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Background: The identification of inflammatory genes linked to coronary artery disease (CAD) helps to enhance our understanding 
of the disease’s pathogenesis and facilitate the identification of novel therapeutic targets.
Methods: Inflammation-related genes (IRGs) were downloaded from the Msigdb database. Differentially expressed genes (DEGs) 
were determined by comparing CAD group with the control group in the GSE113079 and GSE12288 datasets. Key module genes 
associated with CAD were identified through weighted gene co-expression network analysis (WGCNA). Differentially expressed IRGs 
(DE-IRGs) were established by intersecting the DEGs, key module genes, and IRGs. Feature genes were derived using machine 
learning techniques. Mendelian randomization (MR) analysis was conducted to explore the causal relationship between CAD and the 
identified feature genes. Subsequently, a logistic regression model and an alignment diagram model were developed to predict the 
incidence of CAD.
Results: In the given datasets, a total of 92 DE-IRGs were identified. Furthermore, twelve feature genes were discerned utilizing four 
distinct machine learning algorithms. Notably, two pivotal genes, HIF1A (odds ratio (OR) = 1.031, P = 0.024) and TNFAIP3 (OR = 
1.104, P = 0.007), exhibited a causal relationship with coronary artery disease (CAD). Additionally, logistic regression and alignment 
diagram models demonstrated their efficacy in predicting the incidence of CAD. Ultimately, TNFAIP3 and HIF1A were significantly 
associated with T-cell receptor and NOD-like receptor signaling pathways.
Conclusion: The identification of TNFAIP3 and HIF1A as causal inflammatory biomarkers of CAD offers novel insights with 
significant clinical potential, which may provide valuable targets for the management and treatment of CAD.
Keywords: coronary artery disease, inflammation, Mendelian randomization, TNFAIP3, HIF1A

Introduction
Coronary artery disease (CAD), caused by atherosclerosis (AS), is a leading cause of mortality worldwide and presents 
a huge global economic burden.1,2 Currently, noninvasive coronary evaluation using computed tomography (CT) and 
invasive coronary evaluation using angiography are the principal means of CAD diagnosis.3 Although percutaneous 
coronary intervention (PCI) and coronary artery bypass surgery (CABG) have undergone major advances in the last few 
decades, therapeutic agents, including antiplatelet agents, lipid-lowering medications, and β-blockers3 are still the 
baseline treatment. Although there are various prediction methods, such as risk factor evaluation and genetic 
variation,4 the prevalence of CAD continues to increase annually.5 Therefore, identifying novel biomarkers associated 
with CAD and developing therapeutic strategies may be useful in reducing the incidence and mortality of CAD.

Inflammatory response initiated by the damage to the arterial walls plays a key role in the pathophysiology of CAD,6 

which results in an increased permeability to low-density lipoprotein (LDL), the formation of oxidized LDL and “foam 
cells”, accompanied by the secretion of inflammatory biomarkers such as IL-1β, IL-6 and tumor necrosis factor (TNF)- 
α,7,8 with the activation of both pro-atherogenic and anti-atherogenic signaling pathways.9 Although few drugs that 
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specifically block inflammatory cytokine pathways can reduce the risk of cardiovascular disease, the risk of infection has 
increased.7 Recently, immunomodulatory therapies targeting the immune system to reduce inflammation, such as 
cyclosporine and colchicine, have emerged. The blockage of other potential targets, such as the IL-6 pathway, may be 
beneficial in CAD.10 Elucidating the mechanisms of inflammation and immunity in CAD could provide novel insights 
into and intervention targets for CAD prevention and treatment.

Genetic risk factors substantially contribute to the development of CAD.11 Genetic variants have been proposed as 
potential instrumental variables (IVs) to simulate the effects of modifiable environmental exposures on disease suscept
ibility, referred to as Mendelian randomization (MR).12 MR, which resembles RCT, can be used as a potent tool to derive 
evidence for a direct causal relationship, overcoming the limitations of observational epidemiology prone to reverse 
causation. The advantages of MR include its capacity to establish causal links between exposures and outcomes, a task 
often complicated by confounding elements and biases in traditional observational studies. Additionally, by utilizing 
genetic variability as an instrumental variable, MR analysis reduces the influence of confounding variables that could 
distort the relationship between exposures and outcomes. Lastly, the insights gained from MR analysis can inform the 
development of targeted interventions or treatment strategies tailored to individual genetic profiles, thereby advancing the 
field of personalized healthcare.13 Over the past decade, epidemiological research has revealed numerous inflammatory 
biomarkers that are associated with an increased risk of CAD. However, the causality remains largely undefined. To date, 
only a few MR studies have provided convincing evidence that serum CRP level14 or fibrinogen15 has no causative role 
in CAD, but the IL-6R SNP (rs7529229 or rs2228145) is associated with an increased risk of CAD.16 Here, transcrip
tomics combined with MR was performed to provide a powerful framework to ascertain the causative role of 
inflammatory biomarkers in CAD. Differentially expressed genes (DEGs) were screened between the CAD and control 
groups in the dataset downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed 
inflammation-related genes (DE-IRGs) were identified by overlapping DEGs, key module genes, and inflammation- 
related genes (IRGs). Machine learning and MR analyses were performed to investigate the causal relationship between 
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the DE-IRGs and CAD. Ultimately, 12 feature genes were acquired via four machine learning algorithms, and two key 
genes, hypoxia-inducible factor 1 alpha (HIF-1A) (odds ratio (OR) = 1.031, P = 0.024) and tumor necrosis factor-alpha- 
induced protein 3 (TNFAIP3, also known as A20) (OR = 1.104, P = 0.007), showed a causal association with CAD in the 
MR analysis. Activated NK cells and TNFAIP3 levels showed a moderately positive correlation (r = 0.52). Two drugs 
(USTEKINUMAB and METHOTREXATE) of TNFAIP3 and 136 drugs (BOLDINE and FLUPIRTINE, etc) of HIF1A 
were obtained from the DGIDB database. Finally, TNFAIP3 and HIF1A were significantly related to ribonucleic acid 
splicing, the T-cell receptor signaling pathway, and the NOD-like receptor signaling pathway. These results verified the 
causal relationship between HIF1A, TNFAIP3 and CAD, providing novel insights into drug R&D and potential 
therapeutic targets for CAD from the perspective of inflammation and immunity.

