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Background: Endovascular treatment (EVT) has been recommended as a superior modality for the treatment of intracranial 
aneurysm. However, there still exists a worse percentage of poor functional outcome in patients with poor-grade aneurysmal 
subarachnoid hemorrhage (aSAH) undergoing EVT. Therefore, it is urgently needed to investigate the risk factors and develop 
a critical decision model in the subtype of such patients.
Methods: We extracted the target variables from an ongoing registry cohort study, PROSAH-MPC, which was conducted in multiple 
centers in China. We randomly assigned these patients to training and validation cohorts with a ratio of 7:3. Univariate and 
multivariate logistic regressions were performed to find the potential factors, and then nine machine learning models and a stack 
ensemble model were developed with optimized variables. The performance of these models was evaluated through several indicators, 
including area under the receiver operating characteristic curve (AUC-ROC). We further use Shapley Additive Explanations (SHAP) 
methods for the distribution of feature visualization based on the optimal models.
Results: A total of 226 eligible patients with poor-grade aSAH undergoing EVT were enrolled, while 89 (39.4%) has a poor 12-month 
outcome. Age (Adjusted OR [aOR], 1.08; 95% CI: 1.03–1.13; p = 0.002), subarachnoid hemorrhage volume (aOR, 1.02; 95% CI: 
1.00–1.05; p = 0.033), World Federation of Neurosurgical Societies grade (WFNS) (aOR, 2.03; 95% CI: 1.05–3.93; p = 0.035), and 
Hunt-Hess grade (aOR, 2.36; 95% CI: 1.13–4.93; p = 0.022) were identified as the independent risk factors of the poor outcome. Then, 
the prediction models developed have revealed that LightGBM algorithm has a superior performance with an AUC-ROC value of 
0.842 in the validation cohort, while the SHAP results showed that age is the most important risk factor affecting functional outcomes.
Conclusion: The LightGBM model holds immense potential in facilitating risk stratification for poor-grade aSAH patients under-
going endovascular treatment who are at risk of adverse outcomes, thereby enhancing clinical decision-making processes.
Trial Registration: PROSAH-MPC. NCT05738083. Registered 16 November 2022 – Retrospectively registered, https://clinical 
trials.gov/study/NCT05738083.
Keywords: intracranial aneurysm, subarachnoid hemorrhage, endovascular procedures, machine learning, prognosis

Introduction
Aneurysmal subarachnoid hemorrhage (aSAH) is a prevalent type of stroke associated with substantial mortality and 
morbidity rates, affecting approximately 30% of survivors with significant neurological impairments.1 The International 
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Subarachnoid Aneurysm Trial (ISAT)2 has emphasized that endovascular coiling treatment is more likely to lead to 
independent survival at one year compared to neurosurgical clipping, with this survival benefit extending for at least 
seven years in cases where the ruptured aneurysm is suitable for both treatment options. However, a grim reality emerges 
when considering poor-grade aSAH, which classified as Hunt and Hess grades III and V, affects over 40% of SAH 
patients as our previous research indicates.3 Despite significant advancements in endovascular treatment (EVT) and 
neurological intensive care, the prognosis for these patients remains extremely poor.4–6

A well-conducted systematic review has revealed a significant trend: the proportion of patients with poor-grade aSAH 
undergoing EVT have surged from 10.0% in the 1990–2000 period to an impressive 62.0% between 2010 and 2014. This shift 
has been accompanied by a gradual improvement in favorable neurological outcomes, increasing from 37.0% to 44.0% over 
the same timeframe. While an established model7 with a superior performance can early predict the risk of poor outcomes in 
patients with aSAH receiving EVT, and even some models developed to assess the risk of outcome in the subtype of poor- 
grade aSAH,8–10 these studies suffer from significant limitations. These include small sample sizes and the absence of external 
validation, which may lead to overfitting and limit the generalizability of their findings. Moreover, despite the superior 
performance of these models, poor interpretability and transparency hinder their clinical applicability.

Recently, machine learning (ML) algorithms have become powerful tools for analyzing complex medical datasets, 
surpassing traditional methods in predicting clinical outcomes.11,12 However, poor-grade aSAH patients undergoing endo-
vascular treatment (EVT) are often excluded from broader cohorts due to their severe condition. Existing models for this 
subgroup lack transparency, particularly in integrating Shapley Additive Explanations (SHAP), limiting their clinical applic-
ability. Given the variability in prognosis and the complexity of EVT outcomes, real-time prognostic tools are essential for 
guiding individualized treatment. ML-based models, like the one proposed in this study, can aid in early risk identification and 
targeted interventions to improve outcomes and reduce complications such as delayed cerebral ischemia and rebleeding.

Hence, this study aims to develop a predictive model for poor outcomes in poor-grade aSAH patients undergoing 
EVT by applying advanced ML algorithms and newly measured data. We will compare model performance to identify 
the most effective approach and incorporate SHAP analysis to enhance interpretability.13 Additionally, our model 
introduces a novel prognostic factor—total bleeding volume (TBV), identified in our previous research—distinguishing 
it from existing models. By focusing on this high-risk population, our study seeks to provide a clinically relevant and 
actionable framework for risk stratification and personalized treatment.

