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Abstract: Pyroptosis is a unique form of programmed cell death characterized by intense inflammation. It involves the activation of 
Gasdermin proteins, which form membrane pores, leading to rapid cell rupture and the release of inflammatory molecules. Unlike 
other types of cell death, pyroptosis has distinct activation mechanisms and plays a complex role in chronic intestinal diseases, 
including inflammatory bowel disease, intestinal fibrosis, chronic infectious enteritis, and colorectal cancer. This review comprehen-
sively examines how pyroptosis influences disease development and progression while exploring the therapeutic potential of targeting 
pyroptosis-related pathways. Moreover, the complex interplay between gut microbiota and pyroptosis is summarized, highlighting its 
critical role in the pathogenesis of chronic intestinal disorders. A deeper understanding of pyroptosis-related mechanisms in these 
diseases may provide valuable insights for future research and contribute to the development of innovative therapeutic strategies in 
gastroenterology. 
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Introduction
Pyroptosis is a form of programmed necrotic cell death characterized by intense inflammatory responses.1–4 It is triggered 
by intracellular infections caused by bacteria, viruses, fungi, and protozoa in response to pathogen-associated or damage- 
associated molecular patterns (PAMPs or DAMPs).5,6 While pyroptosis plays a key role in host defense by eliminating 
infected cells, excessive inflammatory responses can contribute to severe pathological conditions, such as multi-organ 
dysfunction.7 Pyroptosis can be activated via both inflammasome-dependent and non-inflammasome-dependent path-
ways, with the former being more extensively studied. The classic inflammasome-dependent pathway begins with 
recognizing pathogenic microorganisms or intracellular damage signals by pattern-recognition receptors (PRRs) 
(Figure 1). Upon activation, PRRs interact with pro-caspase-1 and the adaptor protein ASC (apoptosis-associated speck- 
like protein containing a CARD), forming a multiprotein inflammasome complex.8 This inflammasome plays a central 
role in pyroptosis, facilitating caspase-1 activation.9 Once activated, caspase-1 undergoes auto-cleavage into its CARD 
domain and P20/P10 subunits, which oligomerize into a tetramer. This tetramer cleaves Gasdermin D (GSDMD) and 
processes pro-interleukin (IL)-1β and pro-IL-18 into their active forms, IL-1β and IL-18. GSDMD serves as a key 
mediator of pyroptosis.10 Upon cleavage, its N-terminal domain forms pores in the plasma membrane, leading to 
membrane rupture and the release of intracellular contents along with pro-inflammatory cytokines.11,12 While this 
mechanism effectively combats infections, it can also exacerbate inflammatory damage in various disease contexts.13 
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On the other hand, the non-classical pyroptosis pathway involves caspase-4 and 5 in humans or caspase-11 in mice, 
which directly detect intracellular signals, bypassing the inflammasome complex.8,14 Unlike caspase-1, caspase-11 does 
not process pro-IL-1β or pro-IL-18 into their mature forms.15

Recent research has highlighted the significant roles of Gasdermin protein isoforms in chronic intestinal diseases, 
particularly Gasdermin B (GSDMB) and Gasdermin C (GSDMC). GSDMB exists in multiple isoforms with distinct 
functions, and certain variants can induce pyroptosis when cleaved by proteases such as Granzyme A. This cleavage 
releases N-terminal fragments that promote membrane lysis and drive inflammatory responses, associating GSDMB with 
inflammatory bowel disease (IBD) and colorectal cancer (CRC).16 Meanwhile, GSDMC, expressed in intestinal epithelial 
cells, is regulated by type 2 cytokines such as IL-4 and IL-13. Targeting Gasdermin isoforms presents promising 
therapeutic strategies for chronic intestinal diseases: enhancing pro-pyroptotic GSDMB isoforms may strengthen immune 
responses against pathogens while reducing CRC tumorigenesis, whereas inhibiting non-pyroptotic variants could 
mitigate excessive inflammation in IBD. Understanding post-translational modifications and cleavage mechanisms of 
these proteins may lead to novel interventions that selectively regulate their activity.17

Inflammasomes are essential cytoplasmic multiprotein complexes that detect host threats by recognizing PAMPs, DAMPs, 
homeostasis-altering molecular processes (HAMPs), or effector-triggered immunity (ETI).18 They play a pivotal role in 
pyroptosis by managing inflammatory responses to infections and tissue damage, promoting the release of IL-1β and IL-18.18 

