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Objective: Stanford-A Aortic dissection (TAAD) is a rare and fatal disease, genetic factors remains poorly known. Study has 
confirmed that lncRNA play an important role in various physiological and pathological processes. This study attempts to elucidate the 
underlying molecular mechanisms of TAAD through lncRNA-associated competitive endogenous RNA (ceRNA) networks.
Methods: In this study, aortic vascular of 5 TAAD and 5 control (ischemic heart disease) were subjected to lncRNA and mRNA 
microarray analysis, and differentially expressed mRNAs (DEGs) and differentially expressed lncRNAs (DELs) were identified. The 
differentially expressed miRNAs (DEmiR) were screened by GSE98770 dataset. The ceRNA network (lncRNA-miRNA-mRNA) was 
constructed by bioinformatics analysis. The accuracy of hub genes as biomarkers for predicting TAAD was evaluated by receiver 
operating characteristic (ROC) curve. Finally, the biomarkers were verified by assessing their mRNA levels using real-time 
quantitative PCR (RT-qPCR).
Results: This study revealed 161 DELs, 87 DEmiRs and 103 DEGs between TAAD and control. We constructed ceRNA networks 
based on the screened 1 lncRNA, 4 miRNAs and 7 mRNAs. We identified three lncRNA-miRNA-mRNA regulatory axes, namely the 
VCAN axis (LINC01355 - hsa-miR-186-5p / hsa-miR-30a-5p /hsa-miR-30c-5p - VCAN), LOX axis (LINC01355-hsa-miR-145-5p/ 
hsa-miR-186-5p/ hsa-miR-30a-5p / hsa-miR-30c-5p - LOX), and CTSS axis (LINC01355 - hsa-miR-186-5p - CTSS) based on gene 
ontology, pathway enrichment and protein-protein interaction (PPI) network, which may play an important role in TAAD. The clinical 
performance of VCAN, CTSS, and LOX in TAAD diagnosis was evaluated, and the AUCs of VCAN, CTSS, and LOX were 0.920 
(p<0.001), 0.880 (p=0.002) and 0.840 (p=0.011), respectively. Furthermore, mRNA expression of VCAN in human aortic tissue 
significantly overexpressed in the TAAD patients (p<0.001).
Conclusion: This study identifies three ceRNA interaction axes, especially VCAN associated with TAAD pathogenesis, providing 
fundamentals of bioinformatics for understanding the molecular mechanisms of TAAD pathogenesis and developing potential 
therapeutic strategies for TAAD.
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Introduction
Stanford-A aortic dissection (TAAD) is a serious aortic disease, which is characterized by the separation of thoracic 
aortic medial layers.1 At present, the surgical treatment of TAAD is complicated, and it is not effective in controlling the 
bleeding of patients.2 During open surgery, patients may experience many complications, with high mortality rates 
worldwide.3 Therefore, it is urgent to search favorable therapeutic targets to prevent the pathologic development of 
TAAD.

The development of microarray analysis and modern bioinformatics technology has made it possible to study the 
genetics of TAAD. Recent years, high-throughput sequencing (HTS) technology has be used to characterize the genetic 
basis of diseases due to its ability to analyze the whole transcriptome. Currently, HTS research focuses on identifying 
differentially expressed genes (DEGs), however, the key genes that cause TAAD have yet to been discovered.4,5

Long non-coding RNA (lncRNA) are defined as more than 200 nucleotides in length and found to regulate protein 
coding gene expression at both the transcriptional and post transcriptional levels.6 Moreover, study has observed that, as 
the new epigenetic regulatory molecules, lncRNA can alter the expression degree and biological function of miRNA as 
an endogenous sponge in the pathophysiology of blood vessels.7–9 Current few studies involve lncRNA expression 
profiles in TAAD tissues, especially in human TAAD tissues.

This study focused on the bioinformatics analysis of HTS, and construct the lncRNA expression profile and ceRNA 
network of TAAD. By combining bioinformatics tools, such as R software with Gene Expression Omnibus 2R analysis, 
target gene prediction tools, gene ontology (GO) and pathway analysis, and protein-protein interaction (PPI) networks, 
we identified specific lncRNAs and ceRNA interaction axes closely related to the pathogenesis of TAAD.

