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Background: Cellular senescence, a hallmark of aging, significantly contributes to the pathology of ulcerative colitis (UC). Despite 
this, the role of senescence-related genes in UC remains largely undefined. This study seeks to clarify the impact of cellular senescence 
on UC by identifying key senescence-related genes and developing diagnostic models with potential clinical utility.
Methods: Clinical data and gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Senescence- 
related differentially expressed genes (sene-DEGs) between patients with UC and healthy controls were identified using various 
bioinformatics techniques. Functional enrichment and immune infiltration analyses were performed to understand subtype character-
istics derived from sene-DEGs through consensus clustering. Machine learning algorithms were employed to select feature genes from 
sene-DEGs, and their expression was validated across multiple independent datasets and human specimens. A nomogram incorporat-
ing these feature genes was created and assessed, with its diagnostic performance evaluated using receiver operating characteristic 
(ROC) analysis on independent datasets.
Results: Fourteen senescence-related differential genes were identified between patients with UC and healthy controls. These genes 
enabled the classification of patients with UC into molecular subtypes via unsupervised clustering. ABCB1 and LCN2 emerged as 
central hub genes through machine learning and feature importance analysis. ROC analysis verified their diagnostic value across 
various datasets. Validation in independent datasets and human specimens supported the bioinformatics findings. Furthermore, the 
expression levels of ABCB1 and LCN2 showed significant associations with immune cell profiles. The logistic regression (LR) model 
based on these genes demonstrated accurate UC prediction, as confirmed by ROC curve analysis. The nomogram model, constructed 
with feature genes, exhibited outstanding prediction capabilities, supported by DCA, C index, and calibration curve assessments.
Conclusion: This integrated bioinformatics approach identified ABCB1 and LCN2 as significant biomarkers associated with cellular 
senescence. These findings enhance the understanding of cellular senescence in UC pathogenesis and propose its potential as 
a valuable diagnostic biomarker.
Keywords: ulcerative colitis, cellular senescence, biomarkers, diagnostic model, machine learning

Introduction
Ulcerative colitis (UC), a chronic and recurrent inflammatory bowel disease (IBD), primarily affects the colon and 
rectum with diffuse, superficial inflammation. Common symptoms include chronic diarrhea, bloody stools, abdominal 
pain, and weight loss.1,2 The incidence and prevalence of UC have been rising globally,3 and patients with long-term UC 
face an elevated risk of colorectal cancer, with a steady annual increase of 0.5%-1% after 10 years.4,5 UC poses 

Journal of Inflammation Research 2025:18 3431–3447                                                     3431
© 2025 Ma et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                     

Open Access Full Text Article

Received: 10 December 2024
Accepted: 5 March 2025
Published: 10 March 2025

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0002-4228-6508
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


a significant threat to public health and incurs considerable economic costs. Therefore, a deep understanding of UC’s 
pathological and molecular characteristics is essential for advancing research and improving clinical management.

The exact etiology of UC is still not fully understood, involving a complex interplay of environmental factors, 
genetics, infectious agents, gut microbiota, immune dysregulation, and intestinal epithelial damage.6,7 Cellular senes-
cence, a major driver of aging and age-related diseases, is triggered by DNA damage, telomere attrition, and oxidative 
stress. Recent research has highlighted a complex interplay between inflammation and senescence.8,9 Senescent cells 
release various bioactive molecules that exacerbate inflammation and promote senescence in surrounding cells. 
Conversely, inflammation can accelerate immune cell senescence, impairing immune function. Notably, the accumulation 
of DNA damage in the colonic tissue of patients with UC is a significant marker of aging.10 Additionally, studies have 
identified a novel link between intestinal cellular senescence and colonic inflammation. For instance, Fusobacterium 
nucleatum-Exo has been shown to induce DNA damage and cellular senescence through the TIMELESS-mediated 
senescence pathway, while short telomeres have been observed in the colonic mucosa of UC models.11 Despite 
advancements in understanding inflammation and cellular senescence, their interrelationship remains poorly elucidated.

This study aims to clarify the role of cellular senescence in UC by identifying key senescence-related genes and 
developing diagnostic models with potential clinical applications.

