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Abstract: Ferroptosis is a type of iron-dependent programmed cell death characterized by a depletion of glutathione. Although 
generally less harmful to normal cells, in tumor cells, the high demand for iron ions provides conditions conducive to ferroptosis. In 
this review, we provide an overview of recent progress in research on the regulation of ferroptosis in tumor cells, summarizing and 
assessing the current state, trends, and applications of nanomaterials in the regulation of ferroptosis in tumor cells. Given the 
advantages of nanomaterials in terms of targeting, safety, improved drug efficacy, and reduced side effects, these materials are 
considered to have potential therapeutic value in modulating ferroptosis in tumor cells via different mechanisms. In this respect, we 
describe methods for modifying the regulation of iron ions and interfering with glutathione activity and lipid peroxidation. The 
development of nanomaterials that can be applied to induce or inhibit ferroptosis is anticipated to provide new therapeutic options for 
the treatment of a diverse range of diseases. 
Keywords: iron metabolism, tumor, ferroptosis, nanomaterial

Introduction
Cancers are life-threatening diseases that are often fatal,1–3 for which the traditional treatments include surgery, radio-
therapy, and chemotherapy.4 Although these interventions are effective to varying extents, researchers are continually 
striving to identify more efficient, safer, and personalized treatment strategies.5–7 Among the therapeutic approaches that 
are currently attracting increasing attention is the treatment of tumors via a modification of ion metabolism,8 which 
compared with normal cells, differs considerably in tumor cells.9 In this regard, it has been established that ion channels 
and pumps in tumor cells are abnormally regulated, thereby resulting in an imbalance between intracellular and 
extracellular ion concentrations,10,11 and it is this imbalance that contributes to promoting the proliferation, growth, 
and metastasis of tumor cells, and heightens the risk of drug resistance.12 Consequently, iron ion metabolism in tumor 
cells has become an important focus of anti-tumor research.13

Ferroptosis is an iron-dependent type of programmed death, which essentially entails the cellular depletion of 
glutathione (GSH), and is characterized by an iron-dependent elevation of lipid peroxidation to lethal levels.14 The 
mechanisms underlying the induction of ferroptosis have been established to involve disordered iron metabolism, 
reduced GSH levels, a decline or loss of glutathione peroxidase 4 (GPX4) activity, and lipid peroxidation.15 

Ferroptosis has also been found to have a substantial influence on the tumor microenvironment (TME).16 associated 
with the differentiation and function of immune cells, ultimately modifying the immune status. In addition, there is 
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evidence to indicate that ferroptosis may also affect the interactions of other components in the TME, including cancer- 
associated fibroblasts (CAFs) and cytokines such as TGFβ1 and IL-1β, thereby ultimately regulating the process of 
ferroptosis.17 Moreover, given its effects on tumor angiogenesis, ferroptosis has been implicated in the efficacy of cancer 
treatments,18 with certain chemotherapy, radiotherapy, and immunotherapy treatments triggering ferroptosis, ultimately 
influencing the entire course of cancer treatment.19,20 A number of different aspects of the TME have been implicated in 
the occurrence of ferroptosis, including inflammatory responses, immunity, stromal cells, angiogenesis, and metabolism 
(Scheme 1), which could thus represent promising avenues for future tumor treatment. Accordingly, by examining 
ferroptosis in the context of the TME, it is anticipated that future research will provide further important insights into the 
effects of different factors within the TME on this process.