Typical inflammasomes consist of three main components: 1) PRRs, which serve as the sensors of PAMPs and DAMPs and are 
essential for inflammasome assembly. 2) ASC, which is activated and undergoes oligomerization and recruitment upon detecting 
inflammatory ligands, serving as a bridge between sensor proteins and effector proteins, forming the scaffold for inflammasome 
assembly.19 3) Effector proteins, primarily represented by inflammatory caspases such as Caspase-1, essential for inflammasome 

Figure 1 The classic activation mechanism of pyroptosis: caspase-1-dependent. By Figdraw.
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function.20 Pyroptosis is one of several regulated cell death mechanisms, alongside apoptosis and necroptosis, each with distinct 
pathways, outcomes, and inflammatory implications. Pyroptosis is a rapid inflammatory response to infection or cellular stress, 
contrasting with apoptosis, which is a controlled, non-inflammatory process. Necroptosis acts as an alternative pathway when 
apoptosis fails, sharing some characteristics with pyroptosis but distinct in its regulatory mechanisms and triggers. Necroptosis is 
often a backup mechanism activated when apoptosis is inhibited and is mediated by receptor-interacting protein kinases (RIPK1 
and RIPK3), leading to MLKL activation.21,22

Recent research has highlighted pyroptosis as a key regulator of intestinal homeostasis and inflammation in chronic 
diseases.23 Chronic intestinal diseases, such as IBD, irritable bowel syndrome (IBS),24 celiac disease (CeD),25 chronic 
infectious enteritis, and intestinal fibrosis,26 are increasingly recognized as significant global public health concerns due 
to their rising prevalence and associated mortality rates.27 Given its crucial role in both immune defense and pathological 
inflammation, this review aims to provide a comprehensive overview of the molecular mechanisms underlying pyroptosis 
in chronic intestinal diseases (Figure 2). By examining its dual roles in both defense and pathology, this review sheds 

Figure 2 Pyroptosis in chronic intestinal diseases. By Figdraw. 
Note: Pyroptosis has been implicated in a variety of chronic intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, chronic 
infectious enteritis, intestinal fibrosis, and colorectal cancer. The potential therapeutic molecular targets are marked with*. 
Abbreviations: ECM, extracellular matrix; CTLs, cytotoxic T lymphocytes; NK, natural killer; TAMs, tumor-associated macrophages; IRF1, interferon regulatory factor 1; 
DCMP,dxms@cum@ppadt@pss; GSDME, gasdermin e; GSDMD, gasdermin d.
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light on the multifaceted nature of pyroptosis and its implications for future research and clinical advancements in 
gastroenterology.

Pyroptosis in IBD
IBD, which includes Crohn’s disease (CD) and ulcerative colitis (UC),28,29 is a chronic, non-specific inflammatory disorder of 
the gastrointestinal tract.30,31 The etiology of IBD is multifactorial and not yet fully understood. However, it is widely 
recognized that environmental factors, genetic predisposition, and gut microbiome dysbiosis interact to disrupt intestinal 
immunity, compromise the mucosal barrier, and trigger chronic inflammation and tissue damage.32,33 Pyroptosis plays a key 
role in IBD progression, with excessive activation observed in the intestinal tissues of IBD patients.

This dysregulated pyroptotic response contributes to chronic inflammation by amplifying damage signals and 
intensifying local immune responses, perpetuating a cycle of persistent inflammation that exacerbates the disease.34 

Emerging evidence suggests that pyroptosis is not only a major driver of intestinal injury but also a key factor in tissue 
repair, fibrosis, and long-term complications such as CRC.23

Several studies have reported elevated expression of inflammasomes in the intestines of IBD patients, leading to excessive 
pyroptosis and exacerbating intestinal damage.35 Research has demonstrated that NOD-like receptor protein 3 (NLRP3)- 
deficient mice show significantly reduced pyroptosis in colonic tissues, alleviating IBD severity and delaying disease onset.36 

This finding highlights the NLRP3 inflammasome as a crucial mediator in both the development and potential treatment of 
colitis. Furthermore, Gasdermin family proteins, such as GSDMB, Gasdermin D (GADMD), and Gasdermin E (GSDME), 
which are critical in executing pyroptosis, strongly correlate with IBD severity, making them promising therapeutic targets.37 

Recent advances in therapeutic strategies include the development of oral pyroptosis inhibitors, which specifically target 
intestinal lesions.34,38 These inhibitors hold great potential for reducing inflammation, preventing excessive pyroptosis, and 
preserving intestinal integrity, offering new avenues for IBD management.