Materials and Methods
Sample Collection
A total of 5 TAAD and 5 control (ischemic heart disease) at the Shanxi Bethune Hospital between June 2020 and October 
2020 were included in this study. Patients who were younger than 18 years of age or pregnant, or who suffered from a 
malignant disease (a cancer/tumor), an infection, hypertension, diabetes mellitus, aortic atherosclerotic plaque or 
calcification, and abnormal levels of myocardial enzymes, troponin, and neutrophils, or other cardiovascular diseases, 
were excluded. During surgery, small segments of human ascending aorta samples were taken from patients who had 
ischemic heart disease. These samples were collected under strict sterile conditions immediately after aortic cannulation 
or partial clamping, following standardized protocols to ensure the integrity and quality of the tissue samples. This study 
was conducted in accordance with the Declaration of Helsinki and was approved by the Shanxi Bethune Hospital (IRB: 
SBQKL-2022-034). Before deciding to take part in this trial, written informed consent was obtained from every patient.

Microarray Data Acquisition
RNA was extracted from aortic tissue of 5 TAAD patients and 5 control (ischemic heart disease) by Trizol and organic 
solvents (Invitrogen, CA, USA). The NanoDrop ND-1000 (IMPLEN,CA,USA) was used to measure the quantity and 
quality of RNA. RNA integrity was evaluated using the Agilent 2100 Bioanalyzer or customary denaturing agarose gel 
electrophoresis. The Arraystar Human LncRNA Microarray V5.0 is intended for the worldwide profiling of protein- 
coding transcripts and human lncRNAs. The Agilent One-Color Microarray-Based Gene Expression Analysis technique 
were used to sample labeling and array hybridization.

Microarray Data Analysis
Agilent Feature Extraction software (v11.0.1.1) was used to obtain microarray profiles and raw reads. Raw data were 
normalized with the use of GeneSpring GX v12.1 software (Agilent Technologies). Following normalization of the raw 
data, lncRNAs and mRNAs with Present or Marginal (“All Targets Value”) in at least five out of ten samples were chosen 
for additional data analysis. P-value and FDR filtering were used to find differentially expressed lncRNAs (DElncRNA) 
and mRNAs (DEmRNA) between the TAAD and control groups.
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Differentially Expressed miRNAs (DEmiRs) Analysis
The National Center for Biotechnology Information’s (NCBI) GEO database was searched, and a dataset was acquired by 
changing the screening criteria for species type to “Homo sapiens”. The “expression profiling by array” and “aortic 
dissection” as the learning type to get a standardized miRNAs expression profiles. Gene Expression Omnibus 2R was 
used to obtain up and down DEmiRs, the selection criteria was |log2 (fold change)|>1 and p-value ≤ 0.05.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Analysis
GO enrichment and KEGG pathway analyses were provided by online bioinformatics database DAVID (the Database for 
Annotation, Visualization, and Integrated Discovery) in this study.10 Cellular component (CC), biological process (BP), 
and molecular function (MF) were provided in the GO analysis. KEGG was used to explore the pathway enrichment of 
differentially expressed gene, and gene number >2 and p ≤ 0.05 were set as cut-off points.

Protein–Protein Interaction (PPI) Network Analysis and Key Gene Identification
On the basis of differentially expressed gene, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; 
version 11.0) was used to obtain protein–protein interaction (PPI). After hiding the points without interaction, the data 
were imported into Cytoscape (version 3.7.2) to visualize the PPI network. The top 10 hub genes in the PPI network were 
identified using the CytoHubba. GeneMANIA (https://genemania.org) analysis was used to analyze the enrichment of the 
top 10 hub genes in cellular components and linked pathways.

Prediction of Targeting Relationship and Construction of ceRNA Networks
The top 10 central genes (RNASEL, CTSL, LOX, CTSS, VCAN, PLOD2, IFITM2, CTSH, AMFR, ZNRF4) were 
selected and miRNA was predicted using TargetScan (www.targetscan.org). The differentially expressed miRNAs in 
microarray data and predicted miRNAs from the gene map were imported into the functional enrichment analysis website 
(Draw Venn Diagram (ugent.be)) to take the intersection, and a list of differentially expressed miRNAs were obtain. 
Furthermore, the relevant lncRNAs were predicted by ENCORI (Encyclopedia of RNA interactomes. (sysu.edu.cn)) 
Similarly, the differentially expressed lncRNAs in microarray data and predicted lncRNAs were performed the functional 
enrichment analysis (Draw Venn Diagram (ugent.be)) to take the intersection. Finally, according to the ceRNAs theory, 
the predicted targets of up-regulated lncRNAs, down-regulated miRNAs, and up-regulated mRNAs were overlapped to 
construct and visualize ceRNA network (lncRNA-miRNAs-mRNAs) by Cytoscape software.