A notable feature of ferroptosis is that this process differs fundamentally from conventional apoptosis, necrosis, and 
autophagy in a number of respects, and has considerable potential in the treatment of tumors. Furthermore, it has been 
established that ferroptosis primarily affects tumor cells, which are highly dependent on iron ions, whilst being 
characterized by relatively low toxicity in normal cells, thereby indicating that targeting the ferroptotic process could 
represent a relatively safe therapeutic approach.21 Thus, ferroptosis is considered a potentially valuable novel target for 
cancer therapy, with significant research value and application prospects in the fields of biology and medicine.22

However, although targeting ferroptosis provides an alternative strategy for tumor treatment, there remain multiple 
challenges regarding the associated research and practical application.23,24 Numerous nanomedicines with specific 
functions that can accurately locate tumor cells have been designed and used to regulate tumor ferroptosis,25 and in 
this review, we describe some of the efficient targeting nanomedicines that modify cell ferroptosis by up- or 

Scheme 1 The influence of different TME factors on ferroptosis.

https://doi.org/10.2147/IJN.S508767                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 2462

Liu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



downregulating iron ions or interfering with GSH metabolism and lipid peroxidation. The development strategies for 
nanomedicines targeting the upregulation or downregulation of iron ions primarily focus on enhancing the stability and 
bioavailability of nanoparticles, improving tumor targeting, controlling the release rate of iron ions, increasing the 
selectivity and affinity for iron ions, precise delivery of iron chelators, and reducing drug side effects and resistance. 
Moreover, the preparation of nanomedicines based on ferroptosis is a challenging and promising area of research, and the 
development of nanomedicines with high efficiency, safety, and specificity that interfere with the process of tumor 
ferroptosis can provide new insights and approaches for the treatment of diseases.

Nanomaterials That Interfere with Tumor Ferroptosis
The Biological Mechanisms of Ferroptosis
Ferroptosis is a type of iron-dependent programmed cell death, the biological mechanisms of which are characterized by a 
number of key aspects. The initial stages of this process are marked by a disruption of the normal regulation of iron ions and 
inhibition of related transport proteins.26 An imbalance in intracellular iron ion homeostasis, as a consequence of an increase in 
iron uptake or reduction in iron efflux, leads to an accumulation of intracellular iron ions. In this regard, transferrin mediates 
iron uptake via the transferrin receptor, whereas ferritin components promote increases iron levels via autophagic 
degradation.27 The cystine/glutamate antiporter System Xc- is inhibited, thereby influencing the synthesis of GSH, a reductive 
cofactor for GPX4, a reduction in the synthesis of which leads to either a reduction or complete loss of GPX4 activity.28

The progression stage of ferroptosis is characterized by an increase in the generation of reactive oxygen species 
(ROS) and, consequently, heightened levels of lipid peroxidation. Polyunsaturated fatty acids within the cell are 
converted to readily oxidizable phosphatidylethanolamines by enzymes such as acyl-CoA synthetase long-chain family 
member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3),29 and are oxidized to lipid peroxides by 
lipoxygenases.30 In addition, an accumulation of divalent iron ions within the cell results in the generation of hydroxyl 
radicals via the Fenton reaction, contributing to a further oxidization of lipids and hence the generation of further lipid 
peroxides and ROS, thereby leading to oxidative stress.31

The subsequent apoptotic stage is characterized by marked mitochondrial and cell membrane damage.32 The density 
of the mitochondrial membrane increases, with a reduction or disappearance of cristae, and the outer mitochondrial 
membrane ruptures, leading to mitochondrial dysfunction, evidenced by a reduction in adenosine triphosphate synthesis 
and impaired cellular respiratory chain activity, thereby further promoting cell death. The peroxidation of membrane 
lipids disrupts the integrity of the cell membrane, thereby increasing its permeability and thus leading to the leakage of 
intracellular substances and entry of extracellular substances, resulting in cell swelling and rupture.33

The final phase of the ferroptotic process is the immune response stage, during which cells undergoing ferroptosis 
release damage-associated molecular patterns34 that in turn activate the immune system within the TME, thereby 
promoting the recruitment and activation of immune cells, macrophages, and dendritic cells, inducing immunogenic 
cell death, and enhancing the body’s immune surveillance and immune killing effects against tumors35 (Figure 1).

