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Abstract: Ischemia-reperfusion injury is a multi-tissue/organ susceptible and highly destructive disease. The complex pathological 
mechanisms of ischemia-reperfusion injury make its prevention and treatment highly challenging, and the development of novel drugs 
with pharmacological pleiotropy that can target multiple pathological mechanisms has become the focus of current drug research. 
Polydatin is a traditional Chinese medicine monomer with pleiotropic pharmacological effects, and existing research evidence suggests 
that polydatin has strong protective potential against ischemia-reperfusion injury. However, the mechanism of polydatin against 
ischemia-reperfusion injury is still unclear. In this review, the extensive pharmacological-pathological mechanism associations 
between polydatin and ischemia-reperfusion injury have been described from the perspectives of inflammatory response, oxidative 
stress, apoptosis, autophagy, ferroptosis, and cellular pyroptosis, which will provide references to the basic and applied research of 
polydatin in the field of ischemia-reperfusion injury. 
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Ischemia-reperfusion injury is a highly destructive pathological process that can occur in a variety of organs, including 
myocardium, liver, lung, kidney, testis, gastrointestinal tract, and spinal cord,1 often resulting in dysfunction of the 
injured organs and even leading to systemic inflammatory response syndromes and multiple organ dysfunction 
syndromes.2 Its pathological mechanism is characterized by complexity, and inflammatory response, oxidative stress, 
apoptosis, cell necrosis, necrotic apoptosis, cell/mitochondrial autophagy, ferroptosis, and cellular pyroptosis are all 
involved in the mechanism of ischemia-reperfusion injury, which together weave a complex network of mechanisms of 
ischemia-reperfusion injury.3,4 The prevention and treatment of ischemia-reperfusion injury are highly challenging, and 
the development of novel drugs with multiple pharmacological activities to target multiple pathological mechanisms has 
become the focus of current research.

Polydatin is a herbal monomer isolated from the Chinese herb Polygonum cuspidatum Sieb. et Zucc. Polydatin has 
been found to possess pharmacological pleiotropy consistent with the pathological mechanisms of ischemia-reperfusion 
injury, and can exert significant pharmacological effects such as anti-inflammatory response, antioxidant, anti-apoptosis, 
modulation of autophagy, and inhibition of iron death and cellular pyroptosis through multiple signaling pathways 
mediated by multiple targets (Figure 1).5 In a previous study, we summarized the studies on the effects of polydatin on 
ischemia-reperfusion injury in various organs, and found that polydatin had strong therapeutic potential for ischemia- 
reperfusion injury.6 However, the existing research evidence may only be the tip of the iceberg in the vast pharmaco
dynamic network of polydatin, and there are still a variety of unknown mechanisms that may not have been discovered 
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and investigated yet. Therefore, in this review, we will further focus on the association between the pharmacological 
mechanisms of polydatin and the pathological mechanisms of ischemia-reperfusion injury, in an attempt to explore more 
deeply into the protective potentials and underlying mechanisms of polydatin against ischemia-reperfusion injury.

Polydatin-Inflammatory Response-Ischemia/Reperfusion Injury
The inflammatory response is one of the most important pathological mechanisms in ischemia-reperfusion injury. As 
a protective mechanism, the induction of inflammation is attributed to the immune system’s response against factors such 
as pathogens, damaged tissues, and infectious agents, which is usually considered beneficial for tissue repair and organ 
healing, but inflammatory flare-ups can also induce or exacerbate tissue damage. Early reperfusion injury is initiated by 
chemotaxis and endothelial adhesion of neutrophils, CD4+ T lymphocytes and circulating platelets. Neutrophil activation 
leads to the production of reactive oxygen species, TNF-α, and local inflammatory mediators, which exacerbate tissue 
injury.7 Meanwhile, macrophage-stimulating factor, interferon-γ and TNF-β released by CD4+ T lymphocytes further 
activated local macrophages and promoted the release of pro-inflammatory cytokines.8 With elevated levels of circulating 
reactive oxygen species and pro-inflammatory factors, oxidative stress and increased endothelial adhesion molecules are 
induced in distant organs. In addition, the balance between endothelin-1 and nitric oxide is disrupted due to decreased 
levels of nitric oxide, leading to vasoconstriction. As a result, platelets and neutrophils are more easily trapped in local 
vascular structures, culminating in a cascading inflammatory burst response.

