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Abstract: The toxin-antitoxin (TA) system is widespread in prokaryotes and archaea, comprising toxins and antitoxins that counter-
balance each other. Based on the nature and mode of action of antitoxins, they are classified into eight groups (type I to VIII). Both the 
toxins and the antitoxins are proteins in type II TA systems, and the antitoxin gene is usually upstream of the toxin gene. Both genes 
are organized in an operon and expression of which is regulated at the transcriptional level by the antitoxin-toxin complex, which binds 
the operon DNA through the DNA-binding domain of the antitoxin. The TA system plays a crucial role in various cellular processes, 
such as programmed cell death, cell growth, persistence, and virulence. Currently, Type II TA systems have been used as a target for 
developing new antibacterial agents for treatment. Therefore, the focus of this review is to understand the unique response of Type II 
TA in Escherichia coli to stress and its contribution to the maintenance of resistant strains. Here, we review the Type II TA system in 
E. coli and describe their regulatory mechanisms and biological functions. Understanding how TA promotes phenotypic heterogeneity 
and pathogenesis mechanisms may help to develop new treatments for infections caused by pathogens rationally. 
Keywords: E. coli, type II toxin-antitoxin, bacterial persistence, biofilm formation, phage infection

Introduction
TA systems are small genetic modules widely distributed in bacterial and archaeal genomes. Typically, the TA system is 
composed of toxins and antitoxins, and toxins are in most cases proteins that can influence DNA replication, transcrip-
tion, protein synthesis, et al. Antitoxins may be RNA or proteins,1 and under appropriate conditions, toxins can be 
prevented from performing their functions. Generally, toxins are relatively stable in structure, and antitoxins are relatively 
structurally unstable and are either rapidly degraded by intracellular proteases under stress or plasmid loss or down- 
regulated.2 Initially, TA systems were identified in plasmids called plasmid maintenance systems. The first TA system 
identified was the plasmid-borne type II system, which plays a role in plasmid maintenance known as post-segregation 
killing.3,4 Once the plasmid encoding TA system is lost from a cell, it cannot produce the unstable antitoxin to neutralize 
the remaining stable toxin, and the growth of that cell is stunted, eventually leading to cell death. Later, many TA systems 
were also found on chromosomes.5–7 The toxins in the TA systems are all proteins (except the newly discovered type 
VIII system). Based on the nature of the antitoxin and its mode of action, the current types of antitoxins are as follows: 
type I antitoxins are sRNAs. Antitoxin sRNAs bind to the mRNA of the toxin to promote its degradation, impede the 
translation of the toxin, and inhibit the transcripts of its cognate toxins;8–13 Type II antitoxins exist under normal growth 
conditions as TA complexes, which are proteins that bind to homologous toxins and form neutralizing complexes;14–18 

Type III antitoxins are also sRNAs, which bind homologous toxins and sequester them by forming neutralizing protein- 
RNA complexes;1,19–21 Type IV antitoxins are proteins. Acts on the cellular target of its toxin analog and protects or 
detoxifies the target rather instead of blocking the toxin itself;22,23 Type V RNase antitoxin prevents toxin accumulation 
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by specific degradation of its mRNAs;24,25 Type VI antitoxins are proteins that act as junctions, targeting their cognate 
toxins for degradation by ATP-dependent proteases;26 Type VII antitoxins are proteins that are inactivated by post- 
translational modifications to their cognate toxins;27–29 Type VIII antitoxin is RNAs which inhibit the expression of their 
cognate RNA toxins and inhibit the transcription of the toxin or interact with the toxin RNA. Degradation of the toxin 
RNA or the recruitment of Cas proteins as transcriptional repressors by mimicking CRISPR RNAs.30,31 In addition to 
these well-defined types, some special cases have been described. For example, some modified toxins or antitoxins acting 
on cellular targets (types VII and IV, respectively) can form antitoxin-toxin protein complexes similar to type II 
systems,23,27 and some toxins can be associated with different types of antitoxins (type II and type IV) within the 
same maneuver.22