The signaling pathways involved in the perturbation of iron ions are primarily divided into two types: GPX4- 
dependent and GPX4-independent. In the GPX4-dependent signaling pathway, iron-dependent cell death is primarily 
induced by excessive peroxidation of the phospholipid membrane. GSH-dependent lipid peroxides protect the cell 
membrane from peroxidation damage and regulate intracellular homeostasis. Inhibition of GPX4 or depletion of GSH 
enhances the accumulation of lipid peroxides, leading to abnormal signaling pathways and irreparable membrane 
damage, ultimately inhibiting the proliferation and migration of tumor cells. In the GPX4-independent signaling pathway, 
spontaneous lipid oxidation is an important mechanism that can cause phospholipid peroxidation through chain reactions 
such as the Fenton reaction, thereby triggering ferroptosis. Additionally, enzymes such as ACSL4 and LPCAT3 also 
participate in the regulation of ferroptosis by influencing the synthesis and metabolism of phospholipids, which in turn 
affects the occurrence of ferroptosis.
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Nanomaterials That Interfere with Iron Ions
Iron is a metallic element that plays essential roles in the normal functioning of the body, in which it functions as a key 
cofactor of hemoglobin, myoglobin, and numerous other enzymes, thereby contributing to a diverse range of physiolo-
gical processes, including oxygen transport, energy metabolism, and signaling.36 Given its indispensable contribution to 
human metabolism, either a deficiency or excess of iron can prove detrimental and lead to the development of a number 
of diseases. In this regard, recent advances in the study of iron metabolism have revealed the occurrence of certain 
complex pathways essential for the maintenance of iron homeostasis.37

Iron ions play pivotal roles in multiple cellular reactions, including the synthesis of heme and mitochondrial redox 
reactions.38 Iron deficiency can cause anemia, developmental delay, mental retardation, and compromised immunity.39,40 

Notably, iron is of even greater importance in tumor cells, the metabolism and proliferation of which are generally higher 
than those of normal cells, and, accordingly, the iron requirements of tumor cells are generally considerably higher than 
those of normal cells.41,42 Tumor cells with a deficiency of iron ions have been found to be characterized DNA damage 
and shrinkage. Consequently, a deficiency of intracellular iron ions typically has a more pronounced impact on the 
viability and proliferation tumor cells. In addition, divalent and ferric iron ions can undergo mutual transformations, 
thereby facilitating their involvement in multiple intracellular redox reactions.43,44 Conversely, an excess of iron ions can 
contribute to increases in the generation of intracellular ROS, resulting in oxidative damage to intracellular organelles, 
and hence damage to different organs in the body. Consequently, a perturbation of the metabolism of iron ions in cells 
can have a substantial impact on cell viability, often leading to disease development and associated symptoms.

Combining the targeting of ferroptosis with photodynamic therapy (PDT) and sonodynamic therapy (SDT) has been 
demonstrated to have promising application prospects for the treatment of tumor, and research in this regard has provided 
evidence to indicate that PDT can serve as a source of H2O2 in the Fenton reaction and provide singlet oxygen for the 
process of lipid peroxidation. For example, for the purposes of synergistic therapy, Zhu et al constructed self-assembling 
nanoparticles loaded with Ce6 and ferroptosis inducers.45 Having been taken up by tumor cells, the internalized 
nanoparticles induce ferroptosis, leading to the accumulation of ROS within cells, thereby promoting an increase in 
oxygen concentrations at the tumor site via the Fenton reaction, and thus contributing to an enhancement of the oxidative 
damaging effect attributable to PDT. However, the efficacy of PDT is often limited by insufficient penetration, which can, 

Figure 1 The interference mechanism of nanomaterials on tumor ferroptosis.
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nevertheless, be overcome by the use of SDT, and combining SDT with the targeting of ferroptosis has been established 
to have significant therapeutic advantages, as demonstrated by Zhou et al, who constructed a liposomal nanoplatform co- 
loaded with the sonosensitizer protoporphyrin and a clinically approved drug, nano-sized iron oxide.46 In response to 
ultrasonic exposure, the SDT induced by protoporphyrin not only has antitumor effects by inducing apoptosis but by 
promoting selective autophagy in cells, also enhances the sensitivity to nano-sized iron oxide-induced ferroptosis.