Pyroptosis in Intestinal Fibrosis
Intestinal fibrosis is a severe complication of chronic gastrointestinal diseases, including IBD, which encompasses CD 
and UC, as well as conditions such as ulcerative jejunitis and radiation enteritis.39 This pathological condition results in 
bowel narrowing, structural alterations, and functional impairment, significantly reducing patients’ quality of life.40 

Intestinal fibrosis is closely associated with chronic inflammation and is influenced by factors such as cellular damage, 
recruitment of inflammatory cells, and the production of transforming growth factor-beta (TGF-β).41 Recent studies have 
revealed a positive correlation between fibrosis, pyroptosis, and inflammasomes.42,43 Key upstream activators of the 
TGF-β/Sma-Mad related protein (SMAD) pathway, such as caspase-1, NLRP3, and nuclear factor kappa B (NF-κB), 
have been identified, with TGFβ emerging as a potential anti-fibrotic target. Activation of inflammasomes, including 
NLRP3 and absent in melanoma 2 (AIM2), has been implicated in fibrosis progression.44 The NLRP3 inhibitor 
MCC950 has demonstrated significant anti-fibrotic effects in preclinical studies.45 During chronic inflammation, macro-
phages and lymphocytes are recruited to affected tissues, where they undergo pyroptosis. This process releases 
inflammatory factors, activates the TGF-β signaling pathway, increases extracellular matrix (ECM) synthesis, and 
indirectly promotes intestinal fibrosis.46 GSDMD-dependent macrophage pyroptosis has been shown to intensify the 
inflammatory response in the intestinal mucosa, contributing to local cell death and fibrosis progression.47,48 

Furthermore, GSDME has emerged as a novel therapeutic target for fibrosis prevention and treatment.49 In vitro studies 
using intestinal epithelial cell models have highlighted a strong association between pyroptosis and intestinal fibrosis. As 
the understanding of pyroptosis mechanisms deepens, researchers are actively exploring anti-fibrotic strategies targeting 
pyroptosis pathways, including inhibitors of NLRP3 inflammasomes and caspase-1, which have demonstrated promise in 
preclinical models.50 While studies on pyroptosis and fibrosis have focused on other organs, such as the liver,51 

kidneys,52 and lungs,53 further investigation is necessary to fully elucidate its role in intestinal fibrosis. Targeting 
pyroptosis could offer novel therapeutic opportunities for managing intestinal fibrosis and improving outcomes for 
patients with chronic gastrointestinal diseases.
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Pyroptosis in CeD
CeD is a chronic autoimmune disorder of the small intestine triggered by gluten ingestion in genetically susceptible 
individuals.54 This condition affects approximately 1% of the global population.55 In CeD, DAMPs released during 
inflammatory cell death are thought to initiate mucosal damage and contribute to the persistence of chronic disease. 
Pyroptosis, a pro-inflammatory form of programmed cell death, is believed to play a significant role in the pathophysiol-
ogy of CeD by driving inflammation and tissue damage. Elevated caspase-1, IL-1β, and GSDMD levels have been 
observed in the duodenal tissues of CeD patients, suggesting active pyroptosis.56 In genetically predisposed individuals, 
gluten consumption induces an influx of γδT cells into the duodenal mucosa. These cells produce high levels of 
interferon-γ, which upregulates interferon regulatory factor 1 (IRF1) expression and enhances GSDMD expression in 
intestinal epithelial cells, priming them for a “pre-pyroptotic” state. These cells undergo pyroptosis following gluten 
exposure, leading to villous atrophy in the duodenum and subsequent nutrient malabsorption.57 During pyroptosis, the 
release of intracellular contents into the extracellular space can be misinterpreted by the immune system as foreign 
antigens, thereby triggering an autoimmune response. This process is important in the pathogenesis of CeD58 and may 
also contribute to further damage in the small intestine. Furthermore, CeD is frequently associated with other auto-
immune disorders, such as thyroid diseases and type 1 diabetes, where pyroptosis is also thought to play a significant 
role.59 The association between pyroptosis and CeD highlights its broader relevance in autoimmune diseases. Future 
research should aim to elucidate the precise molecular mechanisms underlying pyroptosis in CeD and explore targeted 
therapeutic strategies to mitigate inflammation and intestinal damage.