Methods and Materials
Study Design and Cohort
The PROSAH-MPC registry cohort study, identified by the number NCT05738083, is an investigator-initiated effort 
among multiple neurological centers in China. Its primary goal is to identify prognostic factors and establish robust 
prediction models that can accurately forecast complications, disability, and mortality in patients with aneurysmal SAH. 
Specifically, for this study, we have extracted data from eligible patients with poor-grade aSAH, classified as Hunt and 
Hess grades III and V, who underwent endovascular treatment (EVT) between October 2018 and December 2021. By 
focusing on this subset of patients, we aim to gain insights into the factors that influence their outcomes and develop 
predictive models tailored to their unique characteristics. The diagnosis of aneurysmal SAH in this study was rigorously 
confirmed using imaging modalities such as computed tomography (CT), CT angiography, or digital subtraction 
angiography (DSA), adhering strictly to the current guidelines. Furthermore, the study was conducted in accordance 
with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) protocol.

The inclusion criteria defined as follows: (1) patients with spontaneous aneurysmal subarachnoid hemorrhage (aSAH); 
(2) patients with Hunt and Hess grades III and V at admission, indicating severe neurological impairment; (3) patients who 
received endovascular treatment (EVT) within 72 hours after the onset of symptoms; (4) patients who underwent a non- 
contrast computed tomography (CT) scan at the time of admission; and (5) patients who were available for follow-up for at 
least 1 year after discharge. Then we excluded patients with (1) patients with complicated cerebrovascular malformations or 
other pseudo-aneurysms; (2) patients with permanent brain injury at admission; (3) patients in a postoperative state at 
admission; (4) patients with incomplete clinical data. Figure 1 illustrates the detail of population enrollment from the dataset.
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Variables Collection
The target information was extracted from the Electronic Data Capture (EDC) database from the project of the PROSAH- 
MPC. This comprehensive dataset included a range of demographic information, such as age, sex, and relevant medical 
history factors that could potentially influence the patient’s prognosis, including hypertension, diabetes, coronary heart 
disease, tobacco and alcohol consumption, and anticoagulant therapy. Additionally, the severity of the patients’ condition 
on admission was assessed and extracted using several validated scales, including the World Federation of Neurosurgical 
Societies (WFNS) scale, the Hunt and Hess (HH) grade, and the modified Fisher scale (mFS). Detailed aneurysm 
features, including its location, number, length, width, and neck size, were also collected. We also extracted the condition 
of intracranial hemorrhage (total bleeding volume [TBV] and presence of intraparenchymal hemorrhage [IPH] and 
intraventricular hemorrhage [IVH]). It is noted that the total bleeding volume (TBV) was calculated using a proposed 
Hybrid 2D/3D U-Net model from our previous study.14

Missing Data Processing
Four patients had missing demographic data, representing less than 5% of the total patient population.15,16 Consequently, 
the data were handled using a direct deletion approach.

Operation Management
All EVTs were performed by highly experienced senior neurointerventionalists. To prevent and manage cerebral 
vasospasm, all patients received intravenous nimodipine for up to 21 days postoperatively, in accordance with current 
clinical guidelines. Nimodipine is widely recognized for its efficacy in reducing the risk of delayed cerebral ischemia 
associated with vasospasm, as recommended by the American Heart Association (AHA) guidelines.1,17

Figure 1 The schematic diagram illustrates the current research work and the corresponding abstract of the study.
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For the treatment of brain edema, osmotic therapy was administered using either mannitol or hypertonic saline, 
depending on intracranial pressure levels. This strategy aligns with established protocols for controlling elevated 
intracranial pressure and mitigating the risk of further neurological deterioration.1

Outcome Definition
The neurological outcomes of these patients were evaluated at the 12-month mark following the initial stroke onset, 
utilizing the modified Rankin Scale (mRS) as the assessment tool. A favorable neurological outcome was designated as 
an mRS score within the range of 0 to 2, indicative of minimal to no disability. Conversely, a poor outcome was classified 
as an mRS score spanning from 3 to 6, suggesting moderate-to-severe disability or even death. To ensure objectivity, all 
patient follow-ups were conducted via telephone consultations with a neurosurgeon who was blinded to the patients’ 
clinical information.

Model Development and Validation
Initially, the Boruta algorithm was employed to identify the most pivotal factors influencing the outcomes of endovas-
cularly treated aSAH patients. Leveraging the inherent stability and credibility of the multiple random forest classifica-
tion algorithm, the Boruta algorithm successfully extracted robust and reliable features.

Subsequently, the dataset was meticulously divided into training and validation sets, maintaining a ratio of 7:3. The 
training set served as the foundation for constructing nine distinct machine learning (ML) models, encompassing Logistic 
Regression (LR), Decision Tree (DT), Elastic Net (Enet), K-Nearest Neighbors (KNN), Light Gradient Boosting 
Machine (LightGBM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Support Vector Machines 
(SVM), and Multilayer Perceptron (MLP). We used a grid search approach combined with five-fold cross-validation 
to determine the optimal hyperparameters for each model. Detailed Hyperparameters can be founded in Table S1.

To enhance predictive performance, we ventured beyond individual models and employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) to develop a sophisticated stacking ensemble model. This ensemble 
model adeptly fused the insights from the nine individual classifiers, offering a comprehensive and integrated 
perspective.

Logistic regression was chosen as the benchmark model for comparative analysis, owing to its widespread adoption in 
prior medical research for linear predictive tasks. Our primary objective was to assess whether a non-linear ML approach 
could offer incremental benefits, surpassing the performance of the traditional linear model.