Real-Time Quantitative PCR (RT-qPCR)
Total RNA was extracted from 100 mg human aortic tissue by real-time quantitative PCR (RT-qPCR) using TRIzol kit at 
4°C according to the manufacturer’s instructions. Then, the extracted RNA was reverse transcribed into cDNA using a 
cDNA Synthesis Kit. β-Actin was used as a housekeeping gene. The qPCR reaction solution consisted of 3µL cDNA, 
5µL 2×Universal Blue SYBR Green qPCR Master Mix, and 2µL primers (1µL forward primer and 1µL reverse primer). 
The amplification conditions were 95°C for 1 min, followed by 40 cycles of 95°C for 20s, 55°C for 20s, and 72°C for 
30s. The results were analyzed using the 2−ΔΔCt.

Statistical Analysis
The age was compared by Mann–Whitney U-test. The gender is compared by chi-squared test. All microarray data were 
standardized using the R package (version 4.2.1). Differential lncRNAs and mRNAs were screened by independent 
samples t-test. The linear regression analysis and Spearman’s rank correlation test were used to verify the interaction role 
of lncRNA-mRNA in ceRNA network. MedCalc 15.2.0 software was used to draw the receiver operating characteristic 
(ROC) curves. The area under the curve (AUC) from ROC analysis was used to evaluate the diagnostic performance. P 
value less than 0.05 was considered to be statistically significant. The heatmaps, volcano graphs and venn diagram were 
drawn by online software.
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Results
Patients’ Characteristics
The demographic features between the two groups were summarized in Table 1. There were no significant differences in 
smoking history (p = 0.500), hypertension (p = 0.222), and diabetes (p = 0.222) between the TAAD group and ischemic 
heart group. The RBC (p = 0.008) and Hb (p = 0.008) in the TAAD groups were significantly lower than in ischemic 
heart group, respectively. The WBC was higher in patients with TAAD, but there was no significant difference (9*109/L 
vs 5.6*109/L, p = 0.056). The patients in the TAAD group had significantly higher NEUT [7.73 (6.03, 9.98) *109/L] 
compared with those in ischemic heart group [4.06 (3.06, 5.09) mg/L, p = 0.016]. In addition, the level of CK in TAAD 
was higher than in ischemic heart group [546.80 (481.95, 920.75) vs 200.90 (157.95, 255.10) IU/L, p = 0.008] (Table 1).

Identification of Differentially Expressed Genes in Aortic Dissection
We compared the genes between TAAD and control group with our microarray dataset, and 95 DElncRNAs were found 
to be up-regulated and 66 down-regulated in TAAD. Alao, 54 DEmRNAs were up-regulated and 49 were down-regulated 
in TAAD (Supplemental Tables 1 and 2). The heatmaps and volcano plots of DEGs are shown in Figure 1A–D, 
respectively. According to the cut-off criterion, differentially expressed miRNAs (33 up-regulated and 54 down- 
regulated) were obtained from GSE98770 (Figure 1E and F).

GO Functional Enrichment Analysis of Up-DEGs and Down-DEGs in TAAD
To explore the functions enrichment pathways of these DEGs, GO and KEGG analyses were performed on up-DEGs and 
down-DEGs, respectively. As for GO analysis, we analyzed three subontologies of DEGs: cellular components (CC), 
molecular functions (MF), and biological processes (BP) (Figure 2).