Of these, type II TA systems are the most abundant and extensively studied, and each type II TA system is encoded by 
two small genes, which usually overlap by a few bases.32,33 The toxin and its cognate antitoxin form a stable TA complex 
that blocks the function of the toxin. Under stress conditions, the antitoxin can be degraded by proteases (for example, 
Lon, ClpAP, and ClpXP), and the toxin is released from the complex to exert a bacteriostatic effect. Because the antitoxin 
is not as stable as the toxin within the cell, the antitoxin has to be continuously produced to inhibit the toxin. In most 
cases, the type II antitoxin genes are located upstream of the toxin genes, so that antitoxins are produced before their 
cognate toxins, or they form small genomic islands of their own.34–36 However, upstream genes encode toxins in some 
special cases, such as HigA/HigB, MqsR/YgiT, and MqsR/MqsA.37 In this review, we aim to provide an up-to-date 
overview of type II TA systems in E. coli, describe recent advances in these systems, and discuss research perspectives in 
this area.

Type II TA Systems in E. coli
Thousands of type II TA sites have been found in E. coli.6 In Type II TA systems, both the toxin and the antitoxins are 
small proteins. Antitoxins usually have two structural domains, one that binds DNA,14,38,39 and the other that binds and 
inhibits the activity of the cognate protein toxin14 (Figure 1). Antitoxins also often bind the promoters of their operons to 
repress transcription. In most cases, the toxins act as co-repressors. In some cases, they bind promoters of other genes. 
The type II TA system is regulated by marked differences in the cellular lifespan of antitoxins and toxins. That is, 
antitoxins are very sensitive to protein hydrolysis, whereas their cognate toxins are relatively stable. Thus, in response to 

Figure 1 Type II toxin-antitoxin (TA) locus of E. coli K-12. Diagram of the genes and control loops of a typical type II TA locus. The red arrow to the right indicates the TA 
operon promoter. When the free toxin concentration is low, the promoter is repressed by the antitoxin during rapid growth, especially by the TA complex that binds tightly 
to the promoter region. In contrast, promoter activity is inhibited by free toxins, a regulatory phenomenon known as conditional synergy.
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stress, antitoxins are selectively degraded. This leads to growth stagnation due to the effects of the toxins released on the 
cells. Many type II toxins are mRNA-disrupting enzymes (ribonucleic acid endonucleases) and are either ribosome- 
dependent (for example, RelE,40–42 YoeB,43 YafQ,18,44 YafO,18,45 HigB46,47) or ribosome-independent (for example, YhaV, 
MazF, MqsR,48–50 ChpBK, HicA, PemK).51,52 Another type II toxins inhibits DNA replication through interactions with 
DNA cleavage enzymes (for example, CcdB, ParE, Doc, and HipA) toxins act by phosphorylating elongation factors Tu 
and Glu-tRNA synthetase, respectively.39,53

Target of Toxin Action
Currently, type II toxins are classified into nine superfamilies based on their structural features: ParE/RelE, MazF, HicA, 
VapC, HipA, FicT/Doc, AtaT/TacT, Zeta and MbcT. We summarize the toxin targets and mechanisms of action in Table 1. 
Toxins within a family may have various modes of action. For example, ParE toxin targets DNA gyrase, blocks the 
replication of DNA, and induces genome instability leading to cell death,54,55 while RelE has ribosome-dependent 
mRNA endonuclease activity. The toxin CcdB targets the GyrA subunit of the DNA gyrase, inhibiting DNA replication 
and causing DNA damage (Figure 2a). By inhibiting the DNA gyrase from catalyzing the rejoining of DNA in the cycle, 
CcdB locks the enzyme in the DNA into what is known as the cleavage complex, which works in a manner very similar 
to that of the quinolone antibiotics.56 CcdB activity is thought to cause replication of the fork collapse, resulting in 
double-strand breaks, activation of the SOS response, and cell death. Fic, a type II toxin, targets DNA promoter and 
topoisomerase IV. It inhibits the ATP-hydrolyzing activity of DNA promoters, causing DNA damage and replication 
inhibition57 (Figure 2a). Type II toxins, many of which are RNases with variable degrees of specificity, appear to have 
one major goal: to inhibit protein synthesis. For example, most toxins from the MazF family degrade free RNA with 
limited specificity, targeting mRNA and ribosomal RNA precursors58 (Figure 2b). However, some MazF toxins are 