Polydatin has potent anti-inflammatory activity. Numerous studies have reported that polydatin can regulate the 
expression of inflammatory cytokines and cell adhesion molecules via NF-κB in vivo and in vitro. Polydatin can 
downregulate NF-κB p65 activity and expression, block the expression of TNF-α, IL-6 and IL-1β at the mRNA and 

Figure 1 Extensive pharmacological-pathological mechanism associations reveal the potential of polydatin against ischemia-reperfusion injury.
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protein levels, reduce MPO activity and attenuate colonic inflammatory injury in ulcerative colitis mice.9 In addition, 
under inflammatory conditions, Polydatin can exert anti-inflammatory effects by activating AMPK/SIRT1/ Nrf2 signaling 
expression, which inhibits the NF-κB or IκBα/NLRP3 pathway and reduces the expression of pro-inflammatory 
cytokines, such as TNF-α, IL-1β, and IL-6.10,11 Meanwhile, Polydatin can downregulate the expression of spinal cord 
injury-induced inflammatory mediators, such as Toll-like receptor 4, NF-κB, COX-2, iNOS, NO and ICAM-1.12 

Consistent with this, polydatin may play a critical role in preventing the inflammatory response by reducing mitogen- 
activated protein kinase activity and expression, which is mainly orchestrated by extracellular signal-regulated kinases 
(ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), and p38 protein kinase, thereby inhibiting NF-κB p65 phosphorylation 
and inflammatory cascade responses that include the expression of NF-κB p65, COX-2 and iNOS proteins and the 
production of TNF-α, PGE 2 and IL-1β.13,14 In addition, polydatin can favorably promote the expression of miR-200a, 
which regulates the Keap1/Nrf2 antioxidant axis and inhibits the activation of NLRP3 inflammatory vesicles to combat 
the chronic inflammation-related diseases in vivo.15,16

In conclusion, there is a potential pharmacological-pathological mechanism linking between polydatin and ischemia- 
reperfusion injury at the level of inflammatory response. The anti-inflammatory activity of polydatin suggests that 
polydatin is a promising agent against ischemia-reperfusion injury (Figure 2).

Polydatin-Oxidative Stress-Ischemia/Reperfusion Injury
Oxidative stress is characterized by the abnormal production of reactive oxygen and reactive nitrogen species, which can 
have destructive effects on molecular intracellular signaling pathways and lead to the development of a variety of 
diseases.17 The xanthine oxidase system, NADPH oxidase system, and NOS system play an indispensable role in the 
oxidative stress mechanism of ischemia-reperfusion injury because their activity directly leads to the generation of 
reactive oxygen species, thereby exacerbating cellular oxidative damage.18,19 In ischemia, the conversion of xanthine 
dehydrogenase to xanthine oxidase occurs as a result of decreased ATP levels. When blood flow is restored to the 
ischemic tissue, xanthine oxidase reacts directly with oxygen, resulting in the conversion of hypoxanthine to xanthine 
and uric acid. During this process, superoxide and hydrogen peroxide are released, causing additional oxidative stress. 
The Nox/Duox family of the NADPH oxidase system is an important player in ischemia-reperfusion injury. Hypoxia 
induces the production of hypoxia inhibitory factor-1α (HIF-1α), which promotes the activation of Nox enzymes. Next, 
activation of Nox enzymes leads to increased oxidative stress, which in turn increases HIF-1α production, thus creating 

Figure 2 Basic process of inflammatory response in ischemia-reperfusion injury and anti-inflammatory mechanism of polydatin.
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a positive feedback loop. After blood flow is restored to the ischemic tissue, cells release a number of chemical 
mediators, including phospholipase A2, TNF-α, IL-1β, IFN-γ, and angiotensin II, which further activate the NADPH 
oxidase system. The ROS produced by activation of the NADPH oxidase system also causes the aggregation of 
inflammatory cells, which increases the level of inflammatory response and further exacerbates reperfusion injury in 
multiple organs. NO production is induced by nitric oxide synthase and regulated by BH4.20 Under physiological 
conditions, nitric oxide exerts tissue-protective functions through its antioxidant and anti-inflammatory effects.21 

However, under ischemic conditions, the microenvironment of oxidative stress continues to oxidize BH4, resulting in 
decreased BH4 levels and BH4/NOS ratio, and further leads to the uncoupling of NOS and superoxide, generating a large 
amount of ROS, which ultimately triggers many types of cell death, leading to the exacerbation of ischemia-reperfusion 
injury.22