The cellular component of up-DEGs were mainly enriched in lysosomal lumen, endosome lumen, vacuolar lumen, 
endolysosome, and collagen-containing extracellular matrix. The molecular function of up-DEGs were mainly enriched 

Table 1 The Demographic, Clinical, and Laboratory Features Between the TAAD and the Ischemic 
Heart Disease Group

Stanford-A Aortic Dissection  
(n=5)

Ischemic Heart Disease  
(n=5)

P Value

Demographic parameters
Age (years) 57.00 (52.50, 61.00) 58.00 (58.00, 60.50) 0.421

Male/Female, n 4 / 1 5 / 0 1.000

Smoker, n(%) 3 (60%) 2 (40%) 0.500
Hypertension (%) 2 (40%) 3 (60%) 0.500

Diabetes (%) 0 2 (40%) 0.222

Laboratory parameters
WBC (*109/L) 9.00 (7.35, 12.00) 5.60 (5.30, 8.05) 0.056

RBC (*1012/L) 3.70 (3.44, 3.94) 4.50 (4.34, 4.84) 0.008

Hb (g/L) 113.00 (103.00, 122.50) 140.00 (132.50, 151.00) 0.008
PLT (*109/L) 124.00 (98.00, 208.00) 189.00 (166.00, 289.50) 0.222

LYMPH (*109/L) 0.56 (0.42, 1.20) 1.47 (1.17, 2.22) 0.032

MONO (*109/L) 1.02 (0.43, 1.27) 0.41 (0.34, 0.53) 0.151
NEUT (*109/L) 7.73 (6.03, 9.98) 4.06 (3.06, 5.09) 0.016

EO (*109/L) 0.00 (0.00, 0.01) 0.14 (0.07, 0.23) 0.008

BASO (*109/L) 0.01 (0.01, 0.02) 0.03 (0.03, 0.05) 0.008
Cr (μmol/L) 85.90 (72.85, 93.15) 86.40 (75.70, 139.20) 0.690

CK (IU/L) 546.80 (481.95, 920.75) 200.90 (157.95, 255.10) 0.008

Notes: The age is reported as the medians (IQR) and compared by Mann–Whitney U-test. The gender is reported as numbers 
and compared by chi-squared. 
Abbreviations: WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; PLT, platelet count; LYMPH, lymphocyte; MONO, 
monocyte; NEUT, neutrophile; EO, eosinophil; BASO, basophil; Cr, creatinine; CK, creatine kinase.
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Figure 1 Differentially expressed analysis of lncRNAs, miRNAs and mRNAs. (A and B) The volcano map and heatmap of lncRNA expression profile in microarray dataset. 
(C and D) The volcano map and heatmap of mRNA expression profile in microarray dataset. (E and F) The volcano map and heatmap of miRNAs in GSE98770. In the 
volcano graph, the X-axis represents the fold changes of differently expressed mRNAs, and the Y-axis represents the adjusted p-value, red dots present up-regulated genes 
and blue dots present down-regulated genes (|log2foldChange| >1.0 and adjusted P value <0.05).
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Figure 2 GO functional enrichment analysis of differentially expressed genes in AD. (A) GO analysis of down-regulated genes, including the top 10 biological processes, 
cellular component, and molecular function. (B) GO analysis of down-regulated genes, including the top 10 biological processes, cellular component, and molecular function. 
Red indicated biological processes; green indicated cellular component; blue indicated molecular function.
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in fibronectin binding, death receptor binding, collagen binding, proteoglycan binding, and cysteine-type endopeptidase 
activity. The biological processes of up-DEGs were mainly enriched in cellular response to thyroid hormone stimulus, 
regulation of mRNA stability, regulation of mRNA catabolic process, response to thyroid hormone, and regulation of 
RNA stability (Supplemental Table 3).

As shown in Supplemental Table 4, the cellular component of down-DEGs were mainly focused on multivesicular 
body, late endosome, focal adhesion, cell substrate junction, SCAR complex, and actin filament. The molecular function 
of down-DEGs were mainly enriched in organic hydroxy compound transmembrane, transporter activity, solute:sodium 
symporter activity, calcium-dependent protein binding, and phosphatidylinositol 3-kinase regulatory subunit binding. The 
biological processes of down-DEGs were mainly enriched in positive regulation of ATP metabolic process, positive 
regulation of ATP biosynthetic process, regulation of ATP biosynthetic process, ribonucleotide biosynthetic process, and 
ribose phosphate biosynthetic process.