Model Interpretability
The SHAP algorithm is adopted to elucidate the reliability and importance of model predictions. By assigning each 
variable its corresponding attribution value (SHAP value), which can be used to quantitatively measure the impact of 
each feature and sample on the model predictions and thus interpret prediction results. The SHAP summary plot was 
employed to illustrate the contributions of each feature attributed to the model. Moreover, the SHAP force plot was 
further used to visualize the impact of crucial features on the final model for individual patients.

Statistical Analysis
The Kolmogorov–Smirnov test served as the cornerstone in identifying the nature of variable distributions. For 
continuous variables, we employed either the independent t-test or the Mann–Whitney U-test, presenting the results as 
Mean ± SD or median alongside the inter-quartile range (IQR), respectively. Categorical variables, on the other hand, 
were scrutinized using Chi-square or Fisher’s exact tests, with outcomes expressed as percentages.

To ensure the pinnacle of optimization and robustness for each ML model, we integrated hyperparameter tuning with 
a rigorous five-fold cross-validation procedure. The validation group’s model performance was meticulously evaluated 
using two pivotal metrics: AUROC and PRAUC. These metrics served as a sieve, enabling us to single out the optimal 
model that boasted the utmost predictive accuracy.

To gauge the calibration of our chosen model, we harnessed the Hosmer–Lemeshow goodness-of-fit test, which 
furnished a statistical gauge of how seamlessly the model’s predictions aligned with actual outcomes. Furthermore, to 
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delve into the clinical significance of these algorithms, we conducted decision curve analysis (DCA). DCA provided 
a quantitative lens to assess the tangible benefits derived from incorporating a specific model into clinical decision- 
making, thereby illuminating the real-world implications of our discoveries.

For the SHAP value analysis, we leveraged the “fastshap” package within R software, while visualization of these 
values for each feature was masterfully achieved through the “ggbeeswarm” and “shapviz” packages. All statistical tests 
adhered to a two-tailed approach, with statistical significance set at P < 0.05. The statistical analyses were meticulously 
performed using IBM SPSS Statistics for Windows (Version 26.0, IBM Corp., Armonk, NY, USA) and R software 
(version 4.3.0, accessible at https://www.r-project.org/).

Results
Baseline Characteristics
A total of 226 patients with poor-grade aSAH receiving EVT were included in the study. We divided them into a training 
and validation cohorts according to the ratio of 7:3. There was no significant difference in baseline characteristics 
between the training and validation cohorts (p>0.05) (Table 1). The number of patients with poor outcome was 66 
(41.8%) for the training cohort and 23 (33.8%) for the validation cohort. Among them, women represented 149 patients, 
accounting for 65.9% of the total. And the average age was 63.5 years. Table 2 showed the detailed baseline 
characteristics of the training and validation cohorts.

Table 1 Baseline Characteristics Between Training Set and Validation Set in Aneurysmal 
Subarachnoid Hemorrhage Following Endovascular Treatment

Characteristic Overall Training Set Validation Set P

Participants, No. 226 158 68

Age (median [IQR]) 63.50 [53.00, 69.75] 64.00 [54.00, 70.00] 62.50 [52.00, 69.00] 0.459

Female (%) 149 (65.9) 100 (63.3) 49 (72.1) 0.262

Hypertension (%) 131 (58.0) 90 (57.0) 41 (60.3) 0.750
Diabetes (%) 12 (5.3) 7 (4.4) 5 (7.4) 0.281

CHD (%) 8 (3.5) 5 (3.2) 3 (4.4) 0.942

Smoking (%) 22 (9.7) 16 (10.1) 6 (8.8) 0.953
Drinking (%) 9 (4.0) 8 (5.1) 1 (1.5) 0.370

Anticoagulant (%) 10 (4.4) 6 (3.8) 4 (5.9) 0.729
TBV (median [IQR]) 29.67 [16.64, 49.71] 28.88 [17.20, 47.00] 31.32 [16.54, 53.86] 0.682

IPH (%) 173 (76.5) 121 (76.6) 52 (76.5) >0.99

IVH (%) 64 (28.3) 42 (26.6) 22 (32.4) 0.470
WFNS (%) 0.292

II 61 (27.0) 40 (25.3) 21 (30.9)

III 7 (3.1) 6 (3.8) 1 (1.5)
IV 97 (42.9) 73 (46.2) 24 (35.3)

V 61 (27.0) 39 (24.7) 22 (32.4)

Hunt-Hess (%) 0.272
III 119 (52.7) 88 (55.7) 31 (45.6)

IV 46 (20.4) 32 (20.3) 14 (20.6)

V 61 (27.0) 38 (24.1) 23 (33.8)
mFS (%) 0.937

1 5 (2.2) 4 (2.5) 1 (1.5)

2 38 (16.8) 27 (17.1) 11 (16.2)
3 82 (36.3) 58 (36.7) 24 (35.3)

4 101 (44.7) 69 (43.7) 32 (47.1)

(Continued)
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Univariate and Multivariate Logistic Regression
Univariate and multivariate logistic regression were employed to differentiate characteristics between outcomes, showing 
together distinguished factors associated with outcome at 12 months after discharge (Table 3). Age (Adjusted OR [aOR], 
1.08; 95% CI: 1.03–1.13; p = 0.002), TBV (aOR, 1.02; 95% CI: 1.00–1.05; p = 0.033), Hunt-Hess grade (aOR, 2.36; 
95% CI: 1.13–4.93; p = 0.022), and WFNS grade (aOR, 2.03; 95% CI: 1.05–3.93; p = 0.035) were deemed as 
contributing factors for poor outcome. The corresponding results of univariate and multivariate logistic regression 
were illustrated by a forest plot (Figure 2).

