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Background: Incidence of food-borne infections from Listeria monocytogenes, a parasite that 

has adapted intracellular residence to avoid antibody onslaught, has increased dramatically in the 

past few years. The apparent lack of an effective vaccine that is capable of evoking the desired 

cytotoxic T cell response to obliterate this intracellular pathogen has encouraged the investigation 

of alternate prophylactic strategies. It should also be noted that Archaebacteria (Archae) lipid-based 

adjuvants enhance the efficacy of subunit vaccines. In the present study, the adjuvant properties of 

archaeosomes (liposomes prepared from total polar lipids of archaebacteria, Halobacterium sali-

narum) combined with immunogenic culture supernatant antigens of L. monocytogenes have been 

exploited in designing a vaccine candidate against experimental listeriosis in murine model.

Methods: Archaeosome-entrapped secretory protein antigens (SAgs) of L. monocytogenes 

were evaluated for their immunological responses and tendency to deplete bacterial burden in 

BALB/c mice challenged with sublethal listerial infection. Various immunological studies involv-

ing cytokine profiling, lymphocyte proliferation assay, detection of various surface markers (by 

flowcytometric analysis), and antibody isotypes (by enzyme-linked immunosorbent assay) were 

used for establishing the vaccine potential of archaeosome-entrapped secretory proteins.

Results: Immunization schedule involving archaeosome-encapsulated SAgs resulted in upregu-

lation of Th1 cytokine production along with boosted memory in BALB/c mice. It also showed 

protective effect by reducing listerial burden in various vital organs (liver and spleen) of the 

infected mice. However, the soluble form of the antigens (SAgs) and their physical mixture with 

sham (empty) archaeosomes, besides showing feeble Th1 response, were unable to protect the 

animals against virulent listerial infection.

Conclusion: On the basis of the evidence provided by the current data, it is inferred that 

archaeosome-entrapped SAgs formulation not only enhances cytotoxic T cell response but also helps 

in the clearance of pathogens and thereby increases the survival of the immunized animals.

Keywords: archaeosome, culture supernatant, antigen-presenting cells, Th1 cytokines, 

 co-stimulatory markers, lymphocyte proliferation, protection studies

Introduction
Listeria monocytogenes, a ubiquitously present intracellular food-borne pathogen, 

causes listeriosis, an infection characterized by gastroenteritis, meningitis, encepha-

litis in general, and which sometimes inflicts maternofetal infections in humans as 

well as in cattle. Among the various food-borne infections, listeriosis has the highest 

fatality rate (25%–30%).1 L. monocytogenes is able to penetrate and survive within 

both professional phagocytes (macrophages) as well as nonprofessional phagocytes 

and opts for an intracellular life cycle exhibiting competency for cell-to-cell spread,2 

including epithelial cells,3 fibroblasts,4 hepatocytes,5 endothelial cells,6 and  various 
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types of nerve cells.7 Listeria spp. have also been shown to 

be taken up by, and to survive within, dendritic cells (DCs).8 

Intracellular habitat and rapid-spreading capability in vari-

ous kinds of cells renders safety to L. monocytogenes from 

antibody onslaught, which thereby facilitates its survival in 

the host.

The intracellular mode of residence acquired by 

L. monocytogenes to defy antibody attack seems to work 

equally well against various available antilisterial drug 

 regimens. The situation is further worsened by other compli-

cations such as multidrug resistance and drug-associated side 

effects. Hence, designing an effective prophylactic strategy to 

combat listerial infection has become an important challenge 

to overcome. However, vaccine development against intracel-

lular pathogens has always been a difficult task as most of the 

existing vaccine strategies generally evoke humoral response 

in the host. A promising strategy against intracellular patho-

gens is immunization with live attenuated strains that retain 

the ability to replicate within host cells, allowing processing 

and presentation of pathogen-derived antigens mainly via the 

major histocompatibility complex (MHC)-I pathway. Unfor-

tunately, the generation of attenuated variants that effectively 

stimulate protective immune responses but do not result in 

disease manifestation, especially in immunocompromised 

individuals, remains the major hurdle in the development of 

an effective vaccine against L. monocytogenes.

Particulate adjuvants enhance the efficacy of subunit 

antigens presumably by enhanced targeting to antigen-

presenting cells (APCs), including macrophages and DCs. 

Several preparations (natural as well as synthetic substances) 

have been shown to possess adjuvant activities both in ani-

mal models as well as in human subjects.9–11 Archaeosomes 

are also thought to be attractive adjuvant candidates owing 

to their promising potential to promote both MHC class I 

and class II responses to entrapped antigens as well as their 

ability to upregulate expression of co-stimulatory molecules 

on the surface of APCs10 without any associated toxicity in 

experimental animals.11

Among the various factors contributing to L. monocytogenes 

virulence, secretory proteins play the central role in activation 

of the host’s immune system.12 Sixteen secreted virulence 

effectors have been characterized to date; some of these are 

associated with cytoplasmic membrane or cell wall (ActA, 

LLO, InlA, InlB, InlC, InlH, Mpl, MurA, PlcA, PlcB, P60, 

and SvpA), and others are released in the extracellular envi-

ronment (Fri, TcsA, and Sod). Because of their potential to 

activate the host’s immune system, secretory proteins can 

be exploited as a candidate vaccine and their abundance in 

culture supernatant offers an easy and economic strategy 

when used in large-scale vaccine production.

In the present study, a formulation of self-adjuvanting 

archaeosomes with soluble supernatant antigens of 

L. monocytogenes entrapped within was developed and 

its potential in controlling L. monocytogenes infection in 

experimental animals was evaluated.

Materials and methods
Chemicals and reagents
All the reagents used were of the highest purity available. 

The following: fluorochrome-labeled anti-mouse antibod-

ies; fluorescein isothiocyanate-conjugated CD4 (GK 1.5) 

and CD8 (53.67); PerCP-conjugated CD62L (MEL-14); 

phycoerythrin-conjugated CD44 (IM7), CD80 (B7-1), and 

CD86 (GL1); and IgG2a (R35-95) isotype control were pro-

cured from eBiosciences (San Diego, CA). Immunoglobulin 

(Ig) G1, IgG2a isotypes (550487) and cytokines viz. IL-4, 

interferon-γ, IL-12 cytokine estimation kits were procured 

from BD OptEIA (Franklin Lakes, NJ). Tissue culture media 

(RPMI 1640), bovine serum albumin (BSA), antimycotic 

solution, and plasticwares were purchased from BD Biosci-

ences (San Diego, CA). Fetal calf serum was procured from 

Sigma-Aldrich® (St Louis, MO).