Materials and Methods
Data Source
Transcriptome data were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). There were 93 samples 
from CAD patients and 48 control peripheral blood samples from the GSE113079 dataset.17 The GSE12288 dataset 
includes 110 peripheral blood samples from patients with CAD and 112 control peripheral blood samples.18 A total of 
935 IRGs were obtained through the search for “HALLMARK_INFLAMMATORY_ RESPONSE” and 
“GOBP_INFLAMMATORY_RESPONSE” in the Molecular Signatures Database (MSigDB) (https://www.pathwaycom 
mons.org/).19

Differentially Expressed IRGs (DE-IRGs) Screening
Limma (version: 3.50.1) in the R package was used to screen DEGs between CAD and control samples in the 
GSE113079 dataset.20 P adjust < 0.05 and |log2(fold change)| > 0.5 were regarded as filterable criteria. The ggplot2 
(version 3.4.1)21 and ComplexHeatmap R packages (version 2.14.0)22 were used to draw volcano plots and heatmaps of 
the DEGs. Subsequently, to search for key module genes related to phenotypic traits (CAD and control groups), weighted 
gene co-expression network analysis (WGCNA) was performed using the GSE113079 dataset, based on the WGCNA 
R package (version: 1.71).23,24 Specifically, key modular genes are genes that play important roles in specific biological 
processes or gene networks. These genes are usually involved in the core of gene regulation, signaling, or disease 
development, and serve as core nodes in gene co-expression networks. They have an important impact in maintaining 
cellular functions and systematic biological states, and are key factors in understanding biological mechanisms. All the 
samples were clustered to eliminate outliers. Based on the optimal power β and the scale-free evaluation factor, the 
samples in the GSE113079 dataset were divided into several modules using a Dynamic Programming Tree Cutting 
Algorithm (DTPTA), an algorithm commonly used for solving specific optimization problems, especially when searching 
for an optimal solution in a tree structure. The algorithm improves computational efficiency by decomposing a complex 
problem into smaller subproblems, solving each subproblem step-by-step, and avoiding repetitive computations by 
storing the results of the subproblems.Key module genes were obtained by computing the correlation coefficient matrix 
between the module eigenvectors and phenotypic traits. CAD-related genes were identified between DEGs and key 
module genes using the Venn diagram package in R (version 1.7.1). Finally, DE-IRGs were screened by intersecting the 
CAD-related genes and IRGs.

Functional Analyses of Biomarkers
To explore the biological pathways of the DEGs, a single-gene set enrichment analysis (GSEA) was performed based 
on the |logFC| sequences of all genes in the GSE113079 dataset. The reference gene sets were the KEGG and GO 
gene sets from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/). The screening criteria were 
adjusted to P < 0.05. The top five most significant functions enriched in Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were visualized using the R package enrichment plot (version: 
1.18.0). To further characterize the biological functions and signaling pathways in which DE-IRGs were involved, 

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S507274                                                                                                                                                                                                                                                                                                                                                                                                   3179

Xiao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.ncbi.nlm.nih.gov/geo/
https://www.pathwaycommons.org/
https://www.pathwaycommons.org/
https://www.gsea-msigdb.org/gsea/msigdb/


the R package clusterProfiler (version: 4.2.2)25 was used to perform GO and KEGG analyses. The screening criteria 
were adjusted to P < 0.05.