KEGG Signaling Pathway Analysis of Up-DEGs and Down-DEGs in TAAD
The KEGG analysis of up-DEGs and down-DEGs in TAAD were summarized in Supplemental Table 5. The pathway 
enrichment analysis revealed that up-regulated genes were mainly enriched in lysosome, apoptosis, phagosome, antigen 
processing and presentation, and sulfur metabolism (Figure 3A). The down-regulated genes were mainly focused on 
Salmonella infection, phospholipase D signaling pathway, acute myeloid leukemia, prolactin signaling pathway, and non- 
small cell lung cancer (Figure 3B). PIDD1 plays a major role in apoptosis pathway, GM2A plays a major role in 
lysosomal pathway, and CTSL, Cathepsin S (CTSS) and CTSH participate in both pathways (Figure 3C). The main genes 
enriched in Salmonella infection pathway are NCKAP1, DNM2, MAP2K2, CYTH1, and FLNB (Figure 3D).

PPI Network Construction and Identification of Hub Genes
The DEGs was imported into the STRING database and the PPI network was constructed. Cytohubba analysis was 
performed on the PPI data using Cytoscape to obtain the central gene. In terms of medium-degree calculations, the top 10 
pivotal genes were RNASEL, CTSL, LOX, CTSS, VCAN, PLOD2, IFITM2, CTSH, AMFR, and ZNRF4, among which 
RNASEL scored the highest (Figure 4A and B). The interaction scores between nodes in the STRING analysis were 
shown in Supplemental Table 6. GeneMANIA analysis of all central genes was performed. These central genes were 
mainly enriched in apoptosis (FDR: 9.33e-9, Coverage:9/164) and oxidative stress processes (FDR: 4.50e-8, Coverage: 
5/14) (Figure 4C and D).

Target Gene Prediction by TargetScan and Candidate Gene Screening
TargetScan was used to predict the miRNAs that hub genes could bind to, and 87 miRNAs were obtained. To find 
miRNAs that were differentially expressed, the projected 87 miRNAs were contrasted with the differentially expressed 
miRNAs in the GSE98770 dataset, 7 miRNAs (hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-miR-1271-5p, hsa-miR-186-5p, 
hsa-miR-23a-3p, hsa-miR-146a-5p, and hsa-miR-145-5p) were identified (Figure 5A). Furthermore, all lncRNAs pre
dicted using the 7 miRNAs were compared to the differentially expressed lncRNAs in our microarray data. A venn 
diagram analysis revealed 7 lncRNAs that were differently expressed, includig LINC01122, SNHG16, TTN-AS1, 
LINC01355, HCG18, ALG1L9P, and THUMPD3-AS1. Among which, LINC01355 was the only gene upregulated 
(Figure 5B).

Construction of ceRNA Network
The lncRNA-miRNA-mRNA network was constructed using Cytoscape, including 2 lncRNA nodes, 7 mRNA nodes, 5 
miRNA nodes and 28 edges (Figure 6A). The ceRNA acts as an endogenous sponge of miRNA, miRNA expression is 
opposite to lncRNA and mRNA. Based on the ceRNA theory, 1 up-regulated lncRNA (LINC01355), 4 down-regulated 
miRNAs (hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-miR-186-5p, and hsa-miR-145-5p), and 7 up-regulated mRNAs 
(RNASEL, LOX, CTSS, VCAN, PLOD2, CTSH, and AMFR) were identified (Figure 6B).
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Correlation Analysis of lncRNA and mRNA in ceRNA Network
To further confirmed the interaction between lncRNAs and mRNA, we obtained the aortic dissection gene expression 
data (GSE52093 and GSE190635) from the GEO database for correlation analysis. The results showed LINC01355 was 
positively correlated with VCAN, LOX, and CTSS in GSE52093 datasets (r=0.85, p=0.00042; r=0.68, p=0.015; r=0.67, 

Figure 3 Continued.
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Figure 3 KEGG signaling pathway analysis of up-DEGs and down-DEGs in AD. (A) The top 5 signaling pathway analysis of up-regulated genes by KEGG. (B) The top 5 
signaling pathway analysis of down-regulated genes by KEGG analysis. Gradual color means P value and the size means gene number. (C) Genes enriched in apoptosis and 
lysosomal pathways. Red lines indicated apoptosis pathway, blue lines indicated lysosome pathway. (D) Genes enriched in salmonella infection pathways.
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p=0.017, respectively; Figure 7A–C). In GSE190635 datasets, LINC01355 was also positively correlated with VCAN, 
LOX, and CTSS (r=0.85, p=0.0071; r=0.86, p=0.0057; r=0.90, p=0.0022, respectively; Figure 7D–F).