Model Performance
Potential predictive variables were split out using shadow features through the Boruta algorithm. Six most relevant 
features were employed to train and build the ensemble model, including the mFS, hypertension, TBV, age, Hunt-Hess 
and WFNS grade (Figure 3). In the training set, fivefold cross-validation was used to evaluate predictive performance and 
general error estimates in the model development. Next, we assessed the predictive capabilities of machine learning 
models that were trained using a combination of 9 distinct algorithms and a stacking ensemble model.

In the training and validation set, LightGBM exhibited superior predictive performance with an AUC-ROC values of 
0.901 and 0.842, respectively (Figure 4A and B). The PR curve results indicated that the PRAUC values for the 
LightGBM model were distinguished, with corresponding values of 0.874 (training set) and 0.745 (validation set) 
(Figure 4C and D). Then, DCA was used to evaluate the clinical application value of each prediction model. As 
shown in Figure 4E and F, LightGBM model still exhibited the continuous maximum benefit in the training and 
validation set. The calibration curve showed a strong correlation between the predicted and actual risks in terms of 
Brier score (BS), which was used for indicating the calibration ability. The LightGBM model had the best calibration in 
the training group and validation group (Figure 4G and H). Table 4 records the details of each model performance for 
training and validation cohorts. Furthermore, we performed a comparative analysis between the LightGBM model and 
well-established clinical tools, including the Hunt-Hess and WFNS grading systems. As depicted in Figure S1, the area 
under the curve (AUC) for WFNS is 0.738 (95% CI: 0.682–0.794), whereas for the Hunt and Hess grading, it is 0.742 
(95% CI: 0.691–0.793). This comparison highlights the superior predictive performance of our model over the traditional 
scoring systems.

Table 1 (Continued). 

Characteristic Overall Training Set Validation Set P

Participants, No. 226 158 68

Aneurysm multiple (%) 33 (14.6) 28 (17.7) 5 (7.4) 0.082

Size (median [IQR])
Aneurysm Length 4.80 [3.40, 6.47] 4.80 [3.30, 6.60] 4.80 [3.50, 6.40] 0.910

Aneurysm Width 3.90 [3.00, 5.30] 3.95 [3.00, 5.47] 3.80 [3.00, 4.80] 0.507

Neck 3.15 [2.50, 4.10] 3.15 [2.50, 4.00] 3.15 [2.60, 4.43] 0.523
Location (%) 0.307

ACA 6 (2.7) 5 (3.2) 1 (1.5)

MCA 22 (9.7) 19 (12.0) 3 (4.4)
ACoA 76 (33.6) 55 (34.8) 21 (30.9)

PCA 8 (3.5) 6 (3.8) 2 (2.9)

PCoA 82 (36.3) 54 (34.2) 28 (41.2)
Other 32 (14.2) 9 (12.0) 13 (19.1)

Poor outcome 89 (39.4) 66 (41.8) 23 (33.8) 0.330

Abbreviations: WFNS, World Federation of Neurosurgical Societies; mFS, modified Fisher scale; ACA, anterior 
cerebral aneurysm; MCA, middle cerebral aneurysm; ACoA, anterior communicating aneurysm; PCA, posterior cerebral 
aneurysm; PCoA, posterior communicating aneurysm; TBV, total bleeding volume; IPH, intraparenchymal hemorrhage; 
IVH, intraventricular hemorrhage.
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Table 2 Patient Characteristics and Group Comparisons for Aneurysmal Subarachnoid Hemorrhage Following Endovascular Treatment Between Training Set and Validation Set

Characteristic Training Set Validation Set

Overall Good Outcome Poor Outcome P Overall Good Outcome Poor Outcome P

Participants, No. 158 92 66 68 45 23
Age (median [IQR]) 64.00 [54.00, 70.00] 61.00 [52.00, 66.00] 68.00 [61.00, 73.00] <0.001 62.50 [52.00, 69.00] 61.00 [50.00, 66.00] 69.00 [58.00, 73.50] 0.011

Female (%) 100 (63.3) 60 (65.2) 40 (60.6) 0.670 49 (72.1) 33 (73.3) 16 (69.6) 0.966

Hypertension (%) 90 (57.0) 46 (50.0) 44 (66.7) 0.054 41 (60.3) 25 (55.6) 16 (69.6) 0.392
Diabetes (%) 7 (4.4) 4 (4.3) 3 (4.5) >0.99 5 (7.4) 1 (2.2) 4 (17.4) 0.076

CHD (%) 5 (3.2) 3 (3.3) 2 (3.0) >0.99 3 (4.4) 3 (6.7) 0 (0.0) 0.521

Smoking (%) 16 (10.1) 10 (10.9) 6 (9.1) 0.922 6 (8.8) 6 (13.3) 0 (0.0) 0.167
Drinking (%) 8 (5.1) 5 (5.4) 3 (4.5) >0.99 1 (1.5) 1 (2.2) 0 (0.0) >0.99

Anticoagulant (%) 6 (3.8) 3 (3.3) 3 (4.5) >0.99 4 (5.9) 3 (6.7) 1 (4.3) >0.99
TBV (median [IQR]) 28.88 [17.20, 47.00] 25.24 [13.37, 37.52] 38.58 [26.55, 60.36] <0.001 31.32 [16.54, 53.86] 25.97 [13.19, 34.63] 56.29 [34.72, 83.36] <0.001