Table 1 Targets of Action of Toxins and Their Mechanisms of Action

Toxin Target of 
toxin action

Mechanisms of action of toxins Reference

CcdB replication Inhibition of DNA rejoining in the cycle catalyzed by DNA gyrase [56]

Fic Inhibition of the ATP-hydrolyzing activity of DNA promoter and topoisomerase IV leads 

to DNA degradation or inhibition of replication

[57]

SocB Interacts with the beta-sliding clamp of DNA polymerase and reduces the persistence of 

DNA replication

[26]

ParE Inhibition of DNA gyrase [64]

RelE, HigB, YoeB, 

YafQ, MqsR, YafO

translation Cleaves ribosome-dependent mRNA [65–67]

MazF, YdcE, PemK, 

ChpBK

Cleaves mRNA, rRNA, tRNA [1,52,58]

HicA, RelE Cleaves mRNA [42]

VapC Cleaves tRNA [68]

HipA Specific phosphorylation of aminoacyl-tRNA synthetase inhibits binding of specific 

tRNAs to amino acids

[60]

Doc Phosphorylation and inactivation of elongation factor Tu (ET-Tu) [53]

MbcT Metabolic 

stress

Hydrolyze and deplete NAD+ [61]

ζ, PezT Cell wall 

synthesis

Phosphorylation of the peptidoglycan precursor uridine diphosphate- 

N-acetylglucosamine

[63]
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specific to a single species of tRNAs. In contrast, toxins of the VapC family specifically cleave the anticodon stem-loop59 

(Figure 2b), of different target tRNAs, and the sarcin-ricin loop of 23S rRNAs, which has structural similarity to the 
anticodon stem-loop. RelE and related toxins cleave mRNA in a co-translational way, entering the A site of the 
translating ribosome. mRNA cleavage usually occurs between positions 2 and 3 of the target codon. A variety of type 
II toxins affect tRNA function by modifying rRNAs or tRNA cofactors after they have been translated. HipA toxin 
selectively phosphorylates aminoacyl-tRNA synthetase and prevents the binding of particular tRNAs to amino acids60 

(Figure 2b). Doc toxin phosphorylates and inactivates the elongation factor Tu (EF-Tu), inhibiting tRNA presentation to 
the translating ribosome (Figure 2b). The type II MbcT toxin hydrolyzes and depletes NAD+, the primary electron carrier 
necessary for redox reactions.61 (Figure 2c). Type II ζ-toxin phosphorylates and depletes UDP-activated sugars, 
inhibiting the production of peptidoglycan and lipopolysaccharide, resulting in loss of cell wall integrity (Figure 2d). 
In a nutshell, toxins are ribonucleases, kinases, and acetyltransferases that, when overexpressed, prevent cell growth. The 
antitoxin binds to the active site of the homologous toxin and inhibits its activity. MazE binds to the active site of the 
homologous toxin and neutralizes its RNase activity. The binding of RelB to its cognate toxin results in the displacement 
of the c-terminal region necessary for toxin activity. ε and PezA spatially site-block ATP/GTP binding sites and inhibit 
the activity of their respective homologous toxin.62,63 However, few antitoxins inhibit the activity of their cognate toxin. 
For example, HipB inhibits homologous toxins by confirming that the toxin is in an inactive state. In conclusion, 
antitoxins inhibit toxin activity directly by binding to the active site and indirectly by binding to other sites.