Establishment of Protein-Protein Interaction (PPI) Network and Analyses of Machine 
Learning
DE-IRGs were used to establish a PPI network (confidence > 0.4) using STRING Database (https://string-db.org/). Then, 
based on the cytoHubba plugin in Cytoscape software, the MCC algorithm was applied to identify the top 20 genes. 
Simultaneously, four machine learning methods were used to obtain feature genes. The glmnet R package (version 
4.1-4)25 was used to perform least absolute shrinkage and selection operator (LASSO) regression analysis. The caret 
R package (version: 6.0-93) (https://CRAN.R-project.org/package=caret) was used to execute the support vector 
machine-recursive feature elimination (SVM-RFE) algorithm. The Boruta algorithm was applied using the Boruta 
R package (version 8.0.0 (https://CRAN). R-project. org/package=caret). The XGBoost algorithm was executed using 
the XGBoost R package (version 1.7.3.1) (https://CRAN.R-project.org/package=xgboost). Overlapping feature genes 
were acquired using LASSO, SVM-REF, Boruta and XGBoost. The GoSemSim (version: 2.24.0)26 and corrplot 
R packages (version: 0.92) (https://github.com/taiyun/corrplot) were used to estimate the functional similarity and 
correlation of feature genes, respectively. The correlation coefficient (r-value) and P-value were computed for the feature 
genes based on Spearman correlation analysis.

MR Analyses
In order to investigate the causal relationship between CAD and characterized genes, two-sample Mendelian randomiza
tion was performed. The genome-wide association study (GWAS) data of “coronary artery disease” as the outcome and 
feature genes as exposure factors were obtained from the Integrative Epidemiology Unit (IEU) OpenGWAS database 
(https://gwas.mrcieu.ac.uk/) in the forward MR analysis. The feature genes were considered outcomes, and “coronary 
artery disease” acted as the exposure factor in the reverse MR analysis. The exposure factors were read and IVs were 
screened using the TwoSampleMR R package (version: 0.5.6).27

In Mendelian randomization (MR), SNPs were used as instrumental variables to estimate the causal effect of an 
exposure on an outcome. The purpose of using SNPs in MR are to provide a way to infer causality between an exposure 
and an outcome that are less prone to confounding and reverse causation compared to observational studies. By 
leveraging the genetic variation that naturally occurred in populations, MR aimed to mimic the random assignment of 
treatments in a randomized controlled trial, thus providing a stronger basis for establishing a causal relationship. SNPs of 
the exposure factors were chosen as candidate IVs for further MR analysis. The SNPs were singled out with a genome- 
wide significance level of P < 5×10−8 and IVs with linkage disequilibrium were excluded with the criteria of R2 = 0.001 
and kb = 10 in the forward MR analysis. SNPs with a genome-wide significance level of P < 5×10−6 and IVs of linkage 
disequilibrium were excluded with the criteria of R2 = 0.001 and kb = 10000) in the reverse MR analysis.

The MR study met the following hypotheses: (i) IVs are closely related to the exposure factors. (ii) IVs are not 
associated with confounding factors. (iii) IVs influence the outcome only through exposure factors. Five algorithms– 
inverse variance weighted (IVW),28 MR Egger,29 weighted median (WM),30 simple mode,27 and weighted mode31 were 
applied to the bidirectional MR analysis. Sensitivity analyses (Cochran’s Q statistical test, MR-Egger test, and leave-one- 
out analysis) were performed to assess the reliability of MR analysis. The exposure factors that significantly affected 
CAD were identified as the key genes.

Building of Alignment Diagram Model Based on Key Genes
To accurately predict the occurrence of CAD, a logistic model was built in the GSE113079 dataset based on the 
expression levels of the key genes. The rms R package (version 6.5-0) was used to construct an alignment diagram of the 
key genes in the GSE113079 dataset. The predictive power of the model was determined using calibration and decision 
curve analysis (DCA).
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Correlation Analysis of Key Genes and Interleukin 6 (IL6)
IL6 was associated with the cause and mortality of CAD,32 and the correlation between key genes and IL6 was accessed 
using the corrplot package. PPI networks interacting with HIF1A, TNFAIP3, and IL6 were obtained from the STRING 
database. In addition to the protein interaction network, the biological pathways of key genes and IL6 are understand. The 
samples in the GSE113079 dataset were divided into high and low expression groups based on key genes, and single- 
gene GSEA was performed to investigate the biological pathways related to key genes and IL6.

Analysis of the Immune-Infiltrating Cells and Prediction of Small-Molecule Drug
CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of known RNA Transcripts) was an algorithm 
designed to estimate the relative abundance of cell types in complex tissues by parsing mixed gene expression data. Its 
basic principle involved using linear support vector regression (SVR) to decompose the mixed expression data and infer 
the contribution of individual cell types. Typically, CIBERSORT utilized the LM22 gene set, which comprised a set of 
gene expression signature matrices that define 22 immune cell types. A linear support vector regression model was 
trained using the SIGNATURE gene matrix as the feature matrix and the mixed gene expression matrix as the response 
variable. The relative abundance of each cell type in each sample was predicted by the regression model. Signature gene 
matrices were predefined to include the genes that characterized each cell type and their expression levels in that cell 
type. For example, the LM22 gene set defined 22 immune cell types. The CIBERSORT algorithm was used to determine 
the proportion of the 22 immune-infiltrating cells in the GSE113079 dataset. In addition, the abundance of immune- 
infiltrating cells in CAD and control samples was calculated using the Wilcoxon test. The R package psych (version: 
2.2.9) (https://CRAN.R-project.org/package=psych) was used to analyze the Spearman correlation for both differential 
immune-infiltrating cells and key genes.