IPH (%) 121 (76.6) 67 (72.8) 54 (81.8) 0.260 52 (76.5) 30 (66.7) 22 (95.7) 0.018

IVH (%) 42 (26.6) 19 (20.7) 23 (34.8) 0.070 22 (32.4) 15 (33.3) 7 (30.4) >0.99
WFNS <0.001 0.006

II 40 (25.3) 35 (38.0) 5 (7.6) 21 (30.9) 16 (35.6) 5 (21.7)

III 6 (3.8) 4 (4.3) 2 (3.0) 1 (1.5) 0 (0.0) 1 (4.3)
IV 73 (46.2) 47 (51.1) 26 (39.4) 24 (35.3) 20 (44.4) 4 (17.4)

V 39 (24.7) 6 (6.5) 33 (50.0) 22 (32.4) 9 (20.0) 13 (56.5)

Hunt-Hess <0.001 0.015
III 88 (55.7) 68 (73.9) 20 (30.3) 31 (45.6) 25 (55.6) 6 (26.1)

IV 32 (20.3) 18 (19.6) 14 (21.2) 14 (20.6) 10 (22.2) 4 (17.4)

V 38 (24.1) 6 (6.5) 32 (48.5) 23 (33.8) 10 (22.2) 13 (56.5)
mFS 0.006 0.177

1 4 (2.5) 2 (2.2) 2 (3.0) 1 (1.5) 0 (0.0) 0 (0.0)

2 27 (17.1) 21 (22.8) 6 (9.1) 11 (16.2) 10 (22.2) 1 (4.3)
3 58 (36.7) 39 (42.4) 19 (28.8) 24 (35.3) 16 (35.6) 8 (34.8)

4 69 (43.7) 30 (32.6) 39 (59.1) 32 (47.1) 18 (40.0) 14 (60.9)

Aneurysm multiple (%) 28 (17.7) 12 (13.0) 16 (24.2) 0.108 5 (7.4) 3 (6.7) 2 (8.7) >0.99
Size (median [IQR])

Length 4.80 [3.30, 6.60] 4.50 [2.98, 6.12] 5.10 [4.03, 6.77] 0.092 4.80 [3.50, 6.40] 4.80 [3.40, 6.20] 5.00 [3.55, 6.85] 0.433

Width 3.95 [3.00, 5.47] 3.90 [2.92, 5.05] 4.05 [3.00, 5.77] 0.434 3.80 [3.00, 4.80] 3.80 [3.00, 4.80] 3.80 [3.00, 5.00] 0.731
Neck 3.15 [2.50, 4.00] 3.08 [2.28, 4.00] 3.50 [2.60, 4.07] 0.253 3.15 [2.60, 4.43] 3.40 [2.60, 4.50] 3.10 [2.70, 3.85] 0.683

Location (%) 0.859 0.429

ACA 5 (3.2) 3 (3.3) 2 (3.0) 1 (1.5) 1 (2.2) 0 (0.0)
MCA 19 (12.0) 9 (9.8) 10 (15.2) 3 (4.4) 2 (4.4) 1 (4.3)

ACoA 55 (34.8) 32 (34.8) 23 (34.8) 21 (30.9) 14 (31.1) 7 (30.4)

PCA 6 (3.8) 3 (3.3) 3 (4.5) 2 (2.9) 0 (0.0) 2 (8.7)
PCoA 54 (34.2) 32 (34.8) 22 (33.3) 28 (41.2) 20 (44.4) 8 (34.8)

Other 19 (12.0) 13 (14.1) 6 (9.1) 13 (19.1) 8 (17.8) 5 (21.7)

Abbreviations: WFNS, World Federation of Neurosurgical Societies; mFS, modified Fisher scale; ACA, anterior cerebral aneurysm; MCA, middle cerebral aneurysm; ACoA, anterior communicating aneurysm; PCA, posterior cerebral 
aneurysm; PCoA, posterior communicating aneurysm; TBV, total bleeding volume; IPH, intraparenchymal hemorrhage; IVH, intraventricular hemorrhage; PSM, propensity score matching.
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In general, it is evident that the LightGBM model exhibited superior performance compared to other models, and 
there was no evidence of overfitting in both the training and validation sets. Therefore, for subsequent analysis, the 
interpretability of the optimal model (LightGBM) was prioritized.

Model Interpretability
The SHAP analysis was conducted to assess the significance of features in the LightGBM model, considering their global 
importance and specific classification outcomes. These findings are illustrated in Figure 5A and B. The feature importance 
ranking for developing poor outcome is as follows: age, WFNS, Hunt-Hess grade, TBV, hypertension and mFS scale.

To enhance the understanding of the variables in the predictive model, the SHAP dependency plot for all six features 
was generated (Figure 5C and D). Old age, high Hunt-Hess grade, high WFNS grade, elevated TBV levels, high modified 
Fisher scale (mFS) grade, and a history of hypertension were all associated with an increased risk of poor outcomes. 
Furthermore, the effects of age and TBV levels on poor outcomes represent a non-linear pattern. We found that being 
older than 60 years significantly increased the risk of poor outcome and that TBV values higher than ~25 mL were strong 
indicators of an increased the risk of adverse outcome (Figure 5D).