Animals
Inbred female BALB/c mice (6–8 weeks old, 20 ± 2 g) were 

obtained from the animal house facility of Interdisciplinary 

Biotechnology Unit, AMU. The animals were acclimatized 

for 10 days under standard husbandry conditions at room 

temperature (22°C ± 3°C), relative  humidity (65% ± 10%), 

and a 12-hour light/dark cycle. They were allowed free 

access to standard dry pellet diet and water ad libitum under 

strict hygienic conditions. Animals were anesthetized with 

ketamine (100 mg/kg body weight) in combination with 

xylazine (5 mg/kg body weight) intramuscularly prior to 

sacrifice. All the procedures used in the study were reviewed 

and approved by the Institutional Animal Ethics Committee 

(Reg No: 332/2001/CPCSEA) as per the recommendations 

of the Committee for the Purpose of Control and Supervision 

of Experiments on Animals (India).

Bacterial culture
L. monocytogenes (15313) was procured from ATCC 

(American Type Culture Collection, Manassas, VA). 

Bacteria were grown on brain heart infusion (BHI) broth 

(Sigma-Aldrich) overnight at 37°C. The bacteria were enu-

merated using McFarland’s standard method (0.5) by taking 
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the optical density (OD
590

) (0.1 OD
590

 = 1.5 × 109 colony 

forming units [CFU]/mL).

Isolation and sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis  
(SDS-PAGE) profile of secretory proteins
The cells were cultured in Brain Heart Infusion (BHI) broth 

for 48 hours.  Thereafter, the culture supernatant was collected 

by centrifugation at 10,000 g for 10 minutes followed by filtra-

tion through 0.22 µm filters (Millipore, Billerica, MA).  The 

secretory proteins were allowed to precipitate by overnight 

treatment of filtrate with 80% ammonium sulfate at 4°C. The 

precipitated protein (pellet) was collected after centrifugation 

at 10,000 g for 10 minutes and was resuspended in 40 mM 

phosphate buffer supplemented with 150 mM sodium chloride 

(NaCl) to obtain protein solution. Further vigorous dialysis was 

done to remove any media content from secretory proteins, 

which were lyophilized and stored for further use. Remaining 

supernatant was considered to be SAgs-depleted media and 

used as control in pilot studies. Proteins were subjected to 10% 

SDS-PAGE and stained with Coomassie Brilliant Blue R-250 

dye (Imperial Chemical Industries, London, UK).

Western blot analysis
For Western blot analysis, SAgs (30 µg) were resolved by elec-

trophoresis on 10% sodium dodecyl sulfate- polyacrylamide 

gel and transferred onto nitrocellulose membrane. After 

blocking in 3%–5% BSA prepared in phosphate-buffered 

saline (PBS) with Tween (PBST), the membrane was washed 

three times with PBS containing Tween 20 and incubated for 

2 hours at 37°C with antibodies raised in mice against SAgs. 

After incubation and stipulated washing steps, the membrane 

was incubated with horseradish peroxidase-conjugated 

rabbit-anti-mouse antibody (1:2000) for 1 hour at 37°C. 

Finally, the membrane was treated with 3,3’ diaminobenzi-

dine tetrahydrochloride solution (10 mg dissolved in 6 mL 

water) to develop bands of immunogenic proteins.

Preparation of archaeosomes and 
determination of entrapment efficiency
Total polar lipids from Halobacterium salinarum were har-

vested using a slightly modified Bligh and Dyer method in our 

lab.13 Specifically, H. salinarum was grown on nutrient broth 

agar plates with extra 1 M NaCl. The cells were harvested and 

washed with PBS twice, thereafter; they were dispersed in 

chloroform and methanol (2:1 v/v) mixture followed by brief 

sonication using a probe sonicator (Sonics®, Vibra-Cell™, 

Sonics and Materials Inc, Newtown, CT). After overnight 

stirring, the mixture was filtered using a sintered funnel. One 

volume of 150 mM NaCl was added to five volumes of the 

filtrate, and mixture was allowed to separate in a separating 

funnel until two phases appeared; the lower organic phase was 

collected and evaporated under vacuum using a rotary evapo-

rator (Heidolph Instruments GmbH and Co KG, Schwabach, 

Germany).

For archaeosome preparation, a thin dry lipid film was 

made in an acid clean glass test tube. The film was hydrated 

with normal saline followed by sonication in a bath sonica-

tor for 1 hour under N
2
 atmosphere. Archaeosomes thus 

formed were mixed with an equal volume of stock solution 

containing 10 mg/mL secretory proteins. The mixture was 

flash frozen and thawed (4–5 cycles) followed by lyophiliza-

tion to get free flowing powder using a lyophilizer (Alpha 

1–4; Christ, Osterode, Germany). The powder was resus-

pended in 0.1% NaCl solution to obtain dry reconstituted 

vesicles. Unentrapped protein was separated by loading the 

archaeosome protein mixture onto a sepharose 6-B column; 

protein-bearing archaeosomes were collected in the void 

 volume. Percent entrapment was determined by estimating 

the released protein after archaeosomal burst in the presence 

of 1% TritonX-100™ (Sigma-Aldrich Co).

Characterization of SAgs-bearing 
archaeosomes
The size of the in-house prepared archaeosomes was 

determined using a nanosize analyzer (nanophox; Malvern 

Instruments Ltd, Worcestershire, UK). Scanning electron 

microscopy (SEM) using SEM 430 (Leo, Peabody, MA) was 

also used to characterize the size and surface morphology 

of the protein-loaded archaeosomes. For electron micro-

scopic studies, a lyophilized preparation of SAgs-loaded 

archaeosomes was suspended in 20 mM PBS of pH 7.4. 

A drop was mounted on clear glass stub, air dried, and coated 

with gold–palladium alloy using a sputter coater. An acceler-

ating voltage of 29.34 kV was used for SEM imaging.