Small molecule drug prediction aimed to identify and prioritize potential therapeutics by evaluating their likelihood to 
interact effectively with specific biological targets, thereby achieving the desired pharmacological effects. This approach 
expedited the initial phases of drug development by minimizing the requirement for extensive lab trials and enabling 
researchers to concentrate on the most promising candidates. This study, the DGidb database (https://dgidb.org/) was 
used to predict small-molecule drugs corresponding to key genes and IL6. Hub gene and small molecule drug 
correspondences were imported into the Cytoscape software to visualize their relationships.

Validation of Key Genes Expression
The Wilcoxon test was applied to compute key genes and IL6 expression between CAD and control samples in the 
GSE113079 and GSE12288 datasets. In addition, whole blood samples were obtained from five CAD and five control 
individuals. Total RNA was extracted using the TRIzol reagent (Ambion, China). The mRNA was reverse-transcribed 
using a SureScript-First-strand-cDNA-synthesis-kit (Servicebio, China) and cDNA was collected. Real-time fluorescence 
quantitative PCR (RT-qPCR) was performed using the SYBR Green qPCR Master Mix. The relative gene expression was 
calculated using the 2−ΔΔCt method. Primer sequences are shown (Table S1).

Statistical Analysis
All analyses were performed using the R package. The Wilcoxon test was used for group comparisons, except for the 
special instructions. *P < 0.05, considered statistically significant.

Results
Identifying 92 DE-IRGs in CAD and Control Samples
First, 3722 DEGs were identified in GSE113079. Among of which, 1772 genes were upregulated and 1950 genes were 
downregulated in CAD group than that in control group. The top 10 upregulated and downregulated genes are marked in 
the volcano plot, and the expression of the marked genes is shown in the heatmap (Figure 1A and B). In addition, based 
on the optimal power β of nine and scale-free evaluation factor R2 = 0.85, a scale-free network was built. According to 
the correlation coefficient between genes, genes with similar expression patterns are classified into the same gene 
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Figure 1 DE-IRGs identified in CAD. (A) Volcano plot of the distribution of differentially expressed genes between CAD and Control. (B) Heatmap of differentially 
expressed genes between CAD and Control. (C) Sample-level clustering with pre-sample CAD and Control removed. (D) Sample-level clustering after introduction of 
sample traits. (E) soft threshold filtering. (F) WGCNA analysis to identify co-expression modules. (G) Heatmap of correlation between modules and phenotypes. (H) 
Wayne plots of up-regulated DEGs and yellow module genes. (I) Wayne diagram of DEGs and brown module genes. (J) Wayne diagram of intersection of CAD-related and 
inflammation-related genes.
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module, and different gene modules are distinguished by different colors. These genes were divided into 13 co- 
expression modules by WGCNA analysis (Figure 1C–F). The yellow module with the highest positive correlation 
with CAD (r = 0.79, P < 0.0001) and brown module with the highest negative correlation (r =−0.77, P < 0.0001) were 
selected as key modules (Figure 1G). A total of 1839 common DEGs (1108 upregulated genes and 731 downregulated 
genes) were identified among the DEGs and key module genes (Figure 1H and I). Finally, 92 DE-IRGs were identified 
between common DEGs and IRGs (Figure 1J).

A Total of 12 Feature Genes of CAD Were Acquired
To identify the feature genes, a PPI network was constructed based on 92 DE-IRGs (Figure 2A). The top 20 genes 
(IL18R1, CX3CL1, ICAM1, and others) were screened using the MCC algorithm (Figure 2B and Table S2). To gain 
further feature genes, four machine learning methods (LASSO, SVM-RFE, Boruta, and XGBoost) were applied based on 
the top 20 genes. Twelve common feature genes, including NFKB1, TNFAIP3, and HIF1A, were acquired using four 
algorithms (Figures 2C and S1). The CCL4 and TNFAIP3 were the highest positive correlation (r = 0.82, P < 0.001), 
whereas CCL24 and NFKB1 showed the highest negative correlation (r = −0.69, P < 0.001) (Figure 2E and F).

HIF1A and TNFAIP3 as Risk Factors for CAD
The causal relationship between the feature genes and CAD was explored using MR analysis. We initially screened the 
12 characterized genes for SNPs. Subsequently, we found that SNPs were present in the CCR6, NFKB1, XCR1, HIF1A, 
and TNFAIP3 genes (Tables S3–S7). In MR analysis, two feature genes (HIF1A and TNFAIP3) showed a causal 
association with CAD, and we chose them for follow-up analysis. The results of univariate MR analysis indicated that 
HIF1A (ORIVW = 1.031, PIVW = 0.024; ORWM = 1.041, PWM = 0.039) and TNFAIP3 (ORIVW = 1.104, PIVW = 0.007; 
ORWM = 1.141, PWM = 0.006) were risk factors for CAD (Tables 1 and 2). The scatter plot and forest plot of the IVW 
analysis also confirmed the above result (Figure 3A–D). In addition, CAD was not related to HIF1A or TNFAIP3 in the 
reverse MR analysis (Tables S8–S10 and Figure S2).