The SHAP force plot (Figure 6) illustrates model interpretation at the individual level (Figure 6). Figure 6A depicts a low- 
risk patient, in which the patient was 63 years old, had high Hunt-Hess, WFNS and mFS scores that collectively contributed 
negatively to their poor prognosis. Additionally, hypertension increased the patient’s risk of a poor prognosis. Figure 6B 
presents risk prediction process for a high-risk patient, primarily driven by older age and a larger TBV. However, a low Hunt- 
Hess grade was found to be a protective factor for prognosis, while WFNS and mFS had a weak positive association with poor 
outcome.

Table 3 Association Between Treatment Modality and Functional Outcome in 
Univariate and Multivariate Logistic Regression Analysis

Characteristic Univariate Analysis Multivariate Analysis

OR (95% Cl) P-value OR (95% Cl) P-value

Female 0.82 (0.43–1.58) 0.553
Age 1.07 (1.03–1.11) <0.001 1.08 (1.03–1.13) 0.002

Hypertension 2.00 (1.04–3.85) 0.038 2.39 (0.99–5.80) 0.053

Diabetes 1.05 (0.23–4.85) 0.953
CHD 0.93 (0.15–5.71) 0.935

Smoking 0.82 (0.28–2.38) 0.715

Drinking 0.83 (0.19–3.60) 0.802
Anticoagulant 1.41 (0.28–7.23) 0.678

TBV 1.03 (1.01–1.04) <0.001 1.02 (1.00–1.05) 0.033

IPH 1.68 (0.77–3.65) 0.191
IVH 2.06 (1.01–4.20) 0.048 1.60 (0.61–4.17) 0.337

WFNS 3.18 (2.05–4.93) <0.001 2.03 (1.05–3.93) 0.035

Hunt-Hess 3.95 (2.49–6.29) <0.001 2.36 (1.13–4.93) 0.022
mFS 1.87 (1.22–2.88) 0.004 0.60 (0.29–1.25) 0.173

Aneurysm length 1.03 (0.93–1.14) 0.572

Aneurysm width 0.99 (0.89–1.11) 0.923
Aneurysm neck width 0.96 (0.85–1.09) 0.543

Location

ACA Ref
MCA 1.67 (0.22–12.35) 0.617

ACoA 1.08 (0.17–6.98) 0.937

PCA 1.50 (0.14–16.54) 0.741
PCoA 1.03 (0.16–6.69) 0.974

Other 0.69 (0.09–5.29) 0.723

Abbreviations: WFNS, World Federation of Neurosurgical Societies; mFS, modified Fisher scale; 
TBV, total bleeding volume; IPH, intraparenchymal hemorrhage; IVH, intraventricular hemorrhage.
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Figure 2 The forest plot of univariate and multivariate logistic regression analyses for poor outcome in high-grade aSAH following endovascular treatment. 
Abbreviations: CHD, Coronary Heart Disease; TBV, Total Bleeding Volume; IPH, Intraparenchymal Hemorrhage; IVH, Intraventricular Hemorrhage; WFNS, World 
Federation of Neurological Societies; Hunt-Hess, Hunt and Hess grade; mFS, Modified Fisher Scale; ACA, Anterior Cerebral Artery; MCA, Middle Cerebral Artery; ACoA, 
Anterior Communicating Artery; PCA, Posterior Cerebral Artery; PCoA, Posterior Communicating Artery.

Figure 3 Feature selection technique: Boruta result plot for training data. Blue boxplots correspond to the minimal, average, and maximum Z scores of shadow attributes. 
Red boxplots represent the Z scores of rejected attributes, while green boxplots represent the Z scores of confirmed attributes. 
Abbreviations: ACA, Anterior Cerebral Artery; PCA, Posterior Cerebral Artery; SAHvol, Subarachnoid Hemorrhage Volume; MCA, Middle Cerebral Artery; IPH, 
Intraparenchymal Hemorrhage; ACoA, Anterior Communicating Artery; CHD, Coronary Heart Disease; PCoA, Posterior Communicating Artery; IVH, Intraventricular 
Hemorrhage; mFS, Modified Fisher Scale; TBV, Total Bleeding Volume; Hunt-Hess, Hunt and Hess grade; WFNS, World Federation of Neurological Societies.
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Discussion
In this study, we trained nine ML models and a stacking model specifically tailored to analyze the dataset of poor-grade 
aSAH patients undergoing EVT. Notably, the LightGBM model emerged as the most clinically predictive, achieving 
remarkable AUROC and PRAUC scores of 0.842 and 0.7445, respectively, in the validation set. To enhance both the 
model’s effectiveness and interpretability, we integrated the SHAP technique, providing deeper insights into its decision- 

Figure 4 Performance of the models in training set (A, C, E, G) and validation set (B, D, F, H). (A) The ROC curve of each model in the training set; (B) The ROC curve 
of each model in the validation set; (C) The precision-recall of each model in the training set; (D) The precision-recall of each model in the validation set; (E) The DCA 
curve of each model in the training set; (F) The DCA curve of each model in the validation set; (G) The calibration curve of each model in the training set; (H) The 
calibration curve of each model in the validation set. 
Abbreviations: ROC, Receiver Operating Characteristic; DCA, Decision curve analysis.