Materials and Methods
Data Acquisition and Pre-Processing
Gene expression data and associated clinical information were retrieved from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo). For this analysis, a dataset of 866 senescence-related genes from the 
CellAge database (https://genomics.senescence.info/cells/) was employed, with the complete list available in 
Supplementary Table S1.

Differential Gene Expression Analysis and Functional Analysis
Differentially expressed genes (DEGs) between patients with UC and healthy controls (HC) were identified using the 
“limma” R package. Graphical representations of the results were generated using the “ggplot2” and “pheatmap” 
R packages. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses 
were conducted with the “clusterProfiler” and “org.Hs.eg.db” R packages, applying a q-value threshold of < 0.05 to 
elucidate the biological mechanisms underlying the DEGs.12 The senescence-related DEGs (sene-DEGs) were identified 
by intersecting DEGs with senescence-related genes.

The sene-DEGs were submitted to the STRING database (https://cn.string-db.org) for protein-protein interaction 
(PPI) network construction, with a confidence level set at 0.4. Visualization was performed using Cytoscape 3.9.1. The 
diagnostic potential of the sene-DEGs for UC was assessed through receiver operating characteristic (ROC) analysis 
using the “pROC” R package.

Assessment of Immune Infiltration Patterns in UC
Single-sample Gene Set Enrichment Analysis (ssGSEA) was employed to evaluate immune cell infiltration levels in the 
colon tissue of patients with UC compared to HC.

Identification of Feature Biomarkers Using Machine Learning Algorithms
The analysis used a training set of 193 samples (32 hC and 161 patients with UC). We applied eight different machine 
learning algorithms—AdaBoost, LightGBM, Decision Trees (DT), XGBoost, Random Forest (RF), K-Nearest Neighbors 
(KNN), Naïve Bayes, and Support Vector Machines (SVM)—using gene expression data as variables. To optimize the 
performance of the algorithm, we employed a systematic parameter tuning process. The final parameters were selected 
based on their ability to maximize mean squared error while minimizing potential overfitting, as validated through 10- 
fold cross-validation. The sensitivity analyses were also conducted to ensure the robustness of the selected parameters 
across varying subsets of the data.
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Performance of the algorithms was evaluated on a testing set by measuring accuracy, F1 score, precision, sensitivity, 
specificity, and kappa. Additionally, the area under the ROC curve (AUC) was computed to assess the discriminative 
power between HC and patients with UC. The implementations were as follows: AdaBoost, DT, and KNN were executed 
using the R package “caret”; RF was performed with “ranger”; LightGBM was run with “lightgbm” and “tidymodels”; 
XGBoost was handled by “xgboost”; Naïve Bayes and SVM were processed using “e1071”; and model interpretation 
was conducted with “DALEX”.

Construction and Evaluation of Binary Logistic Regression Model
To determine the matching coefficients of senescence-related DEGs and compute a risk score for each sample, we 
utilized a binary logistic regression (LR) model. The “rms” package was employed to create the nomogram. The 
performance of the risk scores was assessed through decision curve analysis (DCA), calibration curve analysis, and 
AUC calculations. Model generalizability was tested using the GSE59071 dataset from the GEO database.

Unsupervised Clustering of Patients with UC and Functional Enrichment Analysis
Unsupervised clustering analysis was performed using the “ConsensusClusterPlus” R package.13 The k-means clustering 
method was executed 1000 times with a maximum number of subtypes set to k = 6. The optimal number of subtypes was 
determined by evaluating the cumulative distribution function (CDF) curve, consensus matrix, and consistent cluster 
score.

Gene Set Variation Analysis (GSVA) was conducted using the “GSVA” R package14 to compare enriched functions 
and pathways across different mitophagy-related subtypes. The analysis utilized gene sets “c2.cp.kegg.v7.4.symbols” and 
“c5.go.bp.v7.5.1.symbols” from the MSigDB database. Routes and functions with significant enrichment were identified 
by GSVA scores with |t| values greater than two.