Disorders associated with iron metabolism are among the main causes of ferroptosis.47 The intake, storage, and 
utilization of iron in cells are stringently regulated, and the perturbation of these regulatory processes can lead to 
abnormal increases or reductions in the level of iron ions, which in turn adversely influences the normal metabolism and 
functioning of cells. When accumulating in large amounts, ferric ions are reduced to ferrous ions by the activity of metal 
reductases, and the highly oxidizing ferrous ions can readily react with hydrogen peroxide (H2O2) to generate hydroxyl 
radicals. This subsequently promotes lipid peroxidation reactions, damaging cell membranes, and leading to cell death. In 
the context of the association between abnormal iron metabolism and tumor development, a number of innovative 
treatment strategies are currently being evaluated, among which are approaches that aim to enhance iron uptake, the 
control of which can be employed to regulate iron metabolism and treat tumors. Additionally, by altering the regulation 
of iron metabolism, certain anti-tumor drugs can inhibit the growth and proliferation of tumors.48,49

Nanomaterials for Up-Regulating Iron Ions
Enhancing the levels of iron ions in tumor cells can trigger specific cell death mechanisms, thereby indicating the 
potential of alternative avenues for the treatment of tumors, and in this regard, the use of multi-functional 
biomaterials to facilitate an upregulation of iron ions has emerged as a promising therapeutic strategy. The 
adsorption of iron ions by nanomaterials can enhance the intracellular levels of these ions and thereby induce 
tumor ferroptosis. As an innovative approach for tumor imaging and targeting ferroptosis, Brabury et al used ultra- 
small, large-pore silica nanoparticles modified with polyethylene glycol and demonstrated that under conditions of 
amino acid deficiency, iron ions bound to silica nanoparticles can be endocytosed by tumor cells, resulting in an 
increase in cellular iron content, thereby promoting the ferroptosis of tumor cells.50 The controlled release of iron 
ions from iron-containing nanomaterials can also effectively enhance the stability of intracellular iron ions. 
Ferrocene, an organometallic compound containing iron, can be oxidized to generate large amounts of iron ions 
within acidic environments, and Kwon et al discovered that polyCAFe micelles, which self-assemble from ferrocene, 
benzoyloxy cinnamaldehyde (CBA), and amphiphilic polymers, can release iron ions and CBA under weakly acidic 
conditions, with the combination of iron ions and CBA effectively inducing tumor cell death.51 Furthermore, Zhang 
et al have synthesized amorphous Fe2O3 nanoparticles, which under acidic conditions rapidly ionize and release 
ferrous ion that enter into the Fenton reaction within cancer cells, thereby generating cytotoxic hydroxyl radicals, 
and thus facilitating specific cancer therapy.52 Cellular apoptosis induced by excessive levels of iron ions is 
dependent on the availability of large amounts of peroxide substrate, and hence enhancing the intracellular levels 
of hydrogen peroxide can effectively contribute to induction of cellular death. In this regard, Zhao et al proposed a 
multi-functional hybrid nanoparticle that combines cisplatin, lactoferrin, and Fe3O4/Gd2O3 nanomaterials. The 
ferrous and ferric ions released by these nanoparticles can augment the Fenton reaction, whereas cisplatin can 
indirectly promote the production of H2O2, thereby accelerating the Fenton reaction, which in turn induces oxidative 
stress in tumor cells, eventually leading to cell death.53 In addition, certain erastin analogs have been demonstrated 
to inhibit the excretion of iron ion transporters, thereby hindering intracellular iron ion transfer to the extracellular 
space, and subsequently triggering iron death via the intracellular accumulation of iron ions, hence inhibiting tumor 
growth.54,55

The levels of iron ions within tumor cells can thus be effectively enhanced via adsorption, delivery, and responsive 
release, and in combination with an elevation in the levels of peroxide substrates can contribute to an efficient triggering 
of cell death.56