Figure 2 The activity of toxins in the TA system. (a) Topoisomerase is inactivated by the amylase FicT. the DNA cleavage enzyme is poisoned by direct binding of CcdB. (b) 
Translation is the target of numerous toxins that act at every level of protein synthesis. VapC toxin cleaves the tRNA anticodon stem-loop or the stem-loop toxin loop of 23s 
ribosomal RNA. MazF toxin degrades free mRNA and ribosomal RNA, and RelE toxin cleaves translational mRNAs at the ribosomal A site. HipA toxin phosphorylates 
aminoacyl- tRNA synthetase phosphorylates and prevents tRNA charging. doc phosphorylates elongation factors and prevents tRNA delivery to the ribosome. (c) MbcT 
toxin degrades NAD+. (d) ζ toxin phosphorylates precursors of peptidoglycan synthesis.
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Regulation of the Type II TA System
The TA system is normally tightly regulated to maintain a balanced “neutralized” state in the body. Under normal growth 
conditions, this regulation ensures that under stable conditions, the antitoxin exceeds the amount of its cognate toxin to 
inhibit its action.

Antitoxins of the type II TA system commonly contain DNA-binding and toxin-neutralizing domains.69 The 
antitoxin-toxin complex binds to the operon and participates in the autoregulation of operon transcription. However, in 
some type II TA systems where the antitoxin lacks a DNA-binding domain and no transcriptional regulating mechanism 
is apparent, other factors outside the TA operon may influence the expression of toxin and antitoxin.

In a few cases, the antitoxin of the type II TA system is the only factor affecting the transcription of the operon. For 
example, in the E. coli HigBA system,65 both the antitoxin HigA and the HigB-HigA complex bind the HigBA system 
operon with similar binding strength, indicating that antitoxin HigA binding to the operon is not affected by the toxin 
HigB. More complex is the regulatory mechanism of the DinJ/yafQ system associated with the SOS response in E. coli.70 

There are two promoters in the system, and the antitoxin DinJ binds the first promoter containing the LexA box, which 
regulates the transcription of the second promoter. LexA is a transcriptional repressor that plays a role in the SOS 
response.18 The SOS and TA-mediated stress responses and the link between them may represent a more comprehensive 
regulatory network when bacteria are under stress.

Typically, antitoxin alone binds the operon with low affinity, and the toxin acts as a co-deterrent to enhance the 
binding affinity of the antitoxin to the operon to form a more stable complex. In the E. coli VapBC system, the addition of 
toxin VapB resulted in tighter binding of antitoxin VapC to the operon.71

The toxin can affect the binding of the antitoxin to the promoter DNA of the TA system.72 In the MqsRA system of 
E. coli, the antitoxin MqsA contains two folded structural domains: an HTM-XRE structural domain that binds to the 
promoter DNA and a Zn2+-stabilizing structural domain that is used to neutralize the toxin MqsR. Due to the partial 
overlap of the binding sites, MqsA binding to the promoter and binding to MqsR are mutually exclusive, resulting in 
operon derepression when there is more MqsR than MqsA.

In some cases, inhibition of the TA system depends on the molar ratio between toxin and antitoxin. When the molar 
ratio of toxin to antitoxin is in the right proportion, for example in the Phd/Doc system the ratio of toxin to antitoxin is 
about 1:1, the antitoxin-toxin complex binds tightly to the DNA. Excessive toxins can induce the formation of saturated 
complexes and release inhibition of the TA system. When toxin levels exceed antitoxin levels, inhibition is relieved, 
allowing the antitoxin to be transcribed and translated from scratch. This negative feedback loop is called ”conditional 
synergy.73 Similarly, in the CcdAB system, the low binding affinity between the antitoxin and the operon alone does not 
effectively inhibit transcription in the TA system, and the addition of the toxin enhances the binding of the antitoxin to 
the operon and the inhibitory effect. When the toxin is re-increased, it leads to structural changes in the TA complex and 
introduces spatial site resistance thereby activating transcription of the TA system. In the RelBE system, two RelB dimers 
bind synergistically to adjacent sites on the operon, and two RelB dimers flanking each other can each bind a RelE 
monomer to form a complex that further stabilizes RelB binding to the operon. Excessive amounts of RelE disrupt the 
contact between neighboring RelB dimers and spatially impede the binding of RelB to the DNA, thereby activating 
transcription.74

Typically, the antitoxin gene is located upstream of the toxin gene, but in some TA systems the antitoxin gene is 
located downstream of the toxin gene, and such TA systems with reversed gene order include the HicAB system, where 
the HicAB system consists of two promoters that turn on transcription.75 The upstream promoter allows expression of 
toxin and antitoxin genes, contains a Sxy-dependent cyclic adenosine receptor protein binding site, and is activated by 
Sxy, and the downstream promoter is repressed by HicB, and this repression can be lifted when HicA is in excess. This 
mechanism permits the production of more antitoxin when the ratio of toxin to antitoxin is too high.