Interaction of calcein-bearing 
archaeosomes with macrophages
Calcein (1 mM) dissolved in 0.1 N NaOH (pH 7.4) was 

loaded into the archaeosomes following published procedure 

as standardized in our lab.14 The archaeosomal preparation 

of calcein was then loaded onto the sepharose 6-B column 

to remove unentrapped calcein; the fraction with the calcein-

 bearing archaeosomes was collected, pooled together, and 

 lyophilized. After lyophilization, the powdered preparation 
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was resuspended in distilled water. Macrophages (J774A.1 

cell line) suspended in 200 µL of media (RPMI 1640; 

Sigma-Aldrich, Co) were poured on 22-mm2 glass coverslips 

placed in 35-mm dishes at 2.5 × 104 cells per coverslip. Cells 

were allowed to attach for 2 hours and after washing with RPMI 

1640 media, the dishes were filled with media. Twenty-four 

hours after plating, the cells were treated with archaeosome-

encapsulated calcein for 1 hour. The cells were then fixed on 

ice in 4% methanol-free formaldehyde solution in PBS (pH 

7.4) for 25 minutes. Finally, the cells were visualized by confo-

cal laser scanning microscopy (CLSM) 510 Meta (Carl Zeiss 

Micromalging GmbH, Jena, Thuringen, Germany).

Mode and schedule of immunization
All the groups were immunized subcutaneously in the 

lower abdominal region aseptically with 50 µg of  SAgs  

(various forms) in 100 µL of vehicle per animal correspond-

ing to the lipid concentration in the range of 2.0–2.5 mg/injec-

tion. A booster was given 3 weeks after the first immunization 

with 25 µg of the corresponding SAgs formulation. PBS and 

sham archaeosome-administered groups acted as controls.

Collection of sera
The blood was collected from mice by retro-orbital puncture 

after various time intervals in centrifuge tubes, then centri-

fuged at 1500 g for 10 minutes at 4°C. Finally, the supernatant 

was collected and used for ELISA analysis.

Determination of antigen-specific 
isotypes by ELISA
Antigen-specific total IgGs and their isotypes were determined 

in the sera of the immunized mice. Briefly, a 96-well microtiter 

plate was incubated overnight with 100 µL of antigen (200 ng) 

in carbonate–bicarbonate buffer (0.05 M, pH 9.6) at 4°C. After 

the usual washing and blocking steps, the plate was finally 

incubated with log
10

 two dilutions of test and control sera at 

37°C for 2 hours. After excessive washing of the plate, 100 µL 

of (1:5000 dilution of stock) goat anti-mouse IgG1 as well 

as goat anti-mouse IgG2a antibodies were added to specific 

wells. The plate was further incubated at 37°C for 1 hour. 

Again after washing, 100 µL of (1:5000 dilution of stock) 

horseradish peroxidase (HRP) conjugated rabbit anti-goat 

antibodies were added to each well and the plate was incubated 

at 37°C for 1 hour. The plate was washed again before add-

ing 100 µL of substrate solution (6 mg o-phenylenediamine 

[OPD] in 12 mL of substrate buffer with 5 µL of 30% H
2
O

2
) 

and was finally incubated at 37°C for 40 minutes. The reaction 

was terminated by the addition of 50 µL of 7% H
2
SO

4
. The 

absorbance was read at 490 nm with a microtiter plate reader 

(Bio-Rad Laboratories Inc, Hercules, CA).

Measurement of the anti-listerial  
DTh response
The animals were immunized with various vaccine prepara-

tions in their inguinal region. The delayed type hypersensi-

tivity (DTH) response was assessed at various time points 

after injection of antigen-containing archaeosomes as well as 

other control formulations. The mice were footpad tested to 

determine their DTH reactions to SAgs.15 DTH reactions were 

elicited by the injection of SAgs (50 µg) in the right footpad 

of each mouse and saline into the left footpad. The thickness 

of each footpad was measured just before and after 24 hours, 

48 hours, and 72 hours post-injection of SAgs or saline using 

a digital gauge caliper (Aerospace and Engineering Tools Ltd, 

Bolton, UK). DTH reactions were evaluated by the increase 

in footpad thickness as determined by the following formula 

(right footpad at testing time – right footpad at 0 hours): (left 

footpad at testing time – left footpad at 0 hours).

Splenocyte isolation and culture
The immunized mice were sacrificed by cervical dislocation 

and their spleens were aseptically removed. The single cell 

suspension made with the help of frosted glass slides was 

centrifuged at 1400 g for 8 minutes under cool conditions. 

The pellet was suspended in 2 mL of lysis buffer for 2–3 min-

utes to achieve lysis of the red blood cells and further diluted 

with PBS (total volume 10–15 mL). The cell suspension was 

again centrifuged at 1400 g and the pellet was further washed 

twice with Hank’s buffered salt solution (HBSS).

Lymphocyte proliferation assay
A lymphocyte proliferation assay was performed following 

the method as standardized in our lab.13 Briefly, lympho-

cytes from the spleens of various immunized groups were 

incubated in round-bottomed, 96-well plates (2 × 105 cells 

per well) in 200 µL of RPMI 1640 medium with 10% fetal 

bovine serum and increasing concentrations (1–20 µg/well) 

of SAgs. Cells incubated with the medium alone (without 

antigens) were used as controls. After 48 hours, the cultures 

were pulsed with 0.5 µCi of [3H]-thymidine. The plates 

were harvested after 16 hours onto glass-fiber filter mats by 

the use of TomTec-Harvester-96 (Tomtec, Hamden, CT). 