Pyroptosis in Diverticulitis
Diverticulitis is a chronic inflammatory condition of the colon associated with diverticular disease.60 It is characterized 
by inflammation or infection of diverticula—pouches formed within the wall of the large intestine. The recurrence of 
diverticulitis is unpredictable and often results in persistent gastrointestinal symptoms.61 The pathogenesis of diverticu-
litis is closely associated with an imbalance in the gut microbiota and inflammation of the intestinal wall. A complex 
positive feedback loop exists between the inflammatory response in diverticulitis and pyroptosis. Research suggests that 
the composition of the gut microbiota significantly influences both the formation of diverticula and the subsequent 
inflammatory response.62 During episodes of diverticulitis, infection by gut microbes can trigger pyroptosis, a pro- 
inflammatory form of programmed cell death. This process leads to cellular destruction and the release of cytokines, 
which amplify the immune response. The resulting inflammatory cascade exacerbates intestinal inflammation and 
contributes to disease progression.63

Some studies suggest that acute diverticulitis may lead to subsequent IBS-like symptoms, although the mechanisms 
underlying this transition remain poorly understood. Furthermore, the role of pyroptosis in diverticulitis has not been 
extensively investigated. Further research is needed to address this gap and determine how pyroptosis influences disease 
progression, recurrence, and symptomatology.

Pyroptosis in IBS
IBS is a common chronic functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort 
and altered bowel habits.64 It affects approximately 5% to 10% of the global population.24,65 Although the exact causes 
and pathophysiological mechanisms of IBS remain unclear, it is widely believed that a combination of factors, such as 
gut microbiota, immune responses, gastrointestinal motility, and psychological influences, contribute to its development. 
Psychological factors play an important role in IBS, with evidence indicating that conditions such as anxiety may 
exacerbate pyroptosis, potentially worsening IBS symptoms.66,67 Excessive pyroptosis has been implicated in altering the 
gut microbiota composition, leading to microbial dysbiosis. This dysbiosis can activate inflammasome, further driving 
pyroptosis and creating a feedback loop that intensifies IBS symptoms.68,69 Moreover, dysregulation of inflammasomes 
may contribute to abnormal immune responses and gut inflammation in IBS. Studies have shown that pyroptosis can also 
compromise the integrity of intestinal epithelial cells by increasing intestinal permeability, allowing harmful substances 
to enter the gut and trigger inflammation. The release of cytokines such as IL-1β and IL-18 during pyroptosis has been 
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associated with intestinal discomfort and pain.64 Moreover, infectious gastroenteritis is recognized as a significant risk 
factor for the onset of IBS.70 Such infections can induce pyroptosis, increasing inflammatory responses and subsequently 
disrupting gut function.71,72 Current research has provided preliminary insights into the association between pyroptosis 
and IBS. However, inconsistencies remain regarding the specific role of pyroptosis in IBS pathogenesis. This highlights 
the need for further targeted studies to clarify the relationship between pyroptosis, gut microbiota, and IBS. Investigating 
this association could pave the way for innovative therapeutic approaches. Modulating pyroptosis pathways may help 
alleviate IBS symptoms, and interventions targeting pyroptosis—such as anti-inflammatory drugs or agents that regulate 
gut microbiota—offer promising new perspectives for IBS treatment.