The MR Analysis Results Were Reliable
Sensitivity analysis was performed to assess the reliability of the MR analysis results. There was no heterogeneity and 
pleiotropy (P > 0.05) among the samples in the Cochran’s Q statistical test (Tables 3 and 4) and the MR-Egger test 
(Tables 5 and 6). The selection of SNPs met the requirements of exclusivity and independence in the leave-one-out 
analyses (Figure 4A–D). In summary, all MR analyses revealed that HIF1A and TNFAIP3 were risk factors for CAD.

Analyses of HIF1A and TNFAIP3 for CAD Prediction
A logistic regression model was generated based on the expression of HIF1A and TNFAIP3. The logistic model predicted 
the occurrence of CAD with 81% (Figure 5A–C). The ROC curves of HIF1A (area under the curve (AUC)=0.894) and 
TNFAIP3 (AUC=0.816) showed that they could accurately predict CAD alone (Figure 5D). Subsequently, an Alignment 
Diagram was constructed, which showed better consistency for CAD prediction using the calibration curve (P = 0.5) 
(Figure 5E and F). In addition, DCA indicated that the alignment diagram was effective in clinical practice (Figure 5G).

Positive Correlation Between IL6 and TNFAIP3
The IL6 and TNFAIP3 levels were positively correlated (r = 0.5, P < 0.001) (Figure 6A and B). Furthermore, a consistent 
trend was observed in the GSE113079 and GSE12288 datasets. TNFAIP3, HIF1A, and IL6 were expressed at lower levels 
in patients with CAD than in controls (Figure 6C–G). There were 11 genes (ARNT, ARNT2, etc) related to HIF1A, ten 
genes (IKBKG, TNFRSF1A, etc) related to TNFAIP3, and ten genes (IL10, TNFRSF1A, etc) related to IL6 in the PPI 
network (Figure 7A–C). TNFAIP3, HIF1A, and IL6 were significantly related to the NOD-like receptor signaling pathway 
(Figure 7D–F).
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Figure 2 Feature genes of CAD acquired by machine network learning. (A) PPI network was constructed based on the 92 DE-IRGs. (B) Gene PPI interaction network of 
top20. (C) 12 feature genes were acquired by four methods of machine learning. (D) Functional similarity estimated of these feature genes. (E) Heatmap of correlations 
between characterised genes. (F) Scatterplot of correlation between character genes.
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Table 1 The Association of HIF1A With CAD by Univariate MR Analysis

id.exposure id.outcome Outcome Exposure Method nsnp b se P-val lo_ci up_ci or or_lci95 or_uci95

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000100644

MR Egger 23 0.044570855 0.037364053 0.246220271 −0.028662689 0.1178044 1.045579059 0.971744189 1.125024035

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000100644

Weighted median 23 0.040653748 0.019129261 0.033568874 0.003160396 0.078147099 1.041491424 1.003165395 1.081281703

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000100644

Inverse variance 

weighted

23 0.031924972 0.013656468 0.019401883 0.005158294 0.05869165 1.03244004 1.00517162 1.060448201

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000100644

Simple mode 23 0.045347788 0.029934472 0.144033722 −0.013323777 0.104019354 1.046391719 0.986764591 1.10962193

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000100644

Weighted mode 23 0.041199977 0.029660007 0.178711773 −0.016933637 0.099333591 1.042060473 0.983208931 1.104434668
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Table 2 The Association of TNFAIP3 With CAD by Univariate MR Analysis

id.exposure id.outcome Outcome Exposure Method nsnp b se pval lo_ci up_ci or or_lci95 or_uci95

eqtl- 

a-ENSG00000118503

ebi- 

a-GCST003116

Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000118503

MR Egger 12 −0.04346794 0.286272117 0.882331764 −0.604561289 0.517625409 0.95746325 0.546314048 1.67803826

eqtl- 

a-ENSG00000118503

ebi- 

a-GCST003116

Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000118503

Weighted 

median

12 0.131845791 0.049257208 0.007435558 0.035301663 0.228389919 1.140932364 1.035932164 1.256575193

eqtl- 
a-ENSG00000118503

ebi- 
a-GCST003116

Coronary artery disease || id: 
ebi-a-GCST003116

|| id:eqtl- 
a-ENSG00000118503

Inverse 
variance 

weighted

12 0.099350584 0.036840511 0.007001447 0.027143182 0.171557985 1.104453435 1.027514914 1.187152978

eqtl- 
a-ENSG00000118503

ebi- 
a-GCST003116

Coronary artery disease || id: 
ebi-a-GCST003116

|| id:eqtl- 
a-ENSG00000118503

Simple mode 12 0.138746904 0.073477584 0.085629656 −0.005269161 0.282762968 1.148833298 0.994744697 1.326790633