Nanomaterials that can be used to upregulate iron ions provide a valuable supplementary approach in the 
treatment of cancer. In addition to directly promoting the death of tumor cells, these nanomaterials can contribute 
to modulating the redox state of the TME, and also have a profound influence on tumor growth and invasion.57 
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Elevated levels of iron both enhance the sensitivity of tumor cells to oxidative stress and disrupt the redox balance 
within the tumor, thereby generating an environment that is more conducive to treatment using other therapeutic 
approaches.58 Furthermore, by influencing immune cells within the TME, these nanomaterials may also further 
regulate immune responses, thereby enhancing anti-tumor efficacy.59 These strategies not only provide a new 
conceptual framework for the treatment of tumors but will also serve as a reference for future biomedical 
applications based on the regulation of iron ions.

Nanomaterials for Down-Regulating Iron Ions
The downregulation of iron ions using multifunctional biomaterials is a relatively recent treatment strategy. This 
approach is dependent upon the application iron chelators and other products that can be used to deplete the cellular 
levels of iron ions, resulting in an iron deficiency in tumor cells, thereby triggering cell death.60

Studies in this regard have found that iron chelators can selectively bind to, and thereby accumulate iron ions, thus 
leading to an iron deficiency within tumor cells and ultimately causing cell death. For example, Lv et al found that 
chitosan–deferoxamine nanomaterials can effectively chelate iron ions, promote iron efflux, and thus inhibit tumor 
growth, thereby providing new insights for cancer treatment,61 and Zhou et al have reported similar anti-tumor activity.-
62,63 Hepcidin is a peptide hormone produced by the liver that regulates the metabolism and transport of iron ions, and 
hepcidin-based composite nanomaterials have been developed that can inhibit iron ion transporters on the surface of 
tumor cells, thereby contributing to reductions in the uptake of iron ions by these cells,64 and thus effectively inhibiting 
tumor growth and spread.65

It has been established that iron ion levels are effectively downregulated within tumor cells, leading to iron deficiency 
and triggering ferroptosis, further confirming the important role of iron ions in tumor therapy.66 Biomaterials that 
downregulate iron ions are considered to have broad application prospects in anti-tumor treatments. By inducing a 
state of iron deficiency in tumor cells, these materials not only directly trigger the ferroptosis process, and thereby 
accelerate the apoptosis of tumor cells, but also have a significant influence on the overall homeostasis of the TME.67 By 
precisely regulating the availability of iron ions, nanomaterials can disrupt iron homeostasis within the TME, thus further 
inhibiting the growth and invasive capacity of tumors. Additionally, the iron-deficient state thus generated may also have 
an influence on the function of immune cells within the TME, thereby modulating anti-tumor immune responses.68 

Furthermore, it is believed that these nanomaterials may interact with the tumor vascular system, thereby influencing 
angiogenesis and the blood supply, and, consequently, indirectly regulating the tumor growth environment.69 However, 
this is an emerging field of research, the continued progress of which faces multiple challenges, including the necessity 
for further improvements in drug targeting and efficacy, the reduction of side effects, and optimization of treatment 
strategies. Future research in this regard will necessitate an in-depth examination of the mechanisms underlying the 
associations between iron ions and tumor growth, and the development of safer and more effective biomaterials for the 
regulation of iron ions.

Nanomaterials That Interfere with GSH
GSH is an antioxidant that scavenges free radicals, promotes metabolism, and contributes to the normal function-
ing of the immune system,70 the depletion of GSH can lead to ferroptosis in tumor cells.71 Reductions in the 
levels of GSH leads to a corresponding reduction in the activity of GPX4, an important cellular antioxidant 
enzyme that scavenges the products of oxidative stress by reducing substrates and maintaining a redox balance 
within the cell. Suppression of GPX4 activity inhibits the metabolism of lipid peroxides via the GPX4 reaction,72 