This complex regulatory network demonstrates the multiple mechanisms employed by the TA system in 
maintaining the delicate balance between toxins and antitoxins, highlighting the adaptability and complexity of 
this genetic module.
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Biological Role of the Type II TA System in E. coli
In E. coli, most TAs are located on the chromosome including (PrlFyhaV, MazEF, MqsRA, ChpBIK, DinJyafQ, HicAB, 
YafNO, RelBrelE, yefMyoeB, and HipAB) and five plasmid loci (PemKI, CcdAB, VagCD, Phd/Doc, and ParDE). The 
toxin activity leads to plasmid addiction to the cell; hence, the plasmid-encoded TA system is known as the plasmid 
addiction module (Figure 3a). The chromosomal TA system of bacteria is involved in various biological processes such 
as stress response,76 biofilm formation,77 phage inhibition,78 virulence79 and persistence.80

TA Systems and Their Role in Persistence
Bacterial persistence refers to the presence of rare cells insensitive to antibiotics even in fast-growing bacterial 
populations. It is a phenomenon that causes bacterial cells to resist multiple antibiotics and other environmental 
damage81 (Figure 3b). This phenomenon was first discovered by Bigger in 1944 when he was researching how penicillin 
kills Staphylococcus aureus, and he discovered that penicillin often fails to sterilize exponentially growing cells. He 
correctly hypothesized that persistent bacteria escape killing by antibiotics because they are in a slow-growing or 
dormant state.82 The first link between persistence and the TA module was established when Moyed & Bertrand83 

discovered the presence of highly persistent mutations in HipAB. HipA, a gene encoding a protein of 440 amino acids, is 
located in the terminal region of the E. coli chromosome at 34.3.84,85 HipA is preceded by hib (88 codons), and HipB is 
a dimer that represses transcription through its helix-turn-helix structural domain that binds synergistically to the four 
operators of the HipAB promoter region,86 and toxin HipA is a serine/threonine kinase that is partially phosphorylated 
in vivo and autophosphorylated in vitro.87,88 It phosphorylates and inhibits the activity of GltX (glutamine- tRNA 

Figure 3 Shows the rationale for the role of TA modules in their biological functions. (a) Post-isolation killing mechanism, type II system-mediated plasmid addiction relies 
on differential stabilization between toxin (red) and antitoxin (green) proteins. When the unstable antitoxin is no longer replenished, the toxin will be released from the 
antitoxin-toxin complex. It will be able to kill these cells, thus contributing to plasmid maintenance. (b) In abortive infection, in phage-infected cells, transcription of host 
genes is repressed, the unstable antitoxin is not replenished, and the toxin will be released from the antitoxin-toxin complex and be able to prevent phage multiplication. (c) 
Persister formation, where persisters constitute a subpopulation of cells in the bacterial population that exhibit tolerance to antibiotics and other environmental stress 
conditions due to a phenotypic shift to a dormant state.
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synthetase),89,90 thereby reducing the amount of glutamine tRNA in the cell. The lack of glutamine-tRNA in cells triggers 
an increase in ppGpp (p), leading to the activation of more toxin-antitoxin modules, which are required for the HipA- 
induced persistence phenotype.81 Mild overproduction of HipA at levels that do not impair cell growth results in 
increased levels of persistent protein.91,92 HipA mutations have been shown to accumulate over time in clinical isolates 
of E. coli from patients with recurrent urinary tract infections.93 In addition to these gain-of-function mutations, in many 
cases, artificial overexpression of the toxin results in elevated levels of persistence.94