eqtl- 

a-ENSG00000118503

ebi- 

a-GCST003116

Coronary artery disease || id: 

ebi-a-GCST003116

|| id:eqtl- 

a-ENSG00000118503

Weighted 

mode

12 0.137958791 0.077093244 0.101068945 −0.013143967 0.28906155 1.147928245 0.986942038 1.335173906
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Positive Correlation Between Activated NK Cells and TNFAIP3
The abundance of 22 immune-infiltrating cells in all samples was determined. There were higher cell compositions of M0 
Macrophages, Monocytes, naive CD4+ T cells, and regulatory T cells in the CAD samples than in the control samples (Figure 8A 
and B). TNFAIP3 and NK cells had a moderate positive correlation (r = 0.52, P < 0.001), and HIF1A (r = −0.40, P < 0.001) and 
TNFAIP3 (r = −0.47, P < 0.001) were negatively correlated with naive CD4+ T cells (Figure 8C). These results may enhance our 

Figure 3 SNPs related to risk factors for CAD. (A) Scatterplot of forward MR analysing the effect of instrumental variables (SNPs) on exposure factors (HIF1A) and the 
effect of instrumental variables (SNPs) on outcome (Coronary artery disease). (B) Forest plot of effect sizes of exposure factors on outcome variables analysed by IVW for 
positive MR. (C) Scatterplot of the effect of TNFAIP3-Coronary artery disease positive MR analysis instrumental variable (SNP) on exposure factor (TNFAIP3). (D) Positive 
MR analysis of TNFAIP3-Coronary artery disease Exposure factors on junction Forest plot of effects of local variables (E) Funnel plot of instrumental variables for positive 
MR. (F) Scatterplot of instrumental variables for positive MR of TNFAIP3-coronary artery disease.
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Table 3 Sensitivity Analysis of MR Analysis About the Association of HIF1A With CAD

id.exposure id.outcome Outcome Exposure Method Q Q_df Q_pval

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || 
id:ebi-a-GCST003116

|| id:eqtl-a-ENSG00000100644 MR Egger 21.38215287 21 0.435828532

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || 
id:ebi-a-GCST003116

|| id:eqtl-a-ENSG00000100644 Inverse variance weighted 21.51714814 22 0.4890045

ebi-a-GCST003116 eqtl-a-ENSG00000100644 ENSG00000100644 || id: 
eqtl-a-ENSG00000100644

Coronary artery disease || id:ebi-a-GCST003116 MR Egger 34.05934756 35 0.513356267

ebi-a-GCST003116 eqtl-a-ENSG00000100644 ENSG00000100644 || id: 
eqtl-a-ENSG00000100644

Coronary artery disease || id:ebi-a-GCST003116 Inverse variance weighted 34.08417592 36 0.559970558
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Table 4 Sensitivity Analysis of MR Analysis About the Association of TNFAIP3 With CAD

id.exposure id.outcome Outcome Exposure Method Q Q_df Q_pval

eqtl-a-ENSG00000118503 ebi-a-GCST003116 Coronary artery disease || 
id:ebi-a-GCST003116

|| id:eqtl-a-ENSG00000118503 MR Egger 4.034037471 10 0.945798427

eqtl-a-ENSG00000118503 ebi-a-GCST003116 Coronary artery disease || 
id:ebi-a-GCST003116

|| id:eqtl-a-ENSG00000118503 Inverse variance weighted 4.287120876 11 0.960753065

ebi-a-GCST003116 eqtl-a-ENSG00000118503 ENSG00000118503 || id: 
eqtl-a-ENSG00000118503

Coronary artery disease || id:ebi-a-GCST003116 MR Egger 31.54503388 34 0.588520483

ebi-a-GCST003116 eqtl-a-ENSG00000118503 ENSG00000118503 || id: 
eqtl-a-ENSG00000118503

Coronary artery disease || id:ebi-a-GCST003116 Inverse variance weighted 31.58400581 35 0.633798749
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Table 5 Pleiotropy Assessment of MR Analysis About the Association of HIF1A With CAD

id.exposure id.outcome Outcome Exposure Egger_intercept se pval

eqtl-a-ENSG00000100644 ebi-a-GCST003116 Coronary artery disease || id:ebi-a-GCST003116 || id:eqtl-a-ENSG00000100644 −0.003727935 0.010238235 0.719409743

ebi-a-GCST003116 eqtl-a-ENSG00000100644 ENSG00000100644 || id:eqtl-a-ENSG00000100644 Coronary artery disease || id:ebi-a-GCST003116 −0.000930324 0.005904186 0.875701048
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Table 6 Pleiotropy Assessment of MR Analysis About the Association of TNFAIP3 With CAD

id.exposure id.outcome Outcome Exposure Egger_intercept se pval

eqtl-a-ENSG00000118503 ebi-a-GCST003116 Coronary artery disease || id:ebi-a-GCST003116 || id:eqtl-a-ENSG00000118503 0.011271483 0.022405222 0.625806915

ebi-a-GCST003116 eqtl-a-ENSG00000118503 ENSG00000118503 || id:eqtl-a-ENSG00000118503 Coronary artery disease || id:ebi-a-GCST003116 0.001181159 0.005983185 0.844679773
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understanding of the role of the CAD inflammation-associated hub gene in TME formation. Finally, in the gene-drug 
correspondence network, 79 Nodes (3 genes, 76 drugs) and 76 Edges were included, of which 1 drug was predicted for 
TNFAIP3, 48 drugs were predicted for IL6, and 144 drugs were predicted for HIF1A. All drugs were approved by FDA 
(Figure 8D).