Immunohistochemistry (IHC)
Colon biopsies from patients diagnosed with UC and HC were collected at the Department of Pathology, Renmin 
Hospital of Wuhan University, with basic information shown in Supplementary Table S2. Paraffin-embedded tissue slices 
were deparaffinized and rehydrated. The antigen retrieval process was carried out using citrate buffer. To suppress any 
endogenous peroxidase activity, the sections were immersed in a 0.3% hydrogen peroxide solution for 10 minutes. 
Subsequently, the tissue slices were incubated with a blocking solution of 5% bovine serum albumin (BSA), followed by 
the primary antibody incubation overnight at 4°C, washing it with PBS afterward. Apply the incubation with secondary 
antibodies at room temperature, followed by a PBS wash. Perform DAB staining and stop the reaction with distilled 
water, counterstaining with hematoxylin afterward. The slices were scrutinized under light microscopy to assess the 
results. The primary antibodies used in this process were ABCB1 (Cat No. A11758) and LCN2 (Cat No. 26991-1-AP).

The study adhered to the Declaration of Helsinki and was approved by the Ethics Committee of Renmin Hospital of 
Wuhan University (WDRY2021-K025). Informed consent was obtained from all patients, and the study was conducted in 
accordance with relevant guidelines and regulations.

Statistical Analysis
Statistical analyses were performed using R version 4.2.3 (https://www.r-project.org). Comparisons between two groups 
were conducted using the t-test, while ANOVA was used for comparisons involving three or more groups. Spearman 
correlation analysis was carried out using the “ggpubr” and “stats” R packages. Statistical significance was defined as 
a p-value or adjusted p-value of less than 0.05.

Results
Data Preprocessing and Identification of Senescence-Related DEGs
Gene expression profiles from colonic tissues of 161 patients with UC and 32 hC, extracted from datasets GSE87466 and 
GSE75214, were analyzed. Initial clustering by dataset rather than sample type on the principal component dimension 
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revealed a predominant batch effect, with data source impact overshadowing sample type (Figure 1A). Following batch 
correction, samples clustered predominantly by UC status versus HC, demonstrating that sample type was the primary 
factor influencing variation (Figure 1B and C). Post-correction analysis identified 703 DEGs (Figure 1D and E). 
Functional enrichment and KEGG pathway analyses were performed on the key targets. Biological process (BP) 
enrichment primarily involved responses to bacterial molecules and lipopolysaccharides, as well as leukocyte and 
neutrophil migration, and cytokine-mediated signaling pathways (Figure 1F). Cellular component (CC) enrichment 
was noted in the external side of the plasma membrane, secretory granule membrane, apical part of the cell, and collagen- 
containing extracellular matrix (Figure 1G). Molecular function (MF) enrichment focused on immune receptor activity, 
chemokine activity, and chemokine receptor binding (Figure 1H). The top 20 metabolic pathways highlighted in KEGG 
analysis included IL-17 signaling, TNF signaling, and NF-kappa B signaling pathways (Figure 1I).

To elucidate the role of senescence in UC development, DEGs were intersected with a list of 866 senescence-related 
genes, resulting in 48 senescence-related DEGs (sene-DEGs) (Figure 1J). These genes were analyzed in the STRING 
database to construct a PPI network (Figure 2A). Gene clusters were identified using the MCODE plugin, focusing on the 

Figure 1 Identification of sene-DEGs. (A and B) PCA of two datasets before (A) and after (B) batch effect correction. (C) PCA of the merged dataset. (D and E) Volcano 
plot (D) and heatmap (E) revealing gene expression patterns between patients with UC and HC. (F) GO BP enrichment analysis of sene-DEGs. (G) GO CC enrichment 
analysis of sene-DEGs. (H) GO MF enrichment analysis of sene-DEGs. (I) KEGG pathway enrichment analysis of sene-DEGs. (J) Venn diagram showing overlap between 
DEGs and senescence-related genes. 
Abbreviations: PCA, principal component analysis; UC, ulcerative colitis; HC, healthy controls; KEGG, the Kyoto Encyclopedia of Genes and Genomes analyses; GO, the 
Gene Ontology.
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Figure 2 Analysis of sene-DEGs. and subtype classification. (A) PPI network of 48 sene-DEGs. (B) MCODE sub-network analysis. (C) Correlation heatmap of 14 sene- 
DEGs. (D) Consensus clustering matrix for k = 2. (E) Consensus CDF curves for k = 2 to 6. (F) Consensus scores for each subtype from k = 2 to 6. (G) Heatmap showing 
gene expression patterns across subtypes. (H) Split violin plot showing expression levels of 14 sene-DEGs between subtypes. (I and J) Differences in enriched biological 
functions (I) and hallmark pathways (J) between subtypes, ranked by GSVA scores. *p < 0.05, **p < 0.01.
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highest-scoring module. A correlation analysis of the 14 genes within this module was conducted to assess senescence’ 
s role in UC progression (Figure 2B). Additionally, the gene relationship network diagram revealed significant 
interconnections among the sene-DEGs, indicating a strong synergy among these senescence-related genes (Figure 2C).