The incorporated radioactivity was measured using liquid 

scintillation spectroscopy (Wallac-1450 MicroBeta TriLux, 

Cleveland, OH).
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Determination of IFN-γ, IL-12,  
and IL-4 by sandwich ELISA
IFN-γ, IL-12, and IL-4 expression levels in the culture super-

natant of the lymphocytes isolated from various immunized 

groups were determined using appropriate, specific, and 

biotinylated antibody pairs according to the manufacturer’s 

protocols. Briefly, 50 µL of the purified capture antibodies were 

adsorbed overnight on polystyrene microtiter plates at 4°C in 

pH 9.5 carbonate buffer. Plates were washed five times with 

PBST and blocked with 5% skimmed milk. After the usual 

steps of washing, 50 µL of the supernatant of 48-hour cultured 

splenocytes was used for the detection of  cytokines. After the 

stipulated incubation time, the plates were thoroughly washed 

and incubated with biotinylated polyclonal goat anti-mouse 

IFN-γ, IL-12, and IL-4  antibodies.  Afterwards, plates were 

washed thrice with PBST. Later, 100 µL of streptavidin-HRP 

was added to each well and plates were incubated for 30  minutes 

at room  temperature. Plates were again washed thrice with 

PBST and finally developed with tetramethylbenzidine. The 

absorbance was read at 450 nm with a microtiter plate reader. 

Titration curves of recombinant cytokines were used as standard 

for calculating cytokine concentrations in the samples tested.

Staining of T cells for memory and  
macrophages for co-stimulatory markers
Splenocytes belonging to various immunized groups were 

harvested as described earlier for the proliferation assay. 

T cells (CD4+ and CD8+) were prepared for staining with 

labelled antibodies as described elsewhere.13  Viable cells 

were counted using the Trypan blue dye exclusion method. 

The fluorescence-activated cell sorting (FACS) express plus 

analysis demonstrated that isolated cells were CD4+ with 97% 

purity while the CD8+ population was found to be 98% pure.13 

Further, 1 × 106 CD4+ and CD8+ cells were washed twice in 

FACS buffer (PBS with 1% BSA and 0.1% sodium azide) in 

different tubes. We isolated the macrophages by adherence on 

petri-plates which were then washed three times with HBSS 

and incubated at 37°C.13 Moreover, we determined F4-80 

expression on cells before assessing the expression level of 

costimulatory molecules in order to ascertain macrophage 

lineage of this population. Various isolated immune cells 

were incubated with Fc block (2.4G2) and fluorescein 

isothiocyanate/phycoerythrin (FITC/PE) tagged monoclonal 

antibodies (CD44, CD62L, CD80, CD86, and isotype control) 

for 30 minutes at 4°C. After the appropriate washing steps, 

cells were fixed with 1.0% paraformaldehyde. The cytom-

etry data were acquired using fluorescence activated cell 

sorter (GUAVA, Billerica, MA) and were analyzed with 

Express-Plus software (DME MAC Express Plus, National 

Government Services Common Electronic Data Interchange 

(CEDI), NHIC Corp, Hingham, MA). The total number of 

cells of a definite phenotype (CD4+CD44highCD62Lhigh/low, 

CD8+CD44highCD62Lhigh/low) was calculated by taking the per-

centage of a gated cell type, as determined by flow cytometry, 

and multiplying it by the total number of cells obtained per 

sample, which was further divided by 100.16

Ethics statement
All animal experiments were approved by the Institutional 

Animal Ethics Committees of the Interdisciplinary 

Biotechnology Unit, Aligarh Muslim University, Aligarh, 

India. All animal experiments were performed according to 

the National Regulatory Guidelines issued by the Committee 

for the Purpose of Control and Supervision of Experiments 

on Animals (CPCSEA). Our approval ID is 332/CPCSEA, 

Ministry of Environment and Forests, Paryavaran Bhavan, 

Government of India.

Prophylactic study
To evaluate the protective efficacy of in-house prepared vaccine 

candidate, we challenged BALB/c mice belonging to various 

vaccinated groups with 1 × 107 CFU per animal at 4 weeks, 

and enumerated liver and spleen bacterial loads at various time 

points. For this, three animals from each group were sacrificed 

1 week and 4 weeks post-challenge and their organs were 

crushed in PBS aseptically. Dilutions were plated onto BHI 

plates and after 48 hours of plating, the colonies were counted 

to calculate the bacterial load in various vital organs. More-

over, after the challenge, we observed the survival of animals 

belonging to various immunized groups and controls.

Statistical analysis
Data were analyzed and two groups were compared using 

 Student’s t-test and one-way ANOVA (Holm–Sidak method) 

was used to compare all groups to each other. SigmaPlot 

software (v 10 and 11; SigmaPlot, San Jose, CA) was used. 

P values ,0.05 (*), ,0.01 (**), and ,0.001 (***) were 

considered significant.

Results
SDS-PAgE and Western blot analysis  
of culture supernatant antigens
Figure 1A shows the electrophoretic pattern of total proteins 

present in the culture supernatant of L. monocytogenes as seen 
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by Coomassie Brilliant Blue staining. SDS-PAGE revealed 

prominent protein bands around 97 kD, 60 kD, 39 kD and 

many bands in the size range of 29–14 kD, which is in con-

cordance with earlier reports.12–17 The immunogenicity in 

terms of antigen-specific antibody production was assessed by 

Western blot analysis. The sera was found to recognize most 

of the SAgs, however, proteins corresponding to 110 kD, 60 

kD, 39 kD, 29 kD, 18 kD, and 14 kD were more immunogenic 

when compared to other SAgs, as elucidated by Figure 1B.

Characterization of archaeosomes
The size range of SAgs-bearing archaeosomes was character-

ized by using a nanophox analyzer, which showed an average 

size of 99.15 ± 15 nm (Figure 2A). The SEM image further 

confirmed their size (100 nm) (Figure 2B). The interaction of 

calcein loaded archaeosomes with J774A.1 macrophages is 

demonstrated by confocal microscopy. All the archaeosomes 

in the solution were found to be accumulated efficiently, 

so that the entrapped calcein was completely delivered 

to the macrophages within 10 minutes – this shows that 

archaeosomal uptake by macrophages is prompt and efficient 

(Figure 2C).

Archaeosome-encapsulated SAgs  
elicit elevated Th1 response
The effect of archaeosome-encapsulated SAgs on the 

induction of both Th1 (IFN-γ and IL-12) and Th2 (IL-4) 

type cytokines was assessed in immunized animals at 

various time points both prior to and post-challenge with 

L. monocytogenes infection. Significantly high levels of Th1 

cytokines; IFN-γ, and IL-12, were induced upon administra-

tion of archaeosome-entrapped SAgs when compared to the 

free form of SAgs (P , 0.001) and the physical mixture of 

archaeosomes with SAgs (P , 0.001), both at post-booster 

and post-challenge time points. However, the expression 

of Th1 cytokines was found to be higher post-challenge 

in archaeosome-entrapped SAgs-immunized group. 