Table 4 Model Performance Using Training and Validation Cohorts

Cohort Model AUC (95% CI) Accuracy Sensitivity Specificity Precision Recall

Training LR 0.930 (0.880–0.979) 0.877 0.848 0.893 0.813 0.848

DT 0.880 (0.815–0.946) 0.900 0.761 0.976 0.946 0.761

ENet 0.903 (0.845–0.962) 0.877 0.783 0.929 0.857 0.783
KNN 0.993 (0.985–1.000) 0.969 0.957 0.976 0.957 0.957

Lightgbm 0.905 (0.846–0.964) 0.877 0.804 0.917 0.841 0.804

RF 0.904 (0.842–0.967) 0.892 0.826 0.929 0.864 0.826
Xgboost 0.897 (0.830–0.964) 0.869 0.848 0.881 0.796 0.848

SVM 0.916 (0.860–0.973) 0.885 0.826 0.917 0.844 0.826

MLP 0.901 (0.845–0.957) 0.877 0.761 0.940 0.875 0.761
Stacking

Validation LR 0.781 (0.657–0.905) 0.719 0.679 0.759 0.731 0.679

DT 0.804 (0.695–0.914) 0.772 0.643 0.897 0.857 0.643
ENet 0.866 (0.771–0.961) 0.772 0.643 0.897 0.857 0.643

KNN 0.807 (0.688–0.925) 0.719 0.643 0.793 0.750 0.643

Lightgbm 0.805 (0.688–0.923) 0.737 0.679 0.793 0.760 0.679
RF 0.865 (0.771–0.960) 0.789 0.714 0.862 0.833 0.714

Xgboost 0.882 (0.799–0.966) 0.737 0.714 0.758 0.741 0.714

SVM 0.862 (0.768–0.957) 0.754 0.750 0.759 0.750 0.750
MLP 0.853 (0.752–0.955) 0.754 0.679 0.828 0.792 0.679

Stacking

Abbreviations: LR, logistic regression; DT, decision tree; Enet, Elastic Networks; KNN, K Nearest Neighbors; Lightgbm, Light 
Gradient boosting machine; RF, random forest; Xgboost, eXtreme Gradient Boosting; SVM, support vector machine; MLP, Multilayer 
perceptron.
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making process. This integration is poised to significantly empower clinicians with a profound comprehension of the 
model’s underlying reasoning, facilitating more informed and efficient utilization of its predictive insights in clinical 
practice.

Despite the persistent challenges of poor-grade aSAH, emerging evidence offers a promising outlook. Henry et al18 

underscores the transformative impact of well-informed clinical decisions on enhancing survivors’ quality of life. 
Meanwhile, the growing recognition of EVT as a beneficial intervention for poor-grade aSAH patients, as evidenced 
by Ishikawa et al19 underscores the pressing need for accurate long-term outcome predictions and risk factor identifica-
tion. Recent advancements in predictive modeling have been remarkable. Liu et al20 demonstrated that a decision tree 
model achieved an impressive AUC of 0.88 in predicting the prognosis of high-grade aSAH patients, while a novel 
scoring system21 demonstrated heightened predictive accuracy, with an AUC of 0.831 in the validation cohort. ML 
models have outperformed traditional predictive models, yet their clinical applicability remains hindered by a lack of 
interpretability.22 The integration of explainable ML has shown remarkable success across various medical domains,23–26 

highlighting its potential to bridge the gap between cutting-edge technology and clinical practice.

Figure 5 SHAP analysis of feature importance. (A) Feature importance ranking based on LightGBM; (B) Feature importance ranking based on SHAP values. (C) 
Dependence plot of categorical variables based on SHAP values; (D) Dependence plot of numerical variables based on SHAP values. The vertical axis lists features from 
top to bottom in order of decreasing importance. The position of a point on the horizontal axis indicates the feature’s influence on the model’s predicted value, while the 
point’s color reflects the feature’s value. For numerical variables, blue and red points represent higher and lower values, respectively; for categorical variables, blue and red 
points correspond to “yes” and “no”, respectively. 
Abbreviations: Hunt-Hess, Hunt and Hess grade; WFNS, World Federation of Neurological Societies; mFS, Modified Fisher Scale; TBV, Total Bleeding Volume.
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In this context, the introduction of SHAP analysis represents a significant advance, providing a game-theoretic 
approach that sheds light on the previously inscrutable “black box” of ML models.12 To the best of our knowledge, this 
study is the first to employ SHAP analysis for predicting long-term outcomes in high-grade aSAH patients undergoing 
EVT, thereby enhancing both the interpretability and clinical applicability of ML in this critical domain. Our research 
conducted a comprehensive evaluation of multiple ML algorithms, ultimately identifying LightGBM as the most 
accuracy predictive model. LightGBM, a sophisticated ensemble of decision trees tailored for both classification and 
regression tasks, boasts widespread adoption across predictive modeling landscapes and holds significant practical 
implications.27,28 However, recognizing its inherent black-box nature, we innovatively employed the SHAP methodology 
to reveal both global and local insights into the model’s decision-making process.