Construction of Senescence Subtypes in UC
Based on the fourteen sene-DEGs, an unsupervised clustering analysis divided patients with UC into two distinct 
subtypes, 1 and 2 (Figure 2D-F). Heatmap analysis highlighted significant differences in gene expression profiles 
between these subtypes (Figure 2G). While variations in the expression levels of the fourteen sene-DEGs were notable, 
differences in ABCB1 and GJA1 expression did not reach statistical significance (Figure 2H).

GSVA was performed to explore differences in functional and pathway enrichment between the two subtypes. 
Subtype 1 exhibited upregulation in pathways related to primary active transmembrane transporter activity, intramole-
cular oxidoreductase activity, oxidoreductase activity, organic acid metabolism, NADP metabolism, monocarboxylic acid 
metabolism, thiolester hydrolase activity, and fatty acid metabolism. Conversely, subtype 2 showed upregulation in 
pathways such as secondary palate development, calcium ion import into the cytosol, negative regulation of endothelial 
cell apoptosis, regulation of skeletal muscle contraction, negative regulation of natural killer cell activation, and 
sphingolipid binding (Figure 2I).

KEGG pathway analysis further revealed that subtype 1 had upregulated metabolic pathways including glycolysis and 
gluconeogenesis, pyruvate metabolism, propanoate metabolism, oxidative phosphorylation, fatty acid metabolism, and 
limonene and pinene degradation. In contrast, subtype 2 exhibited elevated pathways associated with MAPK signaling, 
JAK/STAT signaling, ECM receptor interaction, and chemokine signaling (Figure 2J).

Distinct Immune Patterns Between Senescence-Related UC Subgroups
Immune factors play a pivotal role in UC, and cellular senescence, a significant driver of aging and age-related diseases, 
is central to UC pathology. The interaction between inflammation and senescence forms a complex, self-perpetuating 
cycle.8,9 To elucidate the relationship between cellular senescence and immune function in patients with UC, immune cell 
distribution and activity were analyzed across subtypes 1 and 2 (Figure 3A). Differences in immune cell quantities and 
correlations among the 28 immune cell types are illustrated in Figure 3B and C. Subtype 1 exhibited higher infiltration of 
activated dendritic cells, CD56 bright natural killer cells, central memory CD8 T cells, immature dendritic cells, memory 
B cells, plasmacytoid dendritic cells, type 17 T helper cells, and type 2 T helper cells. In contrast, subtype 2 showed 
increased presence of eosinophils, mast cells, myeloid-derived suppressor cells (MDSCs), and regulatory T cells 
(Figure 3C).

Further analysis of immune-related gene expression revealed that immune checkpoint-associated genes, including 
CD27, CD40, CD86, CTLA4, and HAVCR2, were significantly upregulated in subtype 2. This suggests that subtype 1, 
associated with senescence, might benefit more from immune-based therapies (Figure 3D). Additionally, most immune 
activation-related genes (Figure 3E) and immunosuppression-related genes (Figure 3F) were upregulated in subtype 2, 
indicating a more pronounced immune response compared to subtype 1.

Identification of Feature Biomarkers Using Machine Learning Algorithms
A variety of machine learning algorithms—AdaBoost, Naïve Bayes, DT, KNN, LightGBM, RF, SVM, and XGBoost— 
were utilized to identify feature genes associated with UC. Performance metrics for each algorithm are summarized in 
Table 1. All models achieved recall rates exceeding 50%. ROC curves and importance plot of fourteen genes for each 
algorithm were depicted in Figure 4A-H. Among these, LightGBM achieved the highest AUC value of 0.978, whereas 
AdaBoost excelled with the highest accuracy (0.8426), kappa (0.4894), and F1-score (0.9040).