and, subsequently, ferrous ions oxidize lipids to yield ROS, thus promoting ferroptosis.73 However, the presence 
of iron may also inhibit the activity of GPX4, leading to disorders in the cellular redox balance, and ultimately 
triggering cell death.15 It has also been established that a deficiency in nicotinamide adenine dinucleotide 
phosphate (NADPH) can lead to the depletion of GSH in cells.74 In their innovative study, Zhao et al incorporated 
β-lapachone into calcium oxide nanocarriers, and used this system to promote a significant increase in ROS 
production and reduction in intracellular GSH levels.75 In addition, Lin et al further discovered that -Mn-O- bond 
breakage can consume two molecules of GSH, and on the basis of this finding, they designed manganese-doped 
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silica nanoparticles that can be employed to deplete GSH in tumor cells, thereby inactivating GPX4 and inducing 
ferroptosis.76,77 Moreover, Gu et al have found that GSH-responsive hyaluronic acid nanocarriers can enhance the 
inhibitory effects of sulfasalazine on the stem cell-like properties of breast cancer cells. These findings thus 
indicate that nanocarriers of this type could serve as a promising platform for tumor-targeted drug delivery, 
thereby enhancing its therapeutic effect on tumors.78

In response to GPX4 catalysis, GSH mediates a reduction in lipid peroxidation and regulates ferroptosis via negative 
feedback. Accordingly, a depletion of GSH can lead to the accumulation of toxic peroxides, damage to proteins and cell 
membranes, and subsequent ferroptosis. In this regard, GSH-interfering nanomaterials can effectively promote tumor cell 
death by accelerating ferroptosis and attenuating the antioxidant defense of tumor cells, thereby enhancing their 
sensitivity to drugs. Additionally, these agents can regulate the function of immune cells in the TME, thereby enhancing 
treatment outcomes, and providing alternative strategies for tumor therapy.79 Consequently, the development of bioma-
terials that suppress the activity of GSH can potentially make important contributions to the treatment of tumors.

Nanomaterials That Interfere with Lipid Peroxidation
Within the membrane of tumor cells, the catalytic activities of divalent iron or ester oxygenases contribute to the 
oxidization of unsaturated fatty acids, leading to lipid peroxidation and the induction of cell death. Lipid peroxidation is 
an integral facet of ferroptosis that is closely associated with the occurrence and development of diverse diseases, and is 
accordingly a particular focus of current research.80

Lipid peroxidation is an important step in the iron death mechanism,81 in which iron ions contribute by promoting the 
production of free radicals. The subsequent propagation of fatty acid peroxyl radical chain reactions throughout the entire 
membrane induces changes in the lipid structure of the cell membrane, which in turn influences membrane function and 
permeability, leading to irreversible membrane damage and eventually cell death.82

In this context, it has been established that promoting increases in levels of the lipid peroxidation substrate H2O2 

within tumor cells is among the most direct methods for enhancing the efficiency of lipid peroxidation, on the basis 
of which, Sucheta et al developed a therapeutic strategy involving the application of CaO2 nanoparticles loaded with 
the anticancer drug doxorubicin (DOX). The CaO2-DOX preparation is encapsulated with a Cu metal-organic 
framework (MOF) via polyethylene glycol (PEG) surface modification to generate a CaO2-DOX-CuMOF/PEG 
nanodrug. The production of H2O2 in this nanomedicine was established to be conducive to the generation of 
ROS, and combining the application of this synthesized nanocomposite with chemo-dynamic therapy was found to 
be more effective than the respective individual therapies in inhibiting tumors in an in vivo murine tumor model.83 

Furthermore, Zhu et al have proposed an innovative strategy based on the design and synthesis a dual-responsive 
polypeptide complex for the selective eradication of cancer cells based on an inhibition of catalase activity using 
hydrogen sulfide, thereby promoting increases in the intracellular concentration of H2O2 and generating a large 
number of hydroxyl radicals via the Fenton reaction.84 In addition, hydroxycamptothecin–cinnamaldehyde-loaded 
nanoparticles have been found to effectively enhance drug accumulation at the tumor site and prolong the duration 
of drug action, thereby contributing to elevated levels of ROS production in cancer cells and ultimately leading to 
ferroptosis.85 In further studies, Daldrup-Link et al investigated the cytotoxic effects of ferumoxytol iron oxide 
nanoparticles, and accordingly found that rather than acting directly on cancer cells, these particles influence to 
activity of tumor-associated immune cells, specifically inducing the production of anti-tumor M1 macrophages,86 

which under co-culture conditions without direct cell-to-cell contact, were induced to produce ROS that in turn 
promoted cancer cell death.