Pyroptosis in Chronic Infectious Enteritis
Pyroptosis plays a significant role in the progression of chronic infectious enteritis.73 Research indicates that patients 
with chronic infectious enteritis show elevated inflammasome activity in the gut, leading to increased pyroptosis. This 
process serves both as a defense mechanism against persistent infection and an adaptive response to gut microbial 
dysbiosis. Pyroptosis may affect the progression of chronic infectious enteritis through several mechanisms: 1) Inhibition 
of Pathogen Replication: Infected intestinal epithelial cells undergoing pyroptosis can release inflammatory factors that 
improve local immune responses, directly eliminate infected cells, and inhibit bacterial replication and spread within the 
gut. This mechanism helps to control infection and modulate inflammation.74 2) Modulation of Gut Microbiota: 
Pyroptosis can alter the composition of the gut microbiota, which in turn affects immune responses.1 A balanced 
microbiota competes with pathogens, reducing inflammation and preventing persistent infections.3 3) Pyroptosis con-
tributes to gut self-repair mechanisms. The clearance of damaged cells creates space for new cell regeneration, 
facilitating tissue healing. However, excessive pyroptosis can lead to excessive inflammation, worsening enteritis 
symptoms.75 However, excessive pyroptosis can exacerbate inflammation, worsening enteritis symptoms.76 Studies 
have shown that gut microbial infections can induce pyroptosis, which clears infected cells and intensifies local 
inflammation.77 The interaction between microbial infection and pyroptosis is considered a key factor in the pathogenesis 
of chronic infectious enteritis.23,73 Some bacteria, such as Helicobacter pylori,78 can evade host immune surveillance by 
inducing pyroptosis. This allows them to maintain chronic inflammation within the host,79 leading to gut tissue damage 
and gastrointestinal dysfunction.80 The Gasdermin family, particularly GSDMD, plays a key role in defending intestinal 
epithelial cells against bacterial infections and regulating intestinal inflammation.

The colonic mucus layer serves as both a habitat for symbiotic bacteria and a physical barrier against pathogens such as 
E. coli. In intestinal epithelial cells, GSDMD deficiency leads to reduced mucus secretion, loss of the mucus layer, and significant 
changes in the spatial distribution and composition of the gut microbiota.81 GSDMD-deficient mice are more susceptible to gut 
pathogen infections, highlighting the importance of GSDMD in maintaining gut integrity. In chronic infectious enteritis, 
pyroptosis triggers local inflammatory responses and may impact systemic immune status. Caspase-driven damage signals 
activate various inflammatory pathways, contributing to chronic infectious enteritis.23 Persistent pathogen stimulation and 
immune activation make pyroptosis a defining feature of the disease. Chronic inflammation, coupled with ongoing tissue 
regeneration, can impair gut barrier function and promote microbial dysbiosis. This dysbiosis, in turn, exacerbates inflammation 
and may lead to severe complications such as intestinal perforation and sepsis. Thus, understanding the mechanisms of pyroptosis 
offers valuable insights into the pathogenesis of chronic infectious enteritis and related inflammatory conditions.

Pyroptosis in CRC
CRC is a complex disease with high incidence and mortality rates, influenced by genetic, environmental, and immune factors. 
It is the third most common cancer globally, driven by aging populations and deteriorating environmental conditions.82 CRC 
often develops in conjunction with other inflammatory intestinal disorders.83 Recent studies have shown that pyroptosis plays 
a dual role in CRC, inhibiting tumor cell growth and metastasis and potentially promoting tumor progression through chronic 
inflammation.84,85 In the tumor microenvironment (TME), pyroptosis significantly impacts immune regulation by releasing 
IL-1β and IL-18, which increase the interaction between innate and adaptive immunity.86 This process recruits immune cells, 
such as natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), to the tumor site, thereby boosting tumor immune 
surveillance.87 Moreover, tumor-associated macrophages (TAMs) can also induce pyroptosis in CRC cells via the secretion of 
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pro-inflammatory factors, though, in some cases, this may paradoxically support tumor survival and proliferation.88 Moreover, 
in CRC patients, pyroptosis-related genes (PRGs) are strongly correlated with disease prognosis.85,88 One key pyroptosis 
protein in CRC is GSDME. The methylation status of GSDME is emerging as a potential biomarker for CRC, offering 
opportunities for early diagnosis and disease monitoring.84 Genetic, mutational, and environmental factors influence the 
expression of human inflammasome signaling and pyroptosis-related genes, which in turn regulate inflammasome activation. 
In CRC cells, caspase-3 activation cleaves GSDME, releasing an N-terminal fragment that forms membrane pores, triggering 
pyroptosis. While GSDME is typically expressed in various cell types, it is often silenced in tumor cells. However, GSDME 
expression can shift tumor cells from apoptosis induced by tumor necrosis factor-alpha (TNF-α) and cycloheximide to 
pyroptosis.89 The absence of pyroptosis-related proteins in tumor cells, such as GSDME, is associated with decreased levels of 
perforin and granzyme B, as well as reduced infiltration of NK cells and CTLs in the TME. This suggests that a lack of 
pyroptosis can change the immune landscape and impact tumor progression.8 Furthermore, single nucleotide polymorphisms 
in the NLRP3 gene have been associated with decreased survival rates in invasive CRC patients.90 Research highlights the role 
of pyroptosis-related genes, including NLRP3, AIM2, and Gasdermin M5 (GSDM5), in the pyroptosis signaling pathways of 
various cancers, such as gastric cancer, colitis-associated CRC, and esophageal cancer. Inflammasomes, key regulators of 
mucosal innate immune responses, influence intestinal pathogen infections and inflammation-driven tumorigenesis.91 