Construction and Evaluation of the LR Model
Based on the variable importance analysis, the final set of characteristic genes was identified by selecting the top five sene-DEGs 
common to both LightGBM and AdaBoost: ABCB1, LCN2, and HIF1A. The logistic regression (LR) model was constructed 
using these genes, with the final risk score calculated as (−1.9777 * ABCB1) + (1.0733 * LCN2). The nomogram generated from 
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Figure 3 Immune cell distribution and activity in UC subtypes. (A) Heatmap of immune cell infiltration between subtypes 1 and 2. (B) Heatmap showing correlations 
between 28 immune cell types. (C) Boxplot depicting differences in immune cell infiltration between subtypes. (D-F) Split violin plots showing expression levels of immune 
checkpoint genes (D), immune activation genes (E), and immune suppression genes (F) between subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
Abbreviation: ns, not statistically significant.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S508396                                                                                                                                                                                                                                                                                                                                                                                                   3437

Ma et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



the LR model for the training set is depicted in Figure 5A. As illustrated in Figure 5B, patients with UC exhibited significantly 
higher risk scores compared to HC in the training set. The model’s fit was validated with 1000 bootstrap samples, and calibration 
curves (Figure 5C) confirmed the LR model’s robust predictive accuracy. Decision Curve Analysis (DCA) consistently 
demonstrated that the model’s predictions provide clinical benefit to patients with UC, with the model-based decision curve 
remaining above the reference line (Figure 5D). The model achieved an AUC of 0.985 through 10-fold cross-validation 
(Figure 5E). Additionally, the calibration and DCA curves for the testing set also indicated strong diagnostic performance 
(Figures 5F and G), with an AUC of 0.979 (Figure 5H). And the risk scores of UC patients were substantially greater than those 
of healthy controls in the testing set (Figure 5I).

Verification of Feature Biomarkers and Effectiveness Evaluation
ROC analysis of the training set revealed AUC values of 0.971 for ABCB1 and 0.954 for LCN2 (Figure 6A and B), 
indicating their effective diagnostic potential for UC. The GSE59071 dataset, used for testing, confirmed that patients 
with UC had elevated LCN2 expression and reduced ABCB1 levels (Figure 6C). In this set, AUC values for ABCB1 and 
LCN2 were 0.978 and 0.928, respectively (Figure 6D and E). External validation with the GSE206285 dataset also 
demonstrated that patients with UC exhibited higher LCN2 and lower ABCB1 expression levels (Figure 6F). The AUC 
values for this validation were 0.981 for ABCB1 and 0.882 for LCN2 (Figure 6G and H).

Analysis of diseased colonic tissues from patients with active UC showed increased LCN2 and decreased ABCB1 
levels compared to non-inflammatory tissues (Figure 6I). Additionally, LCN2 levels were significantly higher in patients 
with active UC compared to those with inactive UC, while ABCB1 expression did not show statistically significant 
variation (Figure 6J).

Human tissue validation further supported these results, with ABCB1 significantly downregulated and LCN2 
significantly upregulated in UC colonic tissues (Figure 7A and B).

Association Between Colonic Mucosal Invasion of Active UC and Senescence
Biologics, including TNF-α inhibitors such as golimumab (GLM) and IL-12/IL-23 inhibitors like ustekinumab (Ust), are 
established as first-line treatments for moderate to severe UC. The impact of these biologics on cellular senescence was 
evaluated using the GSE92415 and GSE206285 datasets.

Prior to Ust treatment, no significant differences in ABCB1 and LCN2 expression were observed between the 
mucosal healing group and non-responders (Figure 8A). Moreover, the baseline expression patterns of ABCB1 and 
LCN2 in patients with UC responding to Ust were similar to those in non-responders (Figure 8B).

For GLM treatment, ABCB1 expression was notably lower in patients with active UC compared to HC, while LCN2 
levels were significantly elevated (Figure 8C). Post-treatment with GLM, there was a marked increase in ABCB1 
expression and a reduction in LCN2 levels among the clinical response group (Figure 8D).