Clinical Performance of the VCAN, CTSS, and LOX for Diagnosing TAAD
The clinical performance of VCAN, CTSS, and LOX in terms of TAAD diagnosis was evaluated, and the results were 
summarized in Figure 8A. The AUCs of VCAN, CTSS, and LOX were 0.920 (95% confidence interval [CI] 0.580– 
0.999; p<0.001), 0.880 (95% CI 0.531–0.995; p=0.002) and 0.840 (95% CI 0.486–0.987; p=0.011), respectively. 
Furthermore, we conducted mRNA expression analysis in human aortic tissue. The results showed that VCAN 

Figure 4 Continued.
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Figure 4 The interactome of DEGs by Cytoscape and hub genes by GeneMANIA analysis. (A) Protein-protein interaction networks of string database. (B) Cytohubba 
analysis predicts the hub genes by degree calculation. (C) Protein-protein interaction networks of the hub genes in apoptosis. (D) Enrich function of 10 hub genes in 
oxidative stress processes.
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(p<0.001), CTSS (p<0.001), and LOX (p=0.021) significantly over-expressed in the TAAD patients, compared to control 
group (Figure 8B).

Discussion
TAAD is a rapidly progressing traumatic disease of the aorta with high morbidity and mortality.11 Therefore, it is urgent 
to further explore the key molecular mechanisms of TAAD and find novel and specific biomarkers for early diagnosis and 

Figure 5 The candidate gene screening by predictive genes and microarray data. (A) The Venn diagram showed the differentially expressed miRNAs in the GSE98770 
dataset and miRNA predicts by TargetScan online tool. (B) The differentially expressed lncRNAs in our microarray data and lncRNA predicts by TargetScan online tool. Blue 
indicated predicated miRNA/lncRNA, blue lines indicated miRNA/lncRNA in GSE98770 dataset/ microarray data.
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Figure 6 The CeRNA regulatory network by Cytoscape. (A) The CeRNA regulatory network, including the DElncRNA (LINC01355)-DEmiRNA (hsa-miR-30c-5p, hsa- 
miR-30a-5p, hsa-miR-186-5p, and hsa-miR-145-5p). (B) The CeRNA regulatory networks based on the hsa-miR-186-5p or hsa-miR-145-5p or hsa-miR-30c-5p or hsa-miR- 
30a-5p, respectively. Triangles, diamonds and rectangles indicated DElncRNAs, DEmiRNAs and DEmRNAs, respectively. Red and blue represented up- and down-regulation, 
respectively.
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Figure 7 Correlation analysis of lncRNA and mRNA expression levels in ceRNA network. (A-C) The correlation between LINC01355 and VCAN, LOX, CTSS in 
GSE52093 datasets. (D-F) The correlation between LINC01355 and VCAN, LOX, CTSS in GSE190635 datasets.
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Figure 8 ROC analysis of VCAN, CTSS, and LOX for distinguishing patients with TAAD and controls and mRNA levels of VCAN in TAAD patients. (A) Red line indicated 
the AUC of VCAN; Green line indicated the AUC of CTSS; Black line indicated the AUC of LOX; dotted line indicated the AUC of MBC-IF assay. (B) The mRNA levels of 
VCAN, CTSS, and LOX between TAAD patients and control. * p < 0.05, *** p < 0.001.
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treatment. A growing number of studies suggest that differentially expressed RNAs, such as lncRNAs and miRNAs, may 
be a major cause of TAAD pathogenesis and progression.12,13 To the best of our knowledge, previous bioinformatic 
analyses on TAAD and construction of ceRNA networks were from three databases of GEO (GSE 52093, GSE92427 and 
GSE98770), which undoubtedly has limitations.14–16 To provide more possibilities for molecular studies of TAAD 
pathogenesis, lncRNA and mRNA expression profiles of TAAD and ischemic heart disease were obtained by microarray 
and high-throughput sequencing techniques in this study. Furthermore, bioinformatic analysis of the expression profile 
was performed to identify molecular networks important in the pathogenesis of TAAD, which may provide new guidance 
for the treatment of TAAD.