Figure 4 The exclusivity and Independence assumptions of the selection of SNPs in the leave-one-out analyses. (A and C) Forward and Backward MR’s Reject-by-Removal 
Test Forest Plots. (B and D) Forward and reverse culling test forests in TNFAIP3-Coronary artery disease.
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Discussion
The basic pathogenesis of CAD and coronary atherosclerosis is a complex, persistent, and progressive inflammatory process 
involving interleukins (ILs), such as IL-6.33 The process was initiated with the retention and oxidation of low-density lipoprotein 
(LDL) inside the intima, followed by the dysfunction of endothelial cells, the formation of the “foam cells”, the proliferation and 
migration of vascular smooth muscle cells (VSMCs), and ultimately the formation of atherosclerotic plaques.34 When LDL 
cholesterol is controlled by statins and other lipid-lowering drugs, the risk of major adverse cardiovascular events (MACE) is 
believed to be inflammatory in nature.35 Therefore, there is a need to develop anti-inflammatory intervention strategies that target 

Figure 5 The predictive value of HIF1A and TNFAIP3 for CAD. (A) Confusion matrix plot for the training set. (B) ROC plot for the training set. (C) ROC plot for the 
validation set. (D) Individual ROC curves for the hub gene plotted in the training set (GSE113079). (E) hub Gene Construction Columnar Diagram Model. (F) Calibration 
curves for line diagram models. (G) Decision curve for DCA.
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specific inflammatory mediators to reduce the risk of cardiovascular disease.36 In the present study, we investigated the genes that 
contribute to the inflammatory response to CAD. By performing a bidirectional Mendelian randomization analysis, two key 
genes, HIF1A and TNFAIP3, were confirmed to be risk factors for CAD. However, CAD was not related to HIF1A and TNFAIP3, 
providing a potential reference for the treatment and prevention of CAD.

In the MR analysis, we selected only six feature genes from the 12 because the SNPs related to the other six genes 
were too few to meet the analysis requirements. Among the six feature genes, P-values of HIF1A, NFKB1, CCR6, 
TNFAIP3, and XCR1 were lower than 0.05, indicating that they were significantly associated with CAD. However, 
sensitivity tests for NFKB1, CCR6, and XCR1 indicated confounding factors; therefore, their relationship with CAD is 
unreliable. Therefore, we chose HIF1A and TNFAIP3 for further analysis.

Figure 6 Correlation of IL6 with HIF1A and TNFAIP3. (A and B) Scatterplot of correlation between IL6 and hub genes. (C–E) The expression of TNFAIP3, HIF1A and IL6 in 
CAD patients and control individuals, with red representing the CAD group and blue representing the Control group. *p < 0.05; **, p < 0.01; **** p < 0.0001 compared with 
the control group. (F and G) The results of RT-qPCR showed a lower expression of TNFAIP3 and HIF1A in CAD group.
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Figure 7 Individual gene PPI analysis and hub gene GSEA enrichment analysis. (A–C) PPI networks indicated genes related to TNFAIP3, HIF1A and IL6. (D–F) Single-gene 
GSEA analysis investigated the biological pathways related to TNFAIP3, HIF1A and IL6.
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Figure 8 Analysis of immune-infiltrating cells and prediction of small-molecule drug. (A) The abundance of 22 immune-infiltrating cells and different infiltration of immune 
cells between CAD samples and control samples. (B) A box plot of differential immune infiltrating cell abundance was constructed based on CAD and Control. Red 
represents the CAD group, and blue represents the Control group. ** p < 0.01; **** p < 0.0001 compared with the control group. (C) Lollipop plot of correlation between 
differentially immune infiltrating cells and hub gene, IL6. (D) Small molecule drugs of TNFAIP3, HIF1A and IL6 were forecasted from DGidb database.
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HIF-1A is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia.37 Previous 
studies have demonstrated that HIF-1A promotes mitochondrial damage, neuronal apoptosis, and expression of inflam
matory factors.38 Individuals with a high risk of atherosclerosis show significantly high level of HIF-1A expression.39 

However, the causal relationship between HIF-1A and CAD remains unclear. Here, we report, for the first time, that 
HIF1A is a risk factor for CAD and can predict CAD occurrence with an accuracy of 89.4%.