Table 1 Comparison of the Diagnostic Efficacy Among Eight Distinct Machine Learning Models

ML Algorithms Accuracy Kappa Sensitivity Specificity Precision Recall F1 AUC

Decision Tree 0.6759 0.2652 1 0.2391 0.6392 1 0.7799 0.820
SVM 0.8148 0.4395 1 0.3548 0.7938 1 0.8851 0.969

Naïve Bayes 0.787 0.3959 1 0.3235 0.7629 1 0.8655 0.961

LightGBM 0.8241 0.4554 1 0.3667 0.8041 1 0.8914 0.978
Random Forest 0.7963 0.4098 1 0.3333 0.7732 1 0.8721 0.978

KNN 0.8148 0.4395 1 0.3548 0.7938 1 0.8851 0.968

Adaboost 0.8426 0.4894 1 0.3929 0.8247 1 0.9040 0.972
XGBoost 0.8333 0.472 1 0.3793 0.8144 1 0.8977 0.972
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Immune-Infiltrating Landscape of Patients with UC
To further understand the immune microenvironment in UC, the distribution and activity of immune cells were analyzed. 
The immune cell distribution in both patients with UC and HC is depicted in Figure 9A. Figure 9B presents the 
correlations among 28 immune cell types, and Figure 9C highlights the differences in immune cell quantities between the 

Figure 4 Evaluation of the eight machine learning algorithms based on the area under the ROC curve (AUC) and variable importance plot of fourteen genes. (A) AdaBoost. 
(B) Decision Tree. (C) KNN. (D) LightGBM. (E) Naïve Bayes. (F) Random Forest. (G) SVM. (H) XGBoost. 
Abbreviations: KNN, K-nearest neighbors; LightGBM, Light Gradient Boosting; SVM, support vector machines; XGBoost, eXtreme Gradient Boosting.
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Figure 5 Construction and evaluation of the UC risk nomogram. (A) Development of a nomogram to predict UC risk using ABCB1 and LCN2 within the training set. (B) 
Comparison of risk distributions between patients with UC and HC within the training set. (C) The calibration curve assessed the nomogram’s predictive accuracy in the training 
set. (D) DCA determined the nomogram’s clinical benefit within the training set. (E) ROC curves assessed the model’s diagnostic performance in the training set. (F) The calibration 
curve evaluated the nomogram’s prediction accuracy in the testing set. (G) DCA determined the nomogram’s clinical benefit within the testing set. (H) ROC curves assessed the 
model’s diagnostic performance in the testing set. (I) Comparison of risk distributions between patients with UC and HC in the testing set. ****p < 0.0001.
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Figure 6 Diagnostic performance and expression levels of ABCB1 and LCN2. (A and B) ROC curves assessed the diagnostic performance of ABCB1 (A) and LCN2 (B) in the 
training set. (C) Comparison of ABCB1 and LCN2 expression levels between patients with UC and HC in the testing set. (D and E) ROC curves evaluated the diagnostic 
performance of ABCB1 (D) and LCN2 (E) in the testing set. (F) Comparison of ABCB1 and LCN2 expression levels between patients with UC and HC in the GSE206285 dataset. 
(G and H) ROC curves assessed the diagnostic performance of ABCB1 (G) and LCN2 (H) in the GSE206285 dataset. (I) Comparison of ABCB1 and LCN2 expression levels 
between non-lesional and lesional UC individuals. (J) Comparison of ABCB1 and LCN2 expression levels between inactive and active UC individuals. ****p < 0.0001.
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groups. Colon tissues in patients with UC exhibited higher levels of infiltrating activated B cells, activated CD4 and CD8 
T cells, central memory CD4 T cells, effector memory CD8 T cells, immature dendritic cells, mast cells, myeloid-derived 
suppressor cells (MDSCs), neutrophils, and regulatory T cells compared to HC.

Further analysis of the relationship between immune cells and sene-DEGs revealed significant associations. ABCB1 
showed the strongest correlation with central memory CD8 T cells and MDSCs (Figure 9D), while LCN2 was most 
strongly correlated with effector memory CD8 T cells and T follicular helper cells (Figure 9E).

Discussion
UC is a chronic, recurrent bowel disorder primarily marked by inflammation and ulceration of the colon and rectum, with 
an etiology that remains largely unclear and involves multifactorial inflammation.2 Increasing evidence suggests that UC 
accelerates colon aging, evidenced by shortened telomeres in colonocytes, altered mRNA expression of telomere-binding 
proteins, and DNA damage,10,15 highlighting the potential of senescence-related genes for predicting prognosis and 
treatment response. While inflammation and senescence are closely linked through the senescence-associated secretory 
phenotype, the precise molecular pathways that drive senescence-mediated immune infiltration in UC remain unclear. 
Investigating the association between senescence and UC may reveal novel prognostic markers, diagnostic indicators, 
and therapeutic targets and elucidate the underlying mechanisms of the disease.