Deficiency in NLRP3 inflammasomes can impair NK cell IL-18 signaling pathways, promoting CRC cell growth and 
metastasis. Mice lacking NLRP3 or caspase-1 show increased susceptibility to inflammation-induced colon tumors.92 

Similarly, mice deficient in Asc and caspase-1 are more prone to colitis and colitis-associated cancer,93 demonstrating the 
protective role of inflammasome in CRC-related inflammation models. From a therapeutic perspective, certain Food and Drug 
Administration-approved chemotherapeutic drugs and natural compounds have been shown to induce pyroptosis in tumor 
cells. For instance, 5-fluorouracil (5-FU)94 and programmed death-ligand 1 (PD-L1)2 inhibitors enhance drug efficacy and 
reduce resistance by promoting pyroptosis by activating caspase-3 and caspase-1. Moreover, translocator protein (TSPO)- 
targeted photodynamic therapy (PDT) has shown promise in inhibiting CRC progression by inducing pyroptosis via 
photosensitizers that generate reactive oxygen species under specific light wavelengths.95 Emerging advancements in 
nanotechnology96 and gene editing97,98 are being tailored to patient-specific genetic profiles and tumor characteristics to 
improve treatment outcomes. Overall, pyroptosis is critical in the onset and progression of CRC, representing a promising 
therapeutic target. Further research into the mechanisms of pyroptosis and its clinical applications is expected to improve CRC 
prognosis and provide novel treatment strategies.

Connection Between Gut Microbiota and Pyroptosis
The gut microbiota, a diverse microbial community within the gastrointestinal tract, plays a crucial role in host health and 
disease. Its composition is intricately associated with pyroptosis. Dysbiosis, or an imbalance in gut microbiota, can lead 
to the production of abnormal metabolic products that modulate inflammation and pyroptosis.99 Certain beneficial 
microbes, such as specific strains of Lactobacilli and Bifidobacteria, can inhibit inflammasome activation and reduce 
pyroptosis by producing metabolites like short-chain fatty acids.100 However, some pathogenic bacteria, such as toxin- 
producing Clostridium perfringens, can trigger pyroptosis by activating the NLRP3 inflammasome, compromising the 
integrity of the gut barrier and exacerbating inflammation.101,102 Pyroptosis plays a direct role in shaping the diversity 
and composition of the gut microbiota and is closely associated with inflammasomes in gut pathology. For example, the 
nucleotide-binding domain and leucine-rich repeat protein 6 (NLRP6) inflammasome significantly influence gut micro-
biota composition, epithelial cell function, and susceptibility to gastrointestinal inflammation, infections, and tumors.103 