Polydatin has potent antioxidant activity. Polydatin can exert antioxidant effects by reducing lipid peroxidation, 
promoting antioxidant enzyme activities, and regulating the production of reactive oxygen species and reactive nitrogen 
species.23,24 Nrf2 may be the most important antioxidant response-related transcription factor of polydatin. Polydatin can 
inhibit oxidative stress and microglia apoptosis by promoting the activity of Nrf2/HO-1 pathway, thereby ameliorating 
neurological deficits in spinal cord injured rats.25 Polydatin can significantly enhance Nrf2/TRX antioxidant signaling 
and upregulate the Gli1/Ptch1/SOD1 pathway to reduce ROS production, thereby exerting a protective effect on ischemic 
organs.26 Further in vivo studies have also shown that polydatin can exert antioxidant effects through the SIRT1/Nrf2/ 
ARE signaling pathway to attenuate diabetes-induced renal dysfunction27 and protect the diabetic heart from ischemia/ 
reperfusion injury through the Notch1/Hes1-Pten/Akt axis.28 In addition, polydatin may exert antioxidant stress effects 
by scavenging hydroxyl radicals, oxygen free radicals, myeloperoxidase and ROS, and enhancing enzymatic antioxidants 
such as SOD, glutathione peroxidase, glutathione transferase, catalase and glutathione.29 Polydatin can also attenuate 
hepatic stellate cell activity by modulating SphK1 signaling to exert antioxidant activity, thereby ameliorating carbon 
tetrachloride-induced liver fibrosis in mice.30

In conclusion, there is a potential pharmacological-pathological mechanism association between polydatin and 
ischemia-reperfusion injury at the level of oxidative stress. The antioxidant activity of polydatin suggests that polydatin 
is a promising drug against ischemia-reperfusion injury.

Polydatin-Apoptosis-Ischemia/Reperfusion Injury
Apoptosis is a programmed cell death process that can be activated under hypoxic stress in ischemic injury and ROS 
stimulation in reperfusion injury.31,32 The level of Bad in the cytoplasm of cells suffering from ischemia-reperfusion 
injury is significantly increased, which binds to Bcl-2 and Bcl-XL. At the same time, Bax and Bak are processed and 
inserted into the mitochondrial membrane, which leads to the release of the downstream pro-apoptotic factor cytochrome 
C, which further activates pro-caspase 9 to form apoptotic bodies, thus inducing a cascade of caspase reactions to 
promote apoptosis.33 In addition, under the influence of ROS generated in ischemia-reperfusion injury, the p53 gene 
induces the formation of the PID-dosome complex, which further activates caspase 2 and cleaves downstream caspases, 
leading to the onset of apoptosis.34

Polydatin has potent anti-apoptotic activity. Polydatin can exert anti-apoptotic effects by decreasing Bax expres
sion and increasing Bcl-2 expression.23 Similarly, polydatin can exert its anti-apoptotic activity by increasing Bcl-2 or 
D-cyclins and decreasing caspase 3 or Bax levels in gastrointestinal injury involving activation of the Gli1 
transcription factor and the upregulation of the Shh signaling pathway is involved.35 Meanwhile, in an animal 
model of LPS-induced acute lung injury, polydatin can attenuate lung injury by inhibiting Bax expression and 
caspase 3 activity and promoting Bcl-2 expression to exert anti-apoptotic effects.36 In addition, in a rat model of 
ischemic brain injury, polydatin can attenuate neuronal apoptosis by inhibiting the activation of the p53/MAPK/JNK 
signaling pathway.37

In conclusion, there is a potential pharmacological-pathological mechanism association between polydatin and 
ischemia-reperfusion injury at the level of apoptosis. The anti-apoptotic activity of polydatin suggests that polydatin is 
a promising drug against ischemia-reperfusion injury (Figure 3).
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Polydatin-Autophagy-Ischemia/Reperfusion Injury
Autophagy is a conserved and important self-phagocytosis process that responds to a variety of stimuli including nutrient 
deprivation, DNA damage, organelle damage, and reactive oxygen species, and involves the Beclin-1/Class III PI3K, 
AMPK/mTOR, and PI3K/Akt/mTOR pathways.38 Autophagy is initially considered as a protective mechanism in the 
organism and includes three types: macroautophagy, microautophagy and molecular chaperone-mediated autophagy, all 
of which may be involved in mitochondrial antioxidant defense mechanisms.39 During the initial phase of ischemia, the 
activation of autophagy maintains energy homeostasis by restoring ATP production and plays a protective role by 
preventing the release of cytotoxic substances from damaged mitochondria, thereby attenuating apoptosis. Reperfusion 
also contributes to the induction of autophagy.40 However, high levels or prolonged upregulation of autophagy can lead 
to excessive degradation of essential proteins and organelles, ultimately resulting in autophagic cell death.