In this study, 14 sene-DEGs were identified by overlapping the DEGs with senescence-related genes. Unsupervised 
clustering analysis based on the expression of these 14 sene-DEGs identified two senescence-related subtypes of UC. 
Subtype 1 exhibited significantly lower expression levels of signature genes compared to subtype 2. Notably, the immune 
cell infiltration in colonic tissue differed significantly between the subtypes, with subtype 1 showing higher levels of 
immune cell infiltration. Functional enrichment analyses revealed that subtype 2 was characterized by a higher pre-
valence of inflammatory pathways and a lower prevalence of metabolic pathways, whereas subtype 1 displayed the 
opposite pattern.

Figure 7 Immunohistochemical analysis of ABCB1 and LCN2 expression. (A) Immunohistochemistry and quantitative assessment of ABCB1 expression in patients with UC 
and HC. Original magnification: 400×, scale bar = 50 μm. (B) Immunohistochemistry and quantitative assessment of LCN2 expression in patients with UC and HC. Original 
magnification: 400×, scale bar = 50 μm. ****p < 0.0001.
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Subtype 2 was associated with several key pathways, including the MAPK signaling pathway, JAK/STAT signaling 
pathway, ECM receptor interaction, and chemokine signaling pathway. These pathways are critically involved in UC 
pathogenesis, as dysregulation of proinflammatory and anti-inflammatory molecules plays a significant role. Notably, 
dysfunction and genetic variations in the JAK-STAT pathways have been identified as pivotal mechanisms in UC, with 
several JAK inhibitors like tofacitinib and filgotinib showing efficacy in recent UC treatments.16,17 Additionally, Feng 
Y et al demonstrated that a novel polysaccharide mitigated DSS-induced colitis through modulation of the MAPK 
signaling pathway.18 Conversely, subtype 1 was linked to metabolic pathways such as glycolysis, gluconeogenesis, 
pyruvate metabolism, propanoate metabolism, oxidative phosphorylation, fatty acid metabolism, limonene, and pinene 
degradation. These complex metabolic pathways are known to influence the inflammatory response of cells. Immune 
cells, including T cells, macrophages, dendritic cells, and NK cells, play critical roles in IBD pathogenesis.19 Recent 

Figure 8 Expression levels of ABCB1 and LCN2 in colonic mucosa. (A) Relative expression levels of ABCB1 and LCN2 in the colonic mucosa of HC and patients with UC 
categorized by mucosal healing and non-response groups prior to Ust therapy. (B) Relative expression levels of ABCB1 and LCN2 in the colonic mucosa of HC and patients 
with UC classified as clinical responders and non-responders before Ust therapy. (C and D) Relative expression levels of ABCB1 and LCN2 in the colonic mucosa of HC and 
patients with UC categorized as responders and non-responders before and after GLM treatment. **p < 0.01, ****p < 0.0001. 
Abbreviations: ns, not statistically significant; Ust, ustekinumab; GLM, golimumab; MH, mucosal healing; CR, clinical response; NR, non-response.
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Figure 9 Immune cell infiltration and correlations in UC. (A) Heatmap depicting differences in immune cell infiltration in the colonic tissue between patients with UC and 
HC. (B) Heatmap illustrating the correlations among immune cells. (C) Differences in immune cell infiltration between patients with UC and HC. (D and E) Lollipop charts 
showing the correlation between ABCB1 (D) and LCN2 (E) expression and immune cells. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
Abbreviation: ns, not statistically significant.
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research has shown that cyclosporine can alleviate severe ulcerative colitis by enhancing neutrophil glycolysis.20 Thus, 
targeting senescence-related genes with new inhibitors or immunomodulators could offer innovative therapeutic 
approaches for UC. Overall, systematic studies on senescence subtypes and diagnostic markers in UC will deepen our 
understanding of the disease’s pathogenesis and support the development of personalized diagnostic and treatment 
strategies.