The NLRP3 inflammasome has been shown to impact oxidative stress by altering the gut microbiota, specifically 
targeting bacteria such as Bacteroidetes and Lactobacillus species, including Lactobacillus reuteri.104 Similarly, the 
AIM2 inflammasome helps regulate the gut microbiota and prevent dysbiosis and inflammation by managing the IL-18/ 
IL-22BP/IL-22 and signal transducer and activator of transcription 3 (STAT3) pathways, along with the expression of 
specific antimicrobial peptides.105 This complex interplay between pyroptosis and gut microbiota is especially relevant in 
chronic intestinal diseases such as IBD and CRC.37 In IBD, pyroptosis is significantly elevated, leading to gut microbiota 
imbalances, extensive epithelial cell death, gut barrier destruction, and a perpetuating cycle of inflammation. Studies in 
animal models have shown that the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 
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1 (NLRP1) inflammasome exacerbates colitis through interactions with commensal microbes, reducing populations of 
butyrate-producing bacteria via IL-18-induced antimicrobial peptides. This disruption further compromises gut barrier 
function and perpetuates inflammation.106 In CRC, pyroptosis plays a dual role in both anti-tumor immunity and tumor 
progression. On the one hand, inducing pyroptosis in CRC cells can inhibit tumor growth by increasing immune 
surveillance. On the other hand, chronic inflammatory responses within the TME may support tumor progression. 
Fusobacterium nucleatum, a bacterium associated with CRC, has been shown to affect CASP6 expression, which is 
linked to resistance to 5-FU chemotherapy. This suggests that microbial interactions may affect CRC progression through 
mechanisms involving pyroptosis. Therefore, understanding the complex feedback loops between pyroptosis and the gut 
microbiota is essential for elucidating the pathogenesis of chronic intestinal diseases.

Conclusion and Future Research Perspectives
As research on pyroptosis in chronic intestinal diseases advances, the development of diagnostic and therapeutic strategies 
targeting pyroptosis has become a growing priority. This review provides a comprehensive analysis of pyroptosis across 
multiple chronic intestinal diseases, emphasizing its dual role in both host defense and inflammation. This review incorporates 
the latest findings on pyroptosis mechanisms, particularly the roles of inflammasomes and Gasdermin proteins, exploring the 
complex interaction between pyroptosis and gut microbiota and highlighting how dysbiosis can modulate inflammation. 
Moreover, it discussed the potential of targeting pyroptosis as a therapeutic strategy and recent advancements in pyroptosis 
inhibitors, which could revolutionize disease management.

Recent research has focused on various preclinical intervention strategies to modulate pyroptosis as a therapeutic target in 
chronic intestinal diseases, such as small-molecule inhibitors targeting components of the NLRP3 inflammasome, herbal 
medicine inhibiting NLRP3 activation, and targeting Gasdermin proteins.14 While preclinical studies have shown promise, 
clinical trials specifically investigating these interventions in chronic intestinal conditions are still emerging. Ongoing studies 
on NLRP3 inflammasome inhibitors may provide insights into their efficacy in treating IBD and related disorders.107 

However, comprehensive clinical data remain limited, requiring further research.
Despite the comprehensive overview of pyroptosis and its role in chronic intestinal diseases, several challenges remain. First, 

much of the current understanding is based on preclinical studies with limited clinical validation. More extensive clinical research 
is needed to fully elucidate the therapeutic potential of targeting pyroptosis. Second, the interaction between pyroptosis and gut 
microbiota is highly complex, and the precise contributions of specific microbial species to pyroptosis-driven pathology require 
further investigation. Lastly, while the manuscript provides insights into potential therapeutic strategies, the feasibility, specificity, 
and long-term safety of these interventions in clinical settings have not been fully evaluated.

Future research should focus on developing novel treatments that target inflammasomes or the Gasdermin family of 
proteins to reduce inflammation in chronic intestinal conditions. For instance, selectively inducing pyroptosis in CRC 
cells while sparing normal cells could enhance anti-tumor immune responses and improve the efficacy of existing cancer 
therapies.23 However, the potential limitations of targeting pyroptosis must be carefully considered. The role of 
pyroptosis in chronic intestinal diseases is intertwined with immune responses and gut microbiota, and its impact 
extends across various cell types and molecular pathways, making it challenging to target specifically without impacting 
other physiological processes. Targeting pyroptosis non-specifically could inadvertently impair immune defense mechan-
isms against infections or cancer. Furthermore, therapeutic responses may vary due to genetic factors and individual 
microbiome compositions, requiring personalized treatment approaches. Therefore, a deeper understanding of pyroptosis 
is important for developing innovative diagnostic tools and therapeutic strategies that minimize adverse effects while 
maximizing clinical benefits. Continued efforts in this field hold the potential to open new therapeutic avenues, ultimately 
improving the management of chronic intestinal diseases and CRC.
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