Moreover, it has been established that natural killer cells within the TME are characterized by elevated levels of 
proteins involved in lipid peroxidation and display morphologies similar to those of ferroptotic cells.87 Under conditions 
of oxidative stress, glucose metabolism within natural killer cells is inhibited, leading to their functional impairment 
within the TME, and the generation of lipid oxidation products has been shown to reduce the maturation of naive 
dendritic cells and thereby impairs normal dendritic cell function.88

In summary, the manipulation of lipid peroxidation, which plays an integral role in the process of ferroptosis, has 
significant application prospects in cancer therapy. By designing drug delivery systems that inhibit catalase activity and 
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utilizing iron oxide nanoparticles, ROS production can be effectively promoted, thereby inducing ferroptosis in tumor 
cells. As a consequence of the increasing focus on nanomaterial-targeted ferroptosis, significant progress has been made 
in the design and application of anticancer therapies based on innovative nano-systems The ferroptosis-associated 
therapeutic strategies described in this review not only provide new ideas for cancer therapy but also offer new directions 
for research in the field of biomedicine.89

As research into nanomaterial-targeted ferroptosis deepens, significant progress has been made in anticancer therapies 
utilizing various nanomaterials targeting ferroptosis. Table 1 summarizes some of representative classes of 
nanomedicines.

Table 1 The Design and Mechanisms of Strategies for Inducing Ferroptosis

Strategies for Inducing 
Ferroptosis

Design Mechanism Ref

Up-regulating iron ions PolyCAFe Under weakly acidic conditions, iron ions are released, which leads to a 
disruption of intracellular ion metabolism and apoptosis.

[51]

Fe/Gd-HN@Pt@LF/RGD2 Hydrazone bonds formed by the indirect production of H2O2 accelerate 

the Fenton reaction, thereby triggering oxidative stress within tumor 
cells and inducing cell death.

[52]

AFe NPs The release of divalent iron ions that participate in the Fenton reaction 

within the cancer cells, thereby generating the cytotoxic hydroxyl 
radicals.

[53]

FePt/MoS2 Tumor cells are killed by triggering a rapid Fenton reaction in conjunction 

with photothermal therapy.

[90]

Down -regulating iron ions CDNS Directly chelates iron without being influenced by the release of 

deferoxamine, and promotes the efflux of iron ions to inhibit tumor 

growth.

[61]

TSC24 Chelates iron ions and inhibits iron absorption by tumor cells, resulting in 

iron deficiency in the cells, and thereby exerts antitumor activity.

[62]

IRP-IRE Regulation of proteins by polypeptide hormones influences the 
metabolism and transport of iron ions.

[63]

Polymeric-HP Inhibition of iron transporter proteins on the surface of tumor cells 
reduces the uptake of iron ions, thereby lowering the iron levels within 

tumor cells.

[64]

Interfering with GSH HCF@β-lap Consumption of NADPH and the generation of ROS significantly reduces 
the intracellular levels of GSH by increasing the amounts of ROS.

[75]

MS@MnO2 Inhibition of the activity of GPX4 disrupts the intracellular redox balance, 

leading to cell death.

[76]

HBMn-FA The doping of nanoparticles can cause the breakage of chemical bonds, 

whilst consuming GSH, thereby inactivating GPX4 and inducing 

ferroptosis within tumors.

[77]

SFN/M-HA-SS-TA Enhancing the inhibitory effects of sulfasulfurane on the stem-like 

properties of breast cancer cells leads to intracellular GSH depletion.

[78]

Interfering with lipid 
peroxidation

CaO2-DOX-CuMOF/PEG Promotes the formation of H2O2, thereby favoring the generation of 
ROS. The combined treatment approach significantly enhances the 

antitumor effect.