Another related to persistence is the RelBE family, with the RelBE locus in E. coli encoding the antitoxin RelB and 
the toxin RelE. RelE belongs to a well-described superfamily of toxins with many homologs in both bacteria and 
archaea.95 RelE is a ribonuclease that cleaves mRNA located at the ribosomal a-site between the second and third bases 
of the codon at the a-site.40 RelB automatically regulates the transcription of the RelBE operon by combining the two 
operator sequences of the RelBE promoter region.96,97 E. coli K-12 encodes six RelBE-like loci.48,49,98–100 Several 
RelBE-like genes (for example, mqsR and yoeB) have been used to define the RelBE subfamily, and MqsRA and YafQ 
are shown to be associated with persistence.101–103 Under non-stress conditions, the antitoxin MqsA regulates the general 
stress response by repressing the rpoS promoter. As MqsA is degraded by Lon, environmental stresses lead to decreased 
levels of MqsA, resulting in increased levels of RpoS, which increases biofilm formation and persistence.104 In addition, 
it has been shown that the deletion of five or more type II toxin-antitoxin modules in E. coli results in reduced formation 
of holdout bacteria during exponential growth in enriched media.105,106

In addition, mathematical modeling indicated that the TA system is uniquely characterized by two distinct bacterial 
populations: a dormant population and a fast-growing type.107 To put it simply, when the concentration of a toxin exceeds 
a certain threshold, the cell enters a state of continuous survival. How is this state achieved in a growing population of 
cells? One possibility is that certain cells, where nutrients are locally available, experience a state of micro starvation. 
This causes an increase in (p)ppGpp levels, which activates Lon protease and leads to antitoxin degradation. The result is 
a shift from low to high TA ratios, allowing the currently free toxins to begin to exert their toxic effects. However, while 
we have explained how cells enter the holding state at the molecular level, the molecular mechanisms that allow them to 
leave the holding state are still unclear. More importantly, recent studies have suggested that the type II TA system may 
utilize a phenomenological retention mechanism known as “conditional synergism”.73

Stress Response and Biofilm Formation
Biofilms are formed in aquatic environments through bacterial attachment to underwater surfaces, air–liquid interfaces, 
and each other. Biofilms attach via appendages such as hyphae,108,109 flagella,110 and microcolonies are formed from 
microbial products including polysaccharides,110 glycoproteins, and DNA.111,112 E. coli biofilms form in the gastro-
intestinal tract and bladder of the human host. The pathogenic E. coli cause urinary tract infections, including cystitis 
(bladder infection) and pyelonephritis (kidney infection). The first TA system found to be associated with biofilm 
formation was the MqsRA system of E. coli, consisting of the MqsR toxin with the MqsA antitoxin. MqsR toxin is an 
RNase49 that cleaves mRNA at the GUC site and requires the proteases Lon and ClpXP for its toxicity,113 and the MqsA 
antitoxin binds to the toxin through its N-terminal structural domain and to DNA through the helix-turn-helix (HTH) 
motif in its C-terminal structural domain.98 MqsR was induced in a transcriptomic study that identified differentially 
regulated genes in biofilm cells. In E. coli, it is predominantly curli,114–116 which promotes biofilm formation, and the 
gene csgD is required for the secretion of curli fibers to the bacterial membrane surface. It has been shown that when well 
nourished, MqsA increases motility by increasing FlhD (a major regulator of motility) partly through rpoS31 inhibition 
and partly through csgD inhibition and that under stressful conditions, MqsA is degraded by proteolytic enzymes,104 and 
MqsR is activated.117 Degradation of MqsA leads to the de-suppression of RPO and csgD, as well as inhibition of FlhD, 
which subsequently increases biofilm.

The RelBE locus of E. coli encodes the RelE toxin and the RelB antitoxin. RelE is an mRNA enzyme that cleaves 
mRNA,118 located at the ribosomal A site, including its mRNA, while RelB inactivates RelE by forming a tight complex 
with it. RelB is a metabolically unstable protein, whereas RelE is stable.119 RelB can counteract RelE activity through 
protein–protein interactions. RelB also inhibits RelBE transcription, and RelE serves as a co-inhibitor of RelBE 
transcription.120 It was shown that RelE encodes an integral translational repressor that is activated during amino acid 
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(aa) starvation. RelBE promoter is strongly activated during aa starvation, RelBE reduces the rate of post-starvation 
translation in amino acid-deficient E. coli wild-type cells, and glucose starvation induces RelBE transcription, suggesting 
a possible generalized role for RelBE during nutrient limitation. Induction of transcription occurs independently of RelA 
and SpoT and is instead dependent on Lon protease.119