The SHAP analysis highlighted the pivotal role of crucial clinical factors in predicting the long-term prognosis of 
poor-grade aSAH patients undergoing EVT. Age emerged as the predominant predictor, with SHAP analysis revealing 
a substantial increase in risk for patients over 60 years old. This finding aligns with existing literature, emphasizing age 
as a fundamental determinant of cerebrovascular prognosis.29,30 Older patients, often burdened by comorbidities and 
reduced physiological resilience, face greater challenges in recovering from acute hemorrhage, thereby exacerbating their 
prognosis. Additionally, our multivariate logistic analysis identified TBV as an independent risk factor for adverse 
outcomes in EVT-treated aSAH patients, corroborating its centrality in the LightGBM model. The SHAP-derived cutoff 
values provided clear clinical insight, with TBV levels surpassing ~25mL serving as strong indicators of heightened poor 
outcome risks. This aligns with our prior research, which found TBV >20.4mL to be intimately linked with a significant 
surge in complication risks among aSAH patients.3 The significance of TBV in poor-grade aSAH stems from its direct 
correlation with hemorrhage extent, which can lead to elevated intracranial pressure, severe cerebral vasospasm, and 
delayed cerebral ischemia.31,32 These findings hold critical clinical implications, offering quantifiable thresholds for risk 
stratification and personalized treatment planning. Patients with TBV >25 mL may benefit from more aggressive 
perioperative management, such as early cerebrospinal fluid drainage to reduce intracranial hypertension, while those 
over 60 years old might benefit from enhanced multimodal supportive care and rehabilitation strategies to address age- 
related vulnerabilities. Incorporating these risk thresholds into clinical decision models could improve prognostic 
accuracy and aid in guiding individualized EVT strategies, ultimately improving patient outcomes.

Figure 6 Specific prediction and interpretation of the lightGBM model for two patients. This plot offers a visual illustration of the LightGBM model’s predictions, wherein 
the yellow and purple bars signify risk factors and protective factors, respectively. The length of the bars corresponds to the extent of feature importance. (A) Favorable 
outcome; (B) Poor outcome. 
Abbreviations: Hunt-Hess, Hunt and Hess grade; WFNS, World Federation of Neurological Societies; mFS, Modified Fisher Scale; TBV, Total Bleeding Volume.

https://doi.org/10.2147/TCRM.S504745                                                                                                                                                                                                                                                                                                                                                                                                                                  Therapeutics and Clinical Risk Management 2025:21 304

Du et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Compared to traditional scoring systems, our model offers several distinct advantages. First, the employment of SHAP 
provides a comprehensive understanding of how each predictor influences the final outcome prediction. This transparency 
enhances clinical utility, particularly for junior clinicians, by enabling more precise identification of poor-grade aSAH patients 
and facilitating timely interventions. Moreover, SHAP analysis allows for individualized risk assessment by quantifying the 
impact of each predictor at the patient level, making it possible to provide personalized prognostic insights. This capability is 
particularly valuable in clinical settings, where tailored treatment strategies can significantly improve patient outcomes. With 
an AUC-ROC of 0.842 in the validation cohort, our model demonstrates strong predictive capability, surpassing or matching 
previous ML-based prognostic models for aSAH. Furthermore, the ability to continuously update the LightGBM model 
enhances its adaptability for clinical applications. By combining predictive power with explainability, our approach represents 
a significant step forward in bridging the gap between machine learning and clinical practice, advancing personalized 
prediction and precision medicine for poor-grade aSAH patients.

This study introduces a pioneering predictive ML model specifically designed for EVT-treated poor-grade aSAH 
patients—an area previously unexplored. As the first of its kind, this model accurately predicts post-EVT prognosis, 
enabling personalized management. However, several limitations must be acknowledged. Our data were derived from 
a registry cohort study, but patient enrollment was limited to a single center, necessitating multi-center validation for 
broader applicability. Second, while the Boruta algorithm effectively identified key predictive features, important 
variables beyond our dataset—such as genetic and molecular markers—may also influence prognosis. To enhance 
predictive accuracy, future research should integrate a broader range of biomarkers.

Conclusion
In poor-grade aSAH patients, endovascular coiling is an independent predictor of improved 12-month outcomes. The 
LightGBM model demonstrated strong predictive performance and generalizability across both training and validation 
cohorts. Utilizing SHAP algorithms enhanced the transparency and interpretability of the predictive models, facilitat-
ing clinical personalized decision-making. This study introduces a high-performance predictive model, providing 
clinicians with a valuable tool for accurately assessing prognosis in poor-grade aSAH patients undergoing endovas-
cular treatment.

Abbreviations
EVT, Endovascular Treatment; aSAH, Aneurysmal Subarachnoid Hemorrhage; AUC-ROC, Area Under The Receiver 
Operating Characteristic Curve; SHAP, Shapley Additive Explanations; aOR, Adjusted Odds Ratios; ISAT, The 
International Subarachnoid Aneurysm Trial; ML, Machine Learning; CT, Computed Tomography; DSA, Digital 
Subtraction Angiography; STROBE, Strengthening the Reporting of Observational Studies in Epidemiology; EDC, 
Electronic Data Capture; WFNS, Neurosurgical Societies Scale; HH, the Hunt-Hess Grade; mFS, the Modified Fisher 
Scale; TBV, Total Bleeding Volume; IPH, Intraparenchymal Hemorrhage; IVH, Intraventricular Hemorrhage; CHD, 
Coronary Heart Disease; LR, Logistic Regression; DT, Decision Tree; Enet, Elastic Net; KNN, K-Nearest Neighbors; 
LightGBM, Light Gradient Boosting Machine; RF, Random Forest; XGBoost, eXtreme Gradient Boosting; SVM, 
Support Vector Machines; MLP, Multilayer Perceptron; LASSO, Least Absolute Shrinkage and Selection Operator; 
IQR, Inter-quartile Range; DCA, Decision Curve Analysis; BS, Brier Score.
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