[83]

AAN-PTC–Fe2+ When complexed with ferrous ions, this system promotes the generation 
of large amounts of ROS via the Fenton reaction.

[85]

US-activatable 

nanomaterials

Ultrasonic triggering of ferrate release leads to an impairment of the 

antioxidant defense system, thereby overcoming hypoxic environments.

[91]

GOx/BSO@CS PV Treating cancer through the synergistic combination of iron death 

induction and hunger therapy.

[92]
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Conclusion
As an alternative approach to cancer therapy, targeting ferroptosis is considered to have considerable promise for clinical 
translation. The rapid development of nanotechnology has laid a solid foundation for the application of nanomaterials in 
cancer treatment, and research on the use of nanomaterials designed to induce ferroptosis is increasing. More importantly, 
utilizing nanomaterials for synergistic drug delivery can contribute to integrating multiple therapeutic modalities to gain 
more effective treatment outcomes. Moreover, nano-drugs that induce ferroptosis can play a valuable role in remodeling 
the TME, modulating tumor immunity, and in immune checkpoint blockade (ICB) therapy. With respect to the 
modulation of tumor immunity, these materials can promote macrophage polarization and dendritic cell maturation, 
enhance immunogenicity, regulate metabolite flow within the TME to reverse immunosuppressive conditions, and 
enhance the sensitivity of tumors to ICB therapy.

However, to enable effective clinical translation, it will initially be necessary to overcome a number of significant 
obstacles regarding the use of a synergistic anti-tumor approach based on nanomaterials for targeting ferroptosis.93,94

(1) At present, there is still a limited understanding of the detailed mechanisms and pathways involved in the 
ferroptosis induced by ferroptosis inducers. Moreover, studies on the therapeutic effects of utilizing the combined 
mechanisms of ferroptosis on different types/subtypes of cancer are still in their infancy, and further theoretical 
support is needed to evaluate the efficacy of these treatments among different types of tumor.

(2) Although iron-based nanomaterials can introduce large amounts of exogenous iron to trigger ferroptosis, the 
acidic nature of the TME and low H2O2 concentrations tend to be inconducive to the rapid and effective 
generation of iron/ferrous ions and ROS, potentially leading to suboptimal combined therapeutic effects. 
Accordingly, designing and developing iron-based nanomaterials that are not dependent on environmental pH 
and H2O2 concentrations may represent the promising future research directions. As an alternative to iron-based 
nanomaterials, non-iron-based nanomaterials can be used to induce ferroptosis via promoting a depletion of GSH, 
inactivation of GPX4, or enhanced generation of intracellular ROS, although these often lack tumor imaging 
capabilities. Thus, the development of non-iron-based nanomaterials with integrated diagnostic and therapeutic 
properties for achieving combined ferroptosis therapy could emerge as a particularly active area of future 
research.

(3) Studies assessing the efficacy of combining ferroptosis with radiotherapy, gene therapy, or other treatment 
modalities, or utilizing multiple combined treatment approaches to achieve synergistic anti-tumor effects, are 
still at a relative early exploratory stage. In this regard, key areas of future research might include the design of 
multi-functional nanomaterials that integrate imaging, treatment, and diagnosis, along with the formulation of 
appropriate combined treatment strategies.

(4) Importantly, evaluation of the biosafety of nanomaterials remains a foremost priority for any future clinical 
applications. It will accordingly be necessary to further determine the side effects of nanomaterials on normal 
cells, tissues, and organs, and to evaluate the toxicity of nanomaterials from multiple perspectives, including 
degradation and metabolism.

In summary, combining knowledge and research methodologies drawn from multiple disciplines will be necessary to 
elucidate the specific mechanisms of ferroptosis, determine efficient synergistic treatment strategies, and develop 
nanomaterials with good biocompatibility. It is, nevertheless, believed that with the joint efforts of researchers, combined 
ferroptosis therapy could have considerable application potential in the clinical treatment of cancer.
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