The well-studied MazEF system is the first system described to regulate and be responsible for bacterial programmed 
cell death. MazF encodes the stabilizing toxin, MazF, and MazE encodes the unstable antitoxin, MazE. ATP-dependent 
ClpPA serine proteases can degrade MazE. MazF is a ribonucleic acid endonuclease that cleaves the mRNAs on the ACA 
sequence in a ribosome-independent manner.7,121 When MazE is co-expressed with MazF, MazE counteracts the toxic 
activity of MazF, and since MazE is an unstable protein, constant production of MazE is necessary to prevent MazF from 
exerting itself. Therefore, in some stressful situations, if the expression of the MazEF module on the chromosome is 
impeded, the amount of MazE in the cell is reduced thus allowing the MazF toxin to be released. Examples include 
antibiotics that inhibit transcription and translation such as rifampicin, chloramphenicol, and macrolide and DNA damage 
induced by methotrexate or nalidixic acid. It was found these antibiotics and other stress conditions known to cause 
bacterial cell death act through the MazEF module.122

Defense Against Phage Infection
Bacteria are often infected by many phages, and host bacteria have evolved diverse molecular strategies in the race with 
phages, one of which is abortive infection (Abi). In TA-mediated abortive infection, phage infection triggers loss of 
antitoxin or release of toxin from the toxin-antitoxin complex, which inhibits phage multiplication (Figure 3c) by 
inhibiting basic cellular processes leading to toxin-mediated bacterial growth arrest.123

In 2004, Hazan and Engelberg-Kulka et al demonstrated that the type II chromosome MazF/MazE system inhibits 
phage P1.124 MazEF TA is located on the relA operon and has all the characteristics of an “addiction module”, including 
the ability to cause cell death. It was demonstrated that the E. coli MazEF system prevents phage P1 from entering its 
lysogenic phase. This phage exclusion is due to the activation of an altruistic cell death program that prevents phage 
propagation and thus protects the bacterial culture, additionally, the absence of MazEF produces more P1 phages; thus, 
the phage exclusion phenotype was validated without overproduction of this TA system. In a study by Abdulraheem 
M. Alawneh et al, it was demonstrated that the growth of T4 phage was significantly increased by disruption of MazE- 
MazF. Moreover, MazF was ribosylated by the T4 Alt protein ADP immediately after infection, and this modification led 
to a decrease in MazF RNA cleavage activity, which is the first example of chemical modification of a toxin to regulate 
its activity.125 It has been reported that, in E. coli MC4100 and JM109, MazEF-containing cells produce 10–15-fold 
fewer phages after induction or infection with the mild phage p1. However, no clear data is reporting the mechanism of 
MazF activation, and a recent study was unable to reproduce these preliminary findings in E. coli K12.126

In 2011, the type II RnlA/RnlB system was shown to inhibit T4 phages in E. coli.127 In most TA systems, the 
antitoxin genes are located upstream of their cognate toxin genes. Unlike most type II TA systems where the toxin genes 
are in the reverse order of the antitoxin genes, the RnlA/RnlB system provides T4 phages deficient for the gene dmd 
A strong defense against the dmd phage, while the aggregation efficiency of the dmd phage was reduced 1000–10,000- 
fold on rnlAN-containing strains.128,129 Yonesaki et al initially identified the T4 gene dmd as necessary to stabilize 
mRNAs expressed late in T4 development.130 Infection with the T4 dmd mutant results in rapid degradation of the 
antitoxin RnlB, which may lead to the release of the RnlA ribonuclease toxin.127 RnlB is also rapidly degraded in a Lon 
and ClpX-dependent manner in uninfected cells. Because RnlB is intrinsically unstable, T4 infection-induced shutdown 
of host transcription, including that of RnlAB, may allow the release of active RnlA because RnlB cannot be replenished. 
When activated upon infection by the T4 dmd mutant, the RnlA toxin cleaves phage RNA,130,131 although the sequence 
specificity of RnlA remains uncertain. Another twist to the RnlA system is that RnlA activity is somewhat dependent on 
host-encoded RNaseHI, which degrades RNA-DNA hybrids.132,133 Indeed, the finding that RNaseHI promotes T4 
infection upon RnlA activity and inhibition of RnlA by RnlB, possibly through direct interactions, but how RNaseHI 
affects the RnlAB system remains to be elucidated.