Control groups showed low production of Th1 cytokines 

(Figure 3A and B). On the contrary, as depicted by Fig-

ure 3C, archaeosome-based vaccine formulation induced 

significantly lower expression of Th2 cytokine and IL-4, 

when compared to the free form of SAgs (P , 0.001). The 

control groups failed to induce detectable levels of IL-4 

at various post-booster time points, while the response at 

post-challenge showed comparable expression with that of 

SAgs-supplemented groups at various time points.

The antibody response against SAgs entrapped in 

archaeosomes was analyzed at various time points. The 

results shown in Figure 1 clearly reveal significant antibody 

levels after immunization with archaeosome-based antigens. 

The antibody responses were heightened at post-challenge 

time points for archaeosomal preparation, while a slight 

reduction was observed in other groups (Figure 3D).

Interestingly, the IgG2a/IgG1 ratio post-booster was 

significantly higher in the animals that were immunized with 

archaeosome-encapsulated SAgs when compared to their free 

form. The IgG2a induction was considerably enhanced in the 

group that was immunized with archaeosome-encapsulated 

SAgs at 2 weeks post-challenge with infection. On the 

other hand, there was a remarkable shift in antibody isotype 

induction in favor of IgG1 in the group that was immunized 

with the free form of SAgs post-challenge with infection 

(Figure 3D).

Lymphocyte proliferative response
Lymphocyte proliferation in response to immunization 

with archaeosome-based SAgs was used as a parameter to 

assess vaccine potential of SAgs-bearing archaeosomes. 

 Lymphocytes obtained at various time points, post-booster 

as well as post-challenge, from the spleens of mice immu-

nized with different SAgs vaccines proliferated upon their 

exposure to SAgs in a dose-dependent manner (Figure 4A). 

The proliferative response of lymphocytes obtained from 

animals immunized with archaeosome-entrapped antigens 

was significantly higher when compared to free SAgs 

(P , 0.001) and its physical mixture with archaeosome 
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97.4

66

14

43

29

205

iii
BA

Figure 1 SDS-PAGE and Western blot profile of culture supernatant SAgs of Listeria 
monocytogenes. (A) SDS-PAGE profile of proteins present in L. monocytogenes culture 
supernatant. Lane i corresponds to protein profile and lane ii shows the molecular 
weight markers. (B) Western blot profile of the same proteins isolated from culture 
supernatant, probed with mouse antisera.
Abbreviations: SAgs, secretory protein antigens; SDS-PAgE, sodium dodecyl 
sulfate polyacrylamide gel electrophoresis.
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at all time points (P , 0.001). The lymphocytes isolated 

from animals immunized with PBS and sham archaeosome 

(no antigen) failed to proliferate at any dose of SAgs. Graph 

plots (Figure 4B) reveal the lymphocyte proliferative response 

at a fixed dose of SAgs (20 µg) at two  different time points, 

viz, post-booster and post-challenge with infection. Among 

various forms of SAgs, archaeosome-encapsulated SAgs 

maintained a higher proliferative response at various time 

points (post-booster as well as post-challenge), when com-

pared to the free form of SAgs or their physical mixture 
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Figure 2 Characterization of archaeosomes and their interaction with macrophages. (A) Size of in-house prepared archaeosomes as determined by nanophox size analyzer 
(B) SEM image of archaeosomes and (C) interaction of archaeosomes with J774A.1 macrophages as visualized by confocal microscopy. The left panel shows a fluorescence 
microscopic image of archaeosomes entrapped in macrophages, a bright field image of the same is shown in the middle panel and the right panel represents superpositioning 
of left and middle panels.
Abbreviation: SEM, scanning electron microscope.
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Figure 3 Archaeosome-entrapped SAgs induce Th1 biased response in immunized mice. By determining cytokine response in splenocyte culture supernatant of various 
immunized groups, Th1/Th2 response was ascertained at different time points, prior and post-challenge with Listeria monocytogenes infection; (A) IFN-γ, (B) IL-12, (C) IL-4. 
(D) Ratio of IgG2a to IgG1 was analyzed in sera of various immunized groups except controls (PBS and sham archaeosomes) to further confirm TH1/Th2 polarization upon 
immunization with archaeosome-entrapped SAgs.
Notes: The data represent the mean of three determinants ± SD and are representative of three different experiments (ie, the experiment was done in triplicate) with similar 
observations. Statistically groups were compared with each other using ANOVA with the holm–Sidak test (all pairwise multiple comparison procedures) with P , 0.05, P , 0.01, 
P , 0.001, post-booster, and post-challenge.
Abbreviations: PBS, phosphate buffer saline; SD standard deviation; ANOVA, analysis of variance; SAgs, secretory protein antigens.
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Figure 4 Proliferative response of lymphocytes belonging to various immunized groups upon stimulation with SAgs. To determine the effect of the amount of SAgs on the 
proliferation of lymphocytes, lymphocytes isolated from the spleens of immunized BALB/c mice of various vaccinated groups including controls, were cultured in flat-bottomed 
96-well plates. The cells were co-cultured in the presence of increasing doses (1–20 µg) of corresponding formulations of SAgs as well as controls. After 72 hours [3h]-
thymidine was added and its incorporation into multiplying cells was measured after 16 hours of incubation, using liquid scintillation spectroscopy. The CPM values of stimulated 
culture were used to represent Ag-specific stimulation. (A) Dose-dependent proliferative response of lymphocytes at 1-week post-booster and post-challenge (data not shown) 
upon stimulation with various SAgs formulations. (B) Lymphocyte proliferation in terms of CPM values in various immunized groups at PB and 2 weeks PC time points.
Notes: Data represent the mean of three determinants ± SD. The figures are representative of three independent experiments. The groups were compared using ANOVA. 
holm–Sidak test (all pairwise multiple comparison procedures) with *** P < 0.001.
Abbreviations: CPM, counting per minute; PB, post-booster; PC, post-challenge; PBS, phosphate buffer saline; ANOVA, analysis of variance; SD, standard deviation; SAgs, 
secretory protein antigens.
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with sham archaeosomes. However, post-challenge, the 

proliferative response of lymphocytes belonging to either 

group (physical mixture and free form) was found to be more 

or less similar (P = 0.170).