Machine learning has gained significant attention for its effectiveness in clinical diagnosis. In this study, eight 
machine learning models were employed to identify senescence-related DEGs predictive of UC progression. 
LightGBM achieved the highest AUC value of 0.978, while AdaBoost demonstrated superior accuracy (0.8426), 
kappa (0.4894), and F1-score (0.9040). Among the 14 sene-DEGs, ABCB1 and LCN2 emerged as key biomarkers 
with strong diagnostic predictive capabilities for UC. The expression levels of these genes were validated in independent 
datasets and colon tissue samples from patients with UC and HC, confirming the consistency of experimental results with 
bioinformatics predictions.

ABCB1, also known as MDR1, encodes P-glycoprotein (P-gp), an ATP-dependent membrane transporter.21 P-gp is 
highly expressed on the intestinal epithelial cell membrane, where it mediates the efflux of toxins, drugs, and harmful 
bacteria from the mucosa into the lumen, thereby maintaining intestinal homeostasis.22 Reduced expression of P-gp in the 
colonic mucosa of patients with colitis has been documented,23 and the P-gp expression was negatively correlated with 
the levels of IL-6 mRNA. Other studies also indicated ABCB1 knockout mice exhibit spontaneous colitis resembling 
human UC.24,25 Furthermore, the expression of ABCB1 increases in CD4+CD8+T lymphocytes with age, indicating that 
P-gp may be involved in the secretion of cytokines, growth factors, and cytotoxic molecules.26 Additionally, Foley SE 
et al identified a mechanistic link between gut microbiota and P-gp, noting that P-gp regulates gut microbiota to suppress 
excessive inflammation and sustain intestinal balance.27

LCN2, a 25 kDa secreted glycoprotein, functions as a transporter for lipophilic small molecules, including steroids, 
lipopolysaccharides, iron, and fatty acids.26 Recent studies have highlighted LCN2 as an effector molecule in cGAS- 
STING-YY1 mediated astrocyte senescence in Parkinson’s disease,28 and shown that M1 macrophage-derived exosomes 
exacerbate nucleus pulposus cell senescence via the LCN2/NF-κB signaling pathway in intervertebral disc 
degeneration.29 Furthermore, LCN2 plays a critical role in preventing gut microbiota dysbiosis-induced colitis.30 In 
addition, silencing of LCN2 suppressed ferroptosis events in both in vivo and in vitro colitis model, demonstrating that 
LCN2 is also a key factor in regulating ferroptosis in UC.31

Our validation of sene-DEGs expression patterns across various datasets, comparing patients with UC with HC and 
lesion versus non-lesion groups, revealed significant differences. This underscores the role of senescence in UC 
progression. Notably, expression levels of sene-DEGs varied significantly between active and inactive phases of UC, 
suggesting that targeting senescence could potentially reduce UC recurrence.

Immune association analyses showed that ABCB1 was most strongly correlated with central memory CD8 T cells and 
MDSCs, while LCN2 exhibited the highest correlations with effector memory CD8 T cells and T follicular helper cells. 
CD8+ T cell-mediated adaptive immune responses play an important role in the fight against pathogenic microbial 
infections and tumors, as well as in the maintenance of tissue homeostasis.32 Recent studies have emphasized the role of 
diminishing CD8+central memory T and CD8+resident memory T cells in psoriatic skin inflammation and its relapse.33 It 
has been shown the gut microbiome can control accumulation of MDSCs in the liver in the context of colitis.34 These 
findings suggest that ABCB1 and LCN2 may influence different UC subtypes through immune regulation, warranting 
further research into their role in UC development through gene integration and immune response.

The impact of biological agents on sene-DEGs further supports the critical role of senescence in UC progression. 
Significant reductions in sene-DEGs expression following treatment with biologics such as GLM and Ust highlight the 
relevance of senescence in UC management. Future research should continue to explore the relationship between 
senescence and UC development.

Overall, our study emphasizes the potential of senescence as a diagnostic and therapeutic target in UC. By examining 
senescence-related biomarkers and their roles in different UC subtypes, we provide a framework for developing targeted 
management strategies that may enhance the precision of UC treatment.
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Conclusion
In conclusion, this study advances the understanding of cellular senescence-associated genes in UC pathogenesis, 
emphasizing the critical roles of ABCB1 and LCN2 in cellular senescence within UC.
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