the continuous updating of databases may have led to the omission of some recently published high-level 
publications because they were not included promptly or their citation frequency did not reach the analysis threshold. This 
limitation has had an impact on the comprehensiveness and timeliness of our study. Furthermore, this study has not conducted an 
in-depth bibliometric analysis of cancer subcategories. Cancer, as a complex class of diseases, may differ in its different 
subclasses regarding research methods, treatment strategies, and research hotspots. Consequently, the failure to investigate the 
research trends and hotspots of various cancers and the distribution of the number of studies on each cancer subcategory 
represents another limitation of this study.

Conclusion
A review of research in computer-aided peptide design reveals a consistent and notable increase over the past 19 years, 
with a clear upward trajectory since 2006. In recent years, ACP research has focused more on cell-penetrating peptides, 
which correspond to drug delivery, respectively, and could be a hot direction for future research. Furthermore, peptide 
vaccines related to immunotherapy also merit attention. However, two significant issues must be addressed in peptide 
vaccine research: preventing tumor cell immune evasion and avoiding the loss of tumor antigens. The resolution of these 
issues will be a pivotal factor in the advancement of peptide vaccine research.

In the present context, the necessity for accelerating the discovery process of ACPs and reducing costs has led to the 
emergence of computer-aided peptide design as an indispensable tool in this field. In this context, techniques such as molecular 
docking and MD simulations have provided robust support for predicting ACPs. These methods have enhanced the accuracy of 
predictions and significantly accelerated the pace of research. Nevertheless, further enhancing prediction precision while 
guaranteeing computational efficiency represents a pivotal challenge for current and future research. With the rapid advancement 
of deep learning technologies, predictive models for ACP based on deep learning have emerged continuously and been refined, 
becoming a hot topic in research. Deep learning has significantly enhanced the accuracy and efficiency of ACP prediction. 
However, challenges remain in the research and application process, such as the dependence on large-scale labeled data, 
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limitations in model interpretability, and the demand for high computational resources. Future studies must address these issues to 
improve the models’ generalizability and practicality.

Abbreviations
AAConv, Attention Augmented Convolutional Neural Network; ACP, Anticancer Peptide; BiLSTM, Bidirectional Long 
Short-Term Memory; CAM, Channel Attention Module; CDF, Cascade Deep Forest; CNN, Convolutional Neural 
Network; CNN_Bi-LSTM, Hybrid Convolution and Bidirectional Long Short-Term Memory Network; DNN, Deep 
Neural Network; GCN, Graph Convolution Network; IARC, International Agency for Research on Cancer; JCR, Journal 
Citation Reports; KNN, K-Nearest Neighbor; MD, Molecular Dynamics; PDC, Peptide-Drug Conjugate; PLM, Protein 
Language Model; PPC, polymer–peptide conjugate; QSAR, Quantitative Structure-Activity Relationships; RIIP, Le 
Reseau International des Instituts Pasteur; RF, Random Forest; RNN, Recurrent Neural Network; SSCI, Social Science 
Citation Indices; SVM, Support Vector Machine; WoSCC, Web of Science Core Collection.
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