The microarray dataset showed that 103 DEmRNAs (54 up-regulated and 49 down-regulated) and 161 DElncRNAs (95 
up-regulated and 66 down-regulated) were identified in aortic dissection samples, compared with normal ascending aortic 
samples. The up-DEGs by GO functional enrichment analysis showed that the up-regulated DEGs are mainly enriched in 
lysosomal lumen, endosome lumen, vacuolar lumen, endolysosome, and collagen-containing extracellular matrix and the 
down-DEGs are mainly enriched in multivesicular body, late endosome, focal adhesion, cell-substrate junction, SCAR 
complex, and actin filament. Up-regulated genes were primarily found in the lysosome pathway and the apoptotic pathway, 
according to KEGG analysis. Thus, GO and KEGG analysis revealed the importance of apoptosis in aortic mesangial vascular 
smooth muscle during TAAD. This conforms to the knowledge that vascular smooth muscle cell apoptosis is now thought to 
be a fundamental mechanism of TAAD development and progression. In addition to vascular smooth muscle cell apoptosis, 
the phenotypic transition of vascular smooth muscle cell plays a key role in triggering AD. Study demonstrated that vascular 
smooth muscle cell can reversibly switch from contractile to synthetic form in response to external stimulation, resulting in 
loss of contractile proteins and increase of inflammation, thereby accelerating aortic remodeling. Abhijit Chakraborty et al 
demonstrated that DNA damage and cytosolic leakage drive vascular smooth muscle cell from a contractile phenotype to an 
inflammatory phenotype.17 Yongting Luo et al revealed that the TNF-OXPHOS-AP-1 axis triggers AD temporal-specific 
phenotypic transitions of vascular smooth muscle cell, leading to aortic dissection and rupture by single-cell RNA sequencing 
of human ascending aortas, validation experiments in human aortic tissues, primary human aortic vascular smooth muscle cell 
experiments, and a mouse model of AD.18 However, the identified differential genes were not enriched for phenotypic 
transformation of vascular smooth muscle cells in our study.

Recently, an increasing number of studies have illustrated that lncRNA plays critical regulatory roles in cancer through 
lncRNA-miRNA-mRNA axes.19 A sophisticated post-transcriptional endogenous regulatory network known as the ceRNA 
network has been proposed, in which lncRNAs and circRNAs serve as sponges for miRNAs to control mRNA, and miRNA 
expression is opposite to mRNAs.20 The ceRNA network is involved in regulating proliferation, apoptosis, migration and 
phenotypic transformation of endothelial and smooth muscle cells in aortic dissection.21,22 In this study, we constructed an 
TAAD-associated ceRNA network, including 2 lncRNA nodes, 7 mRNA nodes, and 5 miRNA nodes. Since ceRNA acts as a 
sponge for miRNAs, and lncRNAs in TAAD and control groups, we identified 1 up-regulated lncRNA (LINC01355), 4 down- 
regulated miRNAs (hsa-miR-30c-5p, hsa-miR-30a-5p, hsa-miR-186-5p, and hsa-miR-145-5p), and 7 up-regulated mRNAs 
(RNASEL, LOX, CTSS, VCAN, PLOD2, CTSH, and AMFR) based on the ceRNA theory. Bioinformatics analysis in this 
study indicated that the up-regulated DElncRNA (LINC01355) may compete with 4 key DEmiRNAs ((hsa-miR-30c-5p, hsa- 
miR-30a-5p, hsa-miR-186-5p, and hsa-miR-145-5p) to regulate the target DE mRNA expression of LINC01355, which is 
known as hypoxia yield proliferation associated lncRNA (HYPAL). According to research, LINC01355 accelerates the 
growth of gastric cancer cell via sponging miR-431-5p to activate CDK14.23 Additionally, LINC01355 suppressed the growth 
of breast cancer by FOXO3-mediated transcriptional regulation of CCND1. Breast cancer cell proliferation was suppressed 
and cell cycle progression was arrested when LINC01355 was overexpressed.24 This suggests that LINC01355 can act as a 
ceRNA to regulate cell proliferation apoptosis and cell cycle. Furthermore, it has been demonstrated that hsa-miR-186-5p, a 
component of the ceRNA network, is crucial in the rejection of cardiac transplants and mitigates propofol-induced cytotoxicity 
in cardiomyocytes produced from human induced pluripotent stem cells.25,26 Also, it has been discovered that hsa-miR-186- 
5p participates in a new immune-associated ceRNA network.27 Therefore, LINC01355 may compete as ceRNA for hsa-miR- 
186-5p to participate in regulating TAAD. Furthermore, logistic regression analysis confirmed that LINC01355 was positively 
correlated with VCAN, LOX, and CTSS in GSE52093 and GSE190635 datasets.
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CTSS is thought to be a member of intra-lysosomal protein hydrolysis, degrading unwanted and damaged proteins.28 It has 
been established that CTSS has a role in the extracellular matrix (ECM) protein degradation, protein trafficking, and cellular 
signaling during the pathophysiology of cardiovascular disease.29 In atherosclerosis, for instance, CTSS is released into the 
ECM via lysosomal cytosolic action, enhancing collagen and elastin breakdown and encouraging VSMC migration.30 Calcific 
aortic valve disease (CAVD) can cause degeneration and remodeling of the ECM, and CTSS is a key player.31 It has also been 
shown that CTSS levels are increased in abdominal aortic aneurysms and are associated with HDL cholesterol and bilirubin.32 