Archaeosome-encapsulated SAgs  
evoke delayed type hypersensitivity  
in immunized animals
To evaluate the ability of various forms of SAgs to induce 

cell-mediated immune response, we immunized mice sub-

cutaneously (SC) in the lower abdominal region. Free SAgs 

were used as immunogen to determine whether they need 

an adjuvant for evoking desirable immune response. Seven 

days after immunization, mice were exposed to SAgs or 

PBS via the footpad and footpad swelling was measured at 

various time intervals. Immunization with SAgs entrapped 

in archaeosomes resulted in the generation of a strong 

DTH response whereas the physical mixture of SAgs and 

sham archaeosomes resulted in a moderate DTH response. 

Antigens in free form induced minimal anti-listerial DTH 

response (Figure 5). However, sham archaeosome as well as 

PBS-immunized mice showed negligible DTH response.

Archaeosome-encapsulated SAgs 
upregulate costimulatory molecule 
expression
We also analyzed the expression profile of costimulatory 

markers on macrophages isolated from various immunized 

groups using flow cytometry. As shown in Figure 6, higher 

expression of CD80 (B7-1) and CD86 (B7-2) was observed 

in the group immunized with archaeosome-entrapped SAgs 

(CD80 49.74% ± 4.87%; CD86 47.86% ± 5.34%) when 

compared to free form of SAgs and their physical mixture 

with sham archaeosomes, on the fourth week post-challenge 

(P , 0.001). A similar expression profile of costimulatory 

molecules was observed on macrophages isolated from 

free SAgs and physical mixture immunized groups. The 

histograms (Figure 6A and B) clearly show the difference 

between the concerned groups, the groups immunized with 

sham archaeosomes were considered as the control, while 

Figure 6C and D depict the mean value of the percentage 

population of CD80 and CD86, respectively. Data here in 

the form of the bar graph are representative of three differ-

ent experiments.

Archaeosome-entrapped SAgs  
elicit a strong memory response  
in immunized mice
In order to evaluate the ability of archaeosome-based vac-

cine to induce desirable memory response in CD4+ and 

CD8+ T cells against L. monocytogenes, we enumerated the 

population having CD44highCD62Lhigh for central memory 

and CD44highCD62Llow for effector memory marker on 

their surface and presented it in the form of a dot plot 

 (Figure 7A and B). The bar graphs clearly show the pres-

ence of CD44highCD62Llow/high on the surface of both CD4 
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Figure 5 Archaeosome-entrapped SAgs generate strong DTh response. To ascertain the induction ability of archaeosome-entrapped SAgs to evoke cell-mediated immune 
response in the immunized mice, mean DTh response was evaluated by measuring footpad swelling in the groups immunized with PBS, sham archaeosomes, free SAgs, sham 
archaeosomes mixed with free SAgs, and archaeosomes-entrapped SAgs (Archae-SAgs) after various time intervals; DTh response was found to be substantially high in the 
group immunized with archaeosome-encapsulated SAgs.
Notes: Data are representative of three independent experiments ± SD values. ***P values < 0.001 were considered statistically significant. Archaeosome-entrapped SAgs 
vs free SAgs ***P , 0.001.
Abbreviations: PBS, phosphate buffer saline; SD, standard deviation; DTh, delayed type hypersensitivity; SAgs, secretory protein antigens.
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Figure 6 Archaeosome-entrapped SAgs upregulate the expression of costimulatory molecules on antigen-presenting cells. The expression of costimulatory molecules, 
CD80 (B7-1) and CD86 (B7-2), on macrophages was determined by staining target cells with specific antibodies and subsequent analysis by flow cytometry at 2 weeks 
post-challenge. The dot plot graphs for (A) CD80 and (B) CD86 represent various immunized groups: (i) Sham archaeosomes as control; (ii) free culture supernatant SAgs; 
(iii) Sham + SAgs as a physical mixture; (iv) Archaeosome-entrapped culture supernatant SAgs and (v) and isotype control. The bar graphs corresponding to (C) CD80 and 
(D) CD86 depict the mean percentage of three determinants (±SD).
Notes: Data were analyzed with Student’s t-test and are representative of three independent experiments. Archaeosome-entrapped SAgs vs free SAgs ***P , 0.001 (CD80), 
***P , 0.001 (CD86); physical mixture vs free SAgs P = NS (CD80), **P < 0.01. The CD80/86 population histogram was same as that of sham archaeosome and is not 
shown.
Abbreviations: PBS, phosphate buffer saline; SD, standard deviation; SAgs, secretory protein antigens; NS, not significant.

and CD8 positive cells isolated from animals immunized 

with various forms of SAgs (Figure 7C and D). The animals 

immunized with the physical mixture and free SAgs showed 

nearly similar CD4+CD44highCD62Lhigh (central memory) 

populations. On the other hand, when immunized with 

archaeosome-entrapped SAgs, a significantly higher central 

memory population was seen in the immunized animals 

(Archae SAgs vs Sham + SAgs P , 0.001, Archae SAgs vs 

SAgs P , 0.001). A similar pattern was obtained when the 

memory cell population was enumerated in CD8+ T cells, 

the group immunized with archaeosome-entrapped SAgs 

showed a higher central memory population both compared 

to free SAgs (P , 0.001) and with the physical mixture 

(P , 0.001). Moreover, only the animals immunized with 

archaeosome-entrapped SAgs showed CD44highCD62Llow 

(effector memory) populations in both CD4+ and CD8+ 

T cells. The results clearly reveal that both central memory 

as well as effector memory cell population (in both CD4+ 

and CD8+ T cells) persist significantly when animals are 

immunized with archaeosome-entrapped SAgs.