TNFAIP3 is a ubiquitin-modifying protein known to preserve immune homeostasis and prevent autoimmune diseases 
by negatively regulating NF-κB signaling.40 In this study, the mRNA expression of TNFAIP3 was lower in patients with 
CAD than in control individuals. Consistent with our results, overexpression of TNFAIP3 attenuates atherosclerosis 
progression in both hyperlipidemic mouse models and humans.41,42 Indeed, TNFAIP3 exerts numerous anti-atherogenic 
functions by reducing endothelial cell dysfunction, limiting immune cell infiltration, and inhibiting smooth muscle cell 
migration and proliferation.43 Genome-wide association studies have demonstrated that SNPs at the TNFAIP3 locus are 
risk factors for coronary artery disease,44 and mutations in TNFAIP3 are associated with a variety of inflammatory 
diseases.45 Consistent with these reports, it was also found that TNFAIP3 had a causal association with CAD in our study 
and could predict CAD occurrence with an accuracy of 81.6%.

Much evidence has indicated an inseparable connection between the immune microenvironment and CAD.31,46 Our analysis 
showed that the relative percentages of M0 Macrophages, Monocytes, CD4+ naive T cells, and regulatory T cells were higher in 
the CAD group, whereas the proportions of activated CD4+ memory T cells, activated dendritic cells, activated NK cells, and 
CD8+ T cells were lower than those in the normal group. Damaged endothelial cells release monocyte chemotactic protein-1, 
which recruits monocytes to lesions and then differentiates into macrophages, leading to inflammation and atherosclerotic plaque 
development.47 In addition, HIF1A and TNFAIP3 levels negatively correlated with naive CD4+ T cells. GO and KEGG analyses 
of these targeted genes revealed that they were enriched in the T-cell receptor signaling pathway, suggesting that they may be 
involved in CAD via T cells. A functional and homeostatic defect in regulatory T cells is associated with a subclinical pro- 
inflammatory and atherogenic state, and decreased CD4+ naive T cell counts are independently associated with cardiovascular 
events.48,49 We believe that there is a need for immune restoration strategies for T cells in CAD patients.

As the core of the inflammatory cascade, IL-6 plays a pivotal role in the initiation and progression of 
atherosclerosis.50,51 In recent years, emerging anti-inflammatory approaches targeting the IL-6 pathway have been 
shown to significantly reduce the incidence of cardiovascular events.10,52 In our study, TNFAIP3 and HIF1A were 
positively correlated with the gene expression IL-6 according to the correlation analysis. In addition, they were enriched 
in the NOD-like and Toll-like receptor signaling pathways, both of which are related to the innate immune response. 
NODs and TLRs recognize pathogen-associated molecular patterns (PAMPs), followed by the activation of NF-κB and 
MAPK signaling mediated by myeloid differentiation factor 88 (MyD88) or non-MyD88, leading to the secretion of pro- 
inflammatory cytokines and eventually the occurrence and development of atherosclerosis.53,54

Finally, we analyzed the key genes for gene-targeted drugs and two small-molecule drugs (USTEKINUMAB and 
METHOTREXATE) of TNFAIP3, 136 drugs (BOLDINE, FLUPIRTINE, etc) of HIF1A, and 25 drugs (INSULIN, COR- 
001, etc) of IL6 predicted from the DGidb database. Among these, METHOTREXATE, a traditional immunomodulatory 
and anti-inflammatory drug, has been proved to have beneficial effects on atherosclerosis and cardiovascular clinical 
endpoints in some experimental and clinical studies.55,56 However, more randomized controlled studies are needed to 
confirm the therapeutic potential of METHOTREXATE in cardiovascular prevention.57 USTEKINUMAB and COR-001, 
monoclonal antibodies against anti-IL-12, IL-23, and IL-6, have been used in skin and kidney-related diseases,58,59 and 
their application in cardiovascular diseases based on evidence-based medicine needs to be confirmed. BOLDINE is a plant- 
derived bioactive compound with beneficial effects on human health. For example, boldine protects endothelial cells from 
hypertension by increasing vascular NO production and reducing ROS overproduction.60 However, its application to CAD 
has not yet been reported. Further studies are required to elucidate the role of these gene targeting drugs in CAD.

Strengths and Limitations
The strength of this study is the causal relationship between inflammatory markers and coronary heart disease. Despite 
these meaningful findings, this study has several limitations. First, it was based on publicly available data, and additional 
external cohorts are required to validate our findings. In future studies, we will conduct experiments using cellular 
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models or animal models, etc., to further confirm our findings and to delve into the specific mechanism of action of the 
relevant genes in the development of CAD. Second, gene expression may not be directly equivalent to protein 
expression, and continued attention should be paid to the roles of these potential key genes in regulating the inflammatory 
immune network in coronary heart disease.

Conclusions
In this study, we identified two key inflammation-related genes (HIF1A and TNFAIP3) involved in CAD, and proved that 
these two hub genes could predict the occurrence of CAD with high accuracy. The study presents novel and impactful 
findings that contribute to the understanding of CAD’s genetic and inflammatory mechanisms. By integrating Mendelian 
randomization, transcriptomics, and machine learning, it advances the field of CAD inflammation-immune research, 
particularly in identifying novel biomarkers for early detection and therapeutic targeting of CAD.
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