Versican (VCAN), a vital extracellular matrix component, has an impact on inflammation through interactions with 
inflammatory cells, numerous cytokines and growth factors involved in the control of inflammation.33 In addition, VCAN 
plays an important role in a variety of cancers and cardiovascular diseases as part of early inflammation.34,35 It is worth noting 
that VCAN expression was found to be increased in thoracic aortic aneurysm and dissection (TAAD), suggesting a key role for 
proteoglycans in mediating medial aortic homeostasis and ECM integrity.36 Based on the pathogenesis of inflammatory 
response, medial deformation, and loss of elastic fibers, it can be hypothesized that VCAN plays an important role in 
TAAD.37,38 María Jesús Ruiz-Rodríguez et al demonstrated that VCAN plays a causative role in Marfan Syndrome (MFS) 
aortic disease in vivo by inducing Nos2 via Akt activation and identified components of the Akt signaling pathway as potential 
therapeutic targets.39 Additionally, Frank S. Cikach et al has already elucidated and experimentally confirmed VCAN as a 
potential biomarker for aortic dissection.36 These findings are to some extent consistent with the results of the present study. 
However, our study takes a different approach by integrating VCAN into a ceRNA (competing endogenous RNA) network. 
We identified novel regulatory relationships between VCAN and specific lncRNAs and miRNAs through bioinformatics 
analysis and subsequent experimental validation. Lysyl oxidase (LOX) and its related gene family members are involved in the 
two main structural proteins that build up the artery wall, elastin and collagen.40 Current studies have shown that LOX loss-of- 
function mutations cause thoracic aortic aneurysms and coarctation in humans and may be a novel marker for TAAD with 
sensitivity and specificity comparable to that of TnT.41,42 However, no studies have identified the upstream genes of LOX and 
how they affect the development of aortic coarctation by regulating LOX expression. This study predicted for the first time that 
LOX can be regulated through the ceRNA network in TAAD. Therefore, CTSS, VCAN, and LOX would be regulated through 
LINC01355.

The present study is a combination of data information and biological priori information, which may provide strong 
evidence for further investigation of the molecular mechanisms of TAAD. However, this study has a limitation due to the 
lack of correct for batch effects. The ComBat algorithm (from the R package sva) is a well-established and widely used 
method for adjusting batch effects in high-throughput genomic data. It could take into account the differences in 
sequencing platforms, sample processing methods, and other technical variability between datasets. This process 
minimize the technical variations between data sources and ensure that the subsequent data are more reliable. In the 
following studies, we will further verify the clear role of ceRNA network in the occurrence and development of TAAD, 
providing new therapeutic targets for TAAD.

Conclusion
In summary, the differential expression profile of lncRNA, miRNAs and mRNAs of TAAD in aortic dissection and the 
lncRNA-miRNA-mRNA regulatory axis were constructed by bioinformatics analysis. LOX axis, CTSS axis and VCAN 
axis may play important roles in TAAD. Our findings shed more light on the possible pathogenic mechanisms in TAAD 
using lncRNA-related ceRNA networks.
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