Archaeosome-based SAgs impart better 
protection against L. monocytogenes 
infection
The efficacy of archaeosome-encapsulated SAgs was evalu-

ated against experimental murine listeriosis in BALB/c mice 

at various time points post-challenge with infection by 

determining residual bacterial burden in their vital organs. 
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The animals were immunized with various forms of SAgs 

and subsequently challenged intraperitoneally with 1 × 107 

cells of L. monocytogenes. The animals immunized with 

archaeosome-based SAgs showed 2.533 log
10

 reduction in 

the bacterial load of their livers when compared to PBS 

(P , 0.001) at 1-week post-challenge with infection. The free 

form of SAgs on the other hand offered 1.36 log
10

 reduction 

when compared to the PBS group (P , 0.001). It is notewor-

thy that the archeosome-SAgs formulation further depleted 

bacterial burden to significantly lower levels at 4 weeks post-

infection, while other formulations did not maintain their 

effectiveness and resulted in an increase of bacterial load in 

various vital organs. Animals belonging to the PBS control 

and sham archaeosome groups died before 4 weeks post-

infection and could not be included in the study  (Figure 8A). 

The prophylactic potential of SAgs-archaeosomes was further 

confirmed by assessing the bacterial load in the spleen of 

immunized animals. Among various forms of SAgs, only 

the archaeosome SAgs-based formulation was effective in 

eliminating bacterial burden from the spleen of immunized 

animals (P , 0.001) (Figure 8B).

For survival studies, animals were challenged with 1 × 107 

cells/animal. The dose was found to be effective in establish-

ing full blown infection as control animals (given only PBS) 

succumbed to death by 20 days post-challenge. Animals 

immunized with archaeosome-encapsulated SAgs exhibited 

80% survival on day 15 post-infection while 70% of the 

animals survived in the group that was immunized with free 

SAgs and their physical mixture with sham archaeosomes. 

On day 30 post-challenge, around 70% survival was seen 

in the archaeosome-entrapped SAgs group while there was 

40% survival of the animals immunized with free SAgs and 
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Figure 7 Augmentation of CD8+/CD4+ T cell effector memory response upon immunization with archaeosome-entrapped SAgs. The CD4+ and CD8+ T cells were harvested 
and their purity was depicted as described in the ‘Materials and methods’ section. The (A) CD4+CD44highCD62Llow/high and (B) CD8+CD44highCD62Llow/high phenotypes 
were analyzed using flow cytometry at 2 weeks post-challenge, representing various immunized groups: (i) Sham archaeosomes as control; (ii) free culture supernatant 
SAgs; (iii) Sham + SAgs as aphysical mixture; (iv) archaeosome-entrapped culture supernatant SAgs; and (v) isotype control. The bar graph depicts the population of  
(C) CD4+CD44highCD62Lhigh/low and (D) CD8+CD44highCD62Lhigh/low and is representative of three independent experiments and presented as mean ± SD.
Notes: Archaeosome-entrapped SAgs vs free SAgs ***P , 0.001 (CD4+CD44highCD62Lhigh; CD4+CD44highCD62Llow), P , 0.001 (CD8+CD44highCD62Lhigh; CD8+CD44highCD62Llow); 
physical mixture vs free SAgs *P , 0.05 CD4+CD44highCD62Lhigh; P = NS CD4+CD44highCD62Llow, P , 0.05 CD8+CD44highCD62Lhigh; P = NS CD8+CD44highCD62Llow.
Abbreviations: SD, standard deviation; SAgs, secretory protein antigens; NS, not significant.
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the physical mixture of SAgs with sham archaeosomes. As 

shown in Figure 8, no animal survived in the group treated 

with sham archaeosomes and the PBS control group beyond 

day 17 post-infection (Figure 8C).

Discussion
L. monocytogenes has been implicated as the causative 

agent in several outbreaks of foodborne infections in the 

past few years. Besides pregnant women and their fetuses, 

immunocompromised subjects are also liable to Listeria 

infection. Several strategies have been attempted employing 

heat-inactivated,18,19 formalin-killed20 and heat-killed bac-

teria supplemented with Lysteriolysin-O (a potent Listeria 

antigen)21 as a protection strategy against L. monocytogenes 

challenge but unfortunately with little success. This clearly 

shows the inefficacy of existing vaccines and warrants 

 further research that could result in the development of novel 

prophylactic strategies to combat listerial infection. Earlier, 

Sprott et al9 demonstrated the potential of archaeosomes in 

evoking a desirable immune response in the host against 

a model antigen. Using the same approach in the current 

study, we evaluated the potential of an archaeosome-based 

delivery system against the model disease listeriosis. We 

speculate that archaeosome-entrapped SAgs can activate 

immune cells, owing to the immunoadjuvant property of 

archaeosomes, thereby offering prophylactic and protective 

immune responses.22,23

Archaeosomes are potential adjuvants capable of pro-

moting strong humoral,9,24 cell-mediated (Th1),24 and cyto-

toxic T cell responses against entrapped protein antigens.25 

While the physical association of the protein antigens with 

archael lipids seems to be important for the induction of a 
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Figure 8 Archaeosome-encapsulated SAgs exhibit better protective effect against L. monocytogenes challenge in BALB/c mice. The bacterial load in the (A) liver and  
(B) spleen of vaccinated mice belonging to various groups was enumerated by plating their liver and spleen homogenates and counting the numbers of CFUs at 1 and 4 
weeks post-challenge. The animals from various vaccinated groups were challenged with 1 × 107 CFU, thereafter they were monitored for a period of 1 month. (C) Data 
are represented here in terms of percentage survival.
Notes: The data are expressed as means of three determinants ± SD and are representative of three independent experiments. Statistical analysis was performed by 
analysis of variance with the Holm–Sidak method (all pairwise multiple comparison procedures) to compare the significance between the two groups. ***P , 0.001 value 
was considered significant.
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strong humoral response, it is, however, encapsulation in 

archaeosomes that is mandatory to induce a strong CD8+ 

T cell memory response in the immunized host.26

The purpose of the present study was to ascertain the 

efficacy of archaeosome-encapsulated SAgs in terms of 

the induction of immunological memory and prophylactic 

responses against L. monocytogenes. To evaluate memory 

and prophylactic responses, mice from various immu-

nized groups were challenged 8 weeks post last booster. 