Polydatin has a strong ability to regulate autophagy. It has been reported that polydatin may be a potential clinical 
agent for the treatment of osteosarcoma and multiple myeloma, because on the one hand, polydatin can induce 
osteosarcoma cell death by inducing STAT3 signaling mediated autophagy,41 and on the other hand, polydatin can 
effectively inhibit myeloma cell proliferation and induce myeloma cell autophagy through the mTOR/p70s6k signaling 
pathway in a concentration-dependent manner.42 Polydatin can also promote autophagy through the NLRP3/mTOR 
pathway and play a role in the prevention of atherosclerosis.43 Polydatin can enhance autophagy in fibroblasts from 
patients with ankylosing spondylitis by increasing the expression levels of LC3II, Beclin 1 and Atg5.44

In kidney injury diseases, polydatin may also exert protective effects by activating or enhancing autophagy through 
multiple signaling pathways. Polydatin may attenuate sepsis-induced acute kidney injury by targeting SIRT1 and 
activating Beclin1 deacetylation-mediated autophagy.45 Polydatin may also exert protective effects against septic 
myocardial injury and cisplatin-induced acute kidney injury by restoring SIRT6-mediated autophagic flux 
mechanisms.46,47 Polydatin can prevent high fructose-induced glomerular podocyte injury by enhancing Nrf2- 
dependent antioxidant capacity and ameliorating high fructose-induced autophagic imbalance in an mTORC1- 
dependent manner.48 In addition, polydatin can mediate Parkin-dependent mitochondrial autophagy, which plays 
a protective role in allergic rhinitis,49 kidney injury,50 and acute respiratory distress syndrome.51

It is also interesting to note that in addition to enhancing autophagic flux, polydatin seems to exhibit the seemingly 
paradoxical aspect of being able to inhibit excessive autophagy. A recent study by Jin W et al found that polydatin could 
protect pancreatic β-cells from lipotoxicity-induced dysfunction and apoptosis by inhibiting endoplasmic reticulum stress 
and preventing excessive autophagy.52

Figure 3 Pharmacological-pathological mechanism associations between polydatin and ischemia-reperfusion injury in apoptosis, ferroptosis, and cellular pyroptosis. Black 
arrows indicates the changes in the expression or activity of signaling molecules during ischemia-reperfusion injury. Red arrows indicates the changes in the expression or 
activity of signaling molecules regulated by polydatin. ★indicates the key signaling molecule or biological process regulated by polydatin. ×indicates iron homeostasis 
imbalance and √ indicates iron homeostasis maintenance.
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In conclusion, there is a potential pharmacological-pathological mechanism association between polydatin and 
ischemia-reperfusion injury at the level of autophagy. The modulation of autophagic activity of polydatin suggests that 
polydatin is a potential drug against ischemia-reperfusion injury.

Polydatin-Ferroptosis-Ischemia/Reperfusion Injury
Ferroptosis is an iron-dependent, peroxide-driven, non-apoptotic form of regulated cell death.53,54 It is biochemically, 
morphologically and genetically distinct from apoptosis, necrosis and other forms of cell death.55 Multiple bioregulatory 
pathways, including impaired iron homeostasis and lipid peroxidation, collectively mediate ferroptosis. A typical feature 
of ferroptosis is the peroxidation of membrane lipids, particularly phospholipids containing polyunsaturated fatty acid 
chains.56 In addition, the cysteine/glutathione/glutathione peroxidase 4 axis is thought to be the backbone of ferroptosis 
regulation.57 Regulation of glutathione synthesis, expression and activity may influence the onset and development of 
ferroptosis.58 Oxidative stress-induced molecular events overlap with ferroptosis processes, such as the initiating effect of 
ROS on ferroptosis, glutathione depletion and lipid peroxidation.

In ischemia-reperfusion, ferroptosis occurs during the reperfusion phase, not the ischemic phase.59 After the onset of 
ischemia-reperfusion, endogenous ROS scavenging mechanisms are ineffective, and ROS are not effectively scavenged 
and accumulate in large quantities. Excessive ROS induce lipid peroxidation60 and are accompanied by an increase in 
intracellular iron concentration,61,62 and these cellular events are consistent with the manifestation of iron-dependent 
ferroptosis and can be prevented by iron chelating agents.63 Evidence from studies of ischemia-reperfusion injury in the 
heart, brain, kidney, and other organs supports the involvement of ferroptosis in the progression of organ cell damage 
after ischemia-reperfusion,64–66 suggesting that ferroptosis is an important mechanism mediating cell injury and cell 
death during ischemia-reperfusion injury, and that targeting ferroptosis will be an important approach to the treatment of 
ischemia-reperfusion injury.