Recent bioinformatics analyses indicate that DarTG family members of TA systems are frequently encoded in defense 
islands, leading to the prediction that these systems are phage defense elements. Although E. coli K-12 does not encode 
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any DarTG homologs, representatives of two different subfamilies DarTG1 and DarTG2 from environmental E. coli 
isolates strongly protect E. coli MG1655 against different phages.134 During phage infection, infection with RB69 or T5 
phage, respectively, triggers the release of DarT toxin from both the DarTG1 and DarTG2 systems, followed by ADP- 
ribosylation of phage DNA. This modification results in the inhibition of DNA synthesis and, to a lesser extent, RNA 
synthesis, which prevents phages from generating viable progeny. In addition, DarG antitoxins were shown to possess 
ADP-glycohydrolase activity, which allowed them to enzymatically reverse modifications made by their cognate DarT 
toxin.135 In addition, phages that have evolved to overcome the DarTG defense by mutations in their DNA polymerase or 
the anti-DarT factor gp61.2 encoded by many T-even phages were isolated.136

Interestingly, phages have developed many mechanisms to combat abortive infections by interfering with TA module 
induction or function. For example, phage T4 encodes a “master key” antitoxin that inactivates several RnlA family 
toxins, and the ADP-ribosyl transferase Alt inhibits the type II toxin MazF in E. coli. phages that often contain specific 
protease inhibitors that interfere with the degradation of protein antitoxins, thereby attenuating abortive infections of the 
type II TA module more indirectly.123,131

While some studies have shown that TA systems can and do prevent phage predation, it is not clear whether most TA 
systems play such a role. Notably, the RnlAB system only protects phages lacking dmd T4 phage, so other E. coli phage 
defense systems likely overcome the existing TA system in E. coli k12. Alternatively, the TA system may only protect 
a very narrow phage spectrum and is used for the great diversity of phages. Some of the phages defended against by 
individual TA systems in E. coli k12 may not have been identified or tested yet. Studies are needed to further explore and 
characterize the role of TA systems in phage defense. How TA systems impede phage replication and development also 
requires further investigation.

Conclusion Remarks
This paper focuses on the modulation and biological functions of the type II toxin-antitoxin system in E. coli. Despite 40 
years of research on the TA system, and many questions remain unanswered. For example, there is still some ambiguity 
regarding biological function; the model describing how the toxin-antitoxin module leads to persistence formation 
through (p)ppGpp signaling is an attractive one; however, there is evidence that the toxin-antitoxin module is not the 
only factor contributing to persistent cell formation. The deletion of multiple toxin-antitoxin modules or the deletion of 
(p)ppGpp leads to a reduction in the number of persister cells. Still, neither eliminates the presence of persister cells. 
Deletion of 10 TA motifs in E. coli suggested a role in persistent formation, but subsequent reassessment did not support 
this conclusion. This problem may be attributed to infection by hidden phages.137 Similarly, in another study, persister 
cell formation was not directly related to the TA module.138 Thus, there is still a lot of debate about the role of the TA 
module in bacterial physiology, and it is necessary to carry out more extensive and precise experiments that should be 
conducted to further reveal the biological function of TA.

With the development of toxin-antitoxin systems, exploring how these systems move between replicons and bacterial 
species and what drives their evolutionary success is necessary. A better understanding of the mechanisms behind 
bacterial toxin-antitoxins may lead to the design of drugs that can combat chronic and recurrent infections. In addition, 
combining TA systems with other biological systems to develop novel bioregulatory elements will also hold promise in 
the field of synthetic biology.
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