 Archaeosome-entrapped SAgs formulation was found to 

successfully generate long-lasting memory and costimula-

tory markers on active immune cells. As far as prophylactic 

response was concerned, although free SAgs and physical 

mixture of antigens with sham archaeosomes did induce 

IFN-γ and IL-12 cytokines substantially, archaeosome-

entrapped SAgs in addition to robust production of Th1 

cytokines also suppressed the level of Th2 cytokines, indicat-

ing Th1 biased response (Figure 3).

To further validate the Th1 skewed response of 

archaeosome-based SAgs formulation, we determined 

isotypes of the  Ag-specific antibody in the sera of various 

immunized groups. It has been reported that when B cells 

interact with Th1 cells, they mainly produce IgG2a, whereas 

their interaction with Th2 cells mainly leads to secretion of 

IgG1.27 A higher content of IgG2a-type antibodies in the sera 

of animals immunized with archaeosome-entrapped SAgs 

further supports our notion that SAgs-bearing archaeosomes 

are biased for the induction of Th1 cytokines. IFN-γ, a Th1 

cytokine, induces antibody switching with IgG2a isotype by 

B cells.27 Besides, IFN-γ also upregulates LMP-2, LMP-7, 

and TAP-1/TAP-2 genes that facilitate processing of antigen 

via class I pathway.

Lymphocyte proliferation assay revealed enormous 

proliferation of SAgs-specific T lymphocytes, suggesting 

adjuvant potential of archaeosome-encapsulated antigen. 

However, considerably lesser lymphoproliferative activity 

was observed with the free form of SAgs when compared 

to the group immunized with their physical mixture with 

sham archaeosomes (Figure 4B). Delayed type hypersen-

sitivity response, another important parameter to validate 

the potential of archaeosome-based vaccines, was found to 

be two to three times more pronounced than free SAgs and 

the physical mixture (Figure 5). In general, the free form of 

antigens are incapable of producing cytotoxic T cell immune 

response due to their inability to undergo class I processing, 

which is a limitation of subunit vaccines, preventing their 

implementation in vaccination programs.28 Thus, one can 

anticipate that increasing the particulate nature and promot-

ing the delivery of the subunit antigen to APCs would likely 

enhance its immunogenicity.

APCs (macrophages, DCs) bearing CD80 (B7-1) and 

CD86 (B7-2) costimulatory molecules facilitate T cell 

activation, by harnessing CD28 on T cells for signaling.29 

We enumerated the percentage population of costimulatory 

surface molecule bearing macrophages belonging to various 

immunized groups. The data of the present study show maxi-

mum costimulation by archaeosome-entrapped SAgs when 

compared to free SAgs, or physical mixture of SAgs with 

sham archaeosome groups (P , 0.001). CD44, an adhesion 

molecule, is expressed by most cells and mediates binding 

to the extracellular matrix and other cells via its only known 

in vivo ligand, the glycosaminoglycan hyaluronic acid (HA).30 

Enormous upregulation of CD44 on both CD4+ and CD8+ 

T cell population was observed in the animals immunized 

with archaeosome-entrapped SAgs even after 16 weeks 

of immunization, indicating the induction of a heightened 

memory response, as CD44high cells are classically associated 

with the memory phenotype.31 Memory was further divided 

into two major populations on the basis of CD62L marker, ie, 

CD44highCD62Lhigh (central memory) and CD44highCD62Llow 

(effector memory). In general, central memory persists after 

rapid clearance of acute infections, and is more effective 

in controlling secondary infections involving intracellular 

pathogens.32 On the other hand, the effector memory was 

reported to be induced by chronic infections.33,34 The ani-

mals immunized with archaeosome-entrapped SAgs showed 

higher populations of CD44highCD62Lhigh/low (ie, both central 

as well as effector memory) than all other groups in CD4+ 

and CD8+ T cells isolated from animals belonging to various 

immunized groups. This long-lasting memory could again 

be attributed to the good adjuvant potential of archaeosomes 

and their efficient interactive capability with APCs, especially 

macrophages. On the other hand, free SAgs and the physical 

mixture induced lower production of CD44highCD62Lhigh, 

on both CD4 and CD8 positive T cells, indicative of feeble 

memory response in these groups (Figure 7).

In murine models, within minutes after intravenous inocu-

lation, most of the bacteria could be found in the spleen and 

liver.2 However, even after 4 weeks of challenge, relevant 

depletion of bacterial load was observed in the liver and 

spleen of mice vaccinated with archaeosome-entrapped SAgs 

(Figure 8A and B). Finally, protection studies showed remark-

able survival rates in animals immunized with archaeosome-

encapsulated SAgs in comparison with free SAgs and 

physical mixture groups; moreover, the control animals did 

not survive the 17th day post-infection (Figure 8C).
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The lipid vesicles prepared from total polar lipids of 

 archaebacteria (H. salinarum), known as archaeosomes, serve 

not only as humoral adjuvant, but also induce a strong cytotoxic 

T cell response characterized by long-term memory, and are 

also nontoxic in comparison to Freund’s adjuvant.11 They lead 

to elicitation of cytotoxic T cell response by processing encap-

sulated antigen via cytosolic pathway followed by enhanced 

MHC1 presentation.22 The currently available antigen delivery 

systems like virosomes, pH sensitive liposomes, or fusogenic 

protein-bearing liposomes, though capable of inducing strong 

immune responses against entrapped antigen, suffer limitations 

like low cost effectiveness, instability, and toxicity. However, 

archaeosomes are believed to have overcome such hurdles and 

are also suggested to be more stable than the conventional ester 

lipid liposomes due to their potential to withstand air oxidation 

and acid/base mediated hydrolysis.11

Conclusion
Archaeosomes are found to efficiently deliver antigen to 

professional antigen presenting cells that ensued in provok-

ing robust (Th1-biased) immunological response in model 

animals. Interestingly, the archaeosome-based Listeria SAgs 

vaccine was also found to meet criteria such as T-cell prolif-

eration, up-regulation of co-stimulatory molecules, as well as 

both central and effector memory responses that are ought to 

be desirable for prophylaxis against intracellular pathogens. 

Consequently, we suggest that archaeosome-based delivery 

of culture supernatant antigens can be translated to develop 

a vaccine candidate for the obliteration of L. monocytogenes 

and other intracellular pathogens.
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