Polydatin exhibits inhibitory activity against ferroptosis. Polydatin can inhibit ferroptosis by maintaining the cellular 
Xc- -GSH-GPx4 axis and iron metabolism, which in turn attenuates cisplatin-induced acute kidney injury.67 Similarly, 
polydatin completely reversed the reduction in GPx4 activity after traumatic brain injury both in vivo and in vitro, and 
the in vitro effect was stronger than that of the classical iron death inhibitor FER-1.68

In conclusion, there is a potential pharmacological-pathological mechanism linking between polydatin and ischemia- 
reperfusion injury at the level of ferroptosis. The inhibitory activity of polydatin on ferroptosis suggests that polydatin is 
a promising drug against ischemia-reperfusion injury (Figure 3).

Polydatin-Cellular Pyroptosis-Ischemia/Reperfusion Injury
Cellular pyroptosis is a type of programmed cell death induced by inflammatory vesicles and is characterized by 
persistent cell swelling until the cell membrane ruptures, leading to the release of cellular contents and a strong 
inflammatory response.69 Cellular pyroptosis involved in ischemia-reperfusion injury mainly relies on the classical 
caspase-1-dependent pathway. After ischemia-reperfusion injury, Toll-like receptors activate NF-κB signaling with the 
concomitant generation of large amounts of ROS, and pathogen-associated molecular patterns (PAMPs) and danger- 
associated molecular patterns (DAMPs) can be stimulated by ROS signaling molecules and then assemble with pro- 
caspase 1 and apoptosis-associated speck-like protein containing CARD (ASC) to form inflammatory vesicles and 
activated caspase 1. Activated caspase 1 cleaves GSDMD into GSDMD-N and GSDMD-C and cleaves the precursors 
of IL-1β and IL-18 to produce IL-1β and IL-18. GSDMD-N penetrates the cell membrane by forming non-selective 
pores, which further induces an influx of water into the cell causing the cell to swell, ultimately leading to cell rupture 
and the release of cellular contents. At the same time, IL-1β and IL-18 are secreted out of the cell from the pores formed 
by GSDMD-N, enhancing the inflammatory response.

Polydatin exhibits inhibitory activity against cellular pyroptosis. Polydatin can inhibit the activation of NLRP3 
inflammatory vesicles and the cleavage of caspase 1, which further inhibits cellular pyroptosis and the secretion of 
inflammatory cytokines, thus preventing or ameliorating atherosclerosis.43 Shi X et al found that polydatin could inhibit 
the expression of NLRP3, caspase 1 and GSDMD and protect renal tubular epithelial cells from pyroptosis in vitro. In 
vivo experiments, polydatin treatment could also decrease the expression of NLRP3, GSDMD, and Caspase 1 proteins in 
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mice, and prevent gouty nephropathy by inhibiting renal tubular cell pyroptosis.70 Similarly, polydatin attenuates 
Mycoplasma pneumoniae-induced injury by inhibiting caspase 1/GSDMD-dependent pyroptosis.71 In addition, polydatin 
may improve vascular endothelial function in the injured microenvironment72 and attenuate sepsis-induced acute kidney 
injury by inhibiting NLRP3/Caspase 1-mediated cellular pyroptosis.73

In summary, it can be seen that there is a potential pharmacological-pathological mechanism association between 
polydatin and ischemia-reperfusion injury at the level of cellular pyroptosis. The inhibitory cellular pyroptosis activity of 
polydatin suggests that polydatin is a potential drug for the prevention and treatment of ischemia-reperfusion injury 
(Figure 3).

Conclusion
Polydatin is pharmacologically pleiotropic and ischemia-reperfusion injury is pathologically complex, but both can be 
strongly associated in biological processes such as inflammatory response, oxidative stress, apoptosis, autophagy 
regulation, ferroptosis, and cellular pyroptosis. Although direct experimental evidence is still lacking, there is reason 
to believe that polydatin is a promising agent against ischemia-reperfusion injury, thanks to its multiple pharmacological 
activities of anti-inflammatory response, antioxidant, anti-apoptosis, modulation of autophagy, and inhibition of ferrop
tosis and cellular pyroptosis. In conclusion, this review will provide directions for the research of polydatin in the field of 
ischemia-reperfusion injury, and will contribute to the advancement of the development and clinical application of 
polydatin in pharmaceutical formulations.
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