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Background: Cuproptosis, distinguished from apoptosis, necroptosis, pyroptosis, and ferroptosis, is a current form of programmed 
cell death that provides novel strategies for tumor therapy. Nanotechnology inducing cuproptosis showed potential in tumor ablation. 
However, these strategies might induce cellular damage due to a lack of tumor-targeting ability or insufficient tumor inhibition alone.
Methods: Here, biomimetic copper-doped polydopamine nanoparticles (PC NPs) were developed to specifically induce tumor cell 
cuproptosis to enhance radiotherapy (RT). PC NPs were characterized before application for tumor ablation.
Results: These PC NPs improve tumor targeting and accumulation. After entering the tumor region, PC degrades in cells responsive 
to acidic tumor microenvironment (TME). Next, Cu2+ is reduced to Cu+ after consuming overexpressed glutathione (GSH), which 
induces dihydrolipoamide S-acetyltransferase (DLAT) aggression and cuproptosis. Under RT, reactive oxygen species (ROS) are 
generated and consume GSH, leading to cuproptosis. The decreasing of GSH content in tumor tissues can improve the treatment effect 
of RT by inhibiting self-repair of tumor cells, hindering cell survival and proliferation. The combination of PC and RT alleviate tumor 
growth, reaching a tumor growth inhibition rate of 93.0%.
Conclusion: This tumor-specific targeting nano platform is a valuable radiosensitizer responsive to TME for improving therapeutic 
efficacy against tumors.
Keywords: platelet cell membrane, radiosensitization, tumor microenvironment, cuproptosis, tumor therapy

Introduction
Cancer remains a significant public health issue worldwide.1–4 Cancer treatment strategy involves surgery, chemotherapy, 
radiotherapy (RT), and immunotherapy.5,6 RT is an important multidisciplinary management of many types of cancer. It 
exerts high energy beams to target tumor tissue, causing oxidative stress and DNA double-strand breaks (DSBs), which 
in turn trigger cell apoptosis. This treatment can serve as a curative strategy for early-stage cancer, a method to control 
local recurrence, and palliative care for advanced cancer.7,8 However, the tumors are much less sensitive than late- 
responding healthy tissues, due to tumor radioresistance resulting from specific tumor microenvironment (TME).9,10 

Thus, the use of RT should be carefully weighed to overcome radioresistance and reduce side effects. Therefore, it is 
urgent to develop a novel method for improving the efficacy of RT.

Radiosensitizers have been applied for the improvement of RT during clinic, such as cisplatin, antibody-drug 
conjugates (ADC) and epoxygenase-2 inhibitors.11–15 But these sensitizers have serious side effects.16–18 Recently, 
nanotechnology can improve RT treatment effects and overcome the above limitations.19,20 Nanoplatforms containing 
high Z elements can accumulate large dosages by increasing the amounts of photoelectrons and Auger electrons. Ertas’s 
team developed an alginate coated Pt nanoradiosensitizer for breast cancer.21 Han et al found that Au infinite 
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coordination complex causes dose enhancement after the metal-organic nanocomplex entry to cells.22 Cao reported that 
platinum nano-assemblies can not only act as radiosensitizers enhance radiodynamic therapy and activate immunotherapy 
against tumors but also contrast agent for computed tomography imaging.23 Meanwhile, the exogenous stimuli-respon-
sive therapy strategy by merging photothermal therapy, photodynamic therapy, ultrasonic therapy and other treatments 
with RT showed potential in removal of tumors.24–26 For instance, nanoagents for dual enhancement of photothermal 
therapy and RT lead to synergistic effects. This was due to the hypoxia in TME can be alleviated by the accelerated blood 
flow induced by photothermal therapy, which results in enhancement of RT.27,28 However, it is necessary to consider the 
TME triggered burst release of nanoradiosensitizer to reduce toxicity to normal tissues. It is well known, the TME is 
characterized by high levels of glutathione (GSH), and H2O2 with hypoxia status under low pH.29,30 Responsive to these 
endogenous stimulations, nanoplatforms are widely developed in biomedical applications to enhance radiosensitization. 
An acid-triggered aggregation gold nanosystem realizes controllable size monitoring by changing the surface charge after 
the nanosystem accumulates in tumor regions by enhanced permeability and retention (EPR) effects.31 Janus nanopar-
ticles were fabricated which dissolved responsive to GSH to improve RT.32 These smart designs of stimuli-nanoplatform 
enhance radio sensitization efficacy. However, positive tumor-targeting properties are necessary when considering the 
circulation time and side effects.

Cuproptosis, which was discovered recently, has provided novel ideas for cancer treatment.33,34 Cuproptosis is caused 
by DLAT aggression and Fe-S cluster protein loss, which causes proteotoxic stress and cell death. In addition, 
immunogenic cell death (ICD) can be triggered by cuproptosis.35–37 However, the cuproptosis was hindered due to the 
lack of transporter proteins and high level of GSH content in TME which eliminate copper ions.38 Based on this 
background, here this work constructed a copper-doped polydopamine nanoparticles (PDA@Cu) and camouflaged them 
with platelet cell membrane (PCM), as shown in Scheme 1. This PCM coating PDA@Cu was termed PC NPs. Because 
platelet cells tend to accumulate in the inflammatory tumor sites, PC with PCM coating is capable of highly accumulating 

Scheme 1 Schematic illustration of synthesize procedure and functional pattern of PC NPs.
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in tumor sites. Meanwhile, the disguise of PCM enables escape of PC from immune system clearance, prolonging 
circulation time and enhancing the delivery efficiency. After intracellular entry, PC NPs cracked and dissolved to release 
PDA@Cu, the latter of which dissembled under acidic TME and releases Cu2+. This process enabled an influx of copper 
ions in tumor cells. Cu2+ next was reduced to more toxic Cu+ in the existence of GSH. Cu+ leads to aggregation of DLAT 
to further enhance the cuproptosis. RT also led to generations of reactive oxygen species (ROS) causing oxidative stress, 
which decreases the amount of GSH and hence strengthens the cuproptosis. Copper overloading also promoted the 
enhancement of RT by exhausting the intracellular GSH to inhibit tumor cell self-repair. Hereby, this cuproptosis 
involved PC NPs with improved tumor targeting ability, and showed potential in radiosensitization.

Result and Discussion
Characterization of Acidic pH Responsive PC NPs
PDA@Cu was prepared by using CuCl2 and PDA as precursors in dispersion and stable solution (Supporting information, 
Experimental section). Figure 1A shows the transmission electron microscopy (TEM) images of sphere structures of 
PDA@Cu. After the coating of PCM, a thin film boundary appeared on the edge of PC NPs (Figure 1B). Then, the dynamic 
light scattering (DLS) confirmed that the average diameter of PCM NPs remained stable in both PBS and FBS over 7 days 
observation (Figure 1C). To further verify the characterization of PCM on PDA@Cu, the diameter and zeta potential of 
PDA@Cu, PC, and PCM were measured, as shown in Figure 1D. Before camouflaging of PCM whose diameter is about 188.6 
nm, the diameter of PDA@Cu was increased from 123.1 nm to 139.2 nm. Meanwhile, the zeta potential of PC shifted from 

Figure 1 Characterization of PC. (A) TEM images of PDA@Cu NPs. (B) TEM images of PC NPs. (C) Time-dependent observation of PC diameter in PBS and FBS 
respectively. (D) Average diameter and zeta potential of PDA@Cu, PC and PCM respectively. (E) Elemental mapping of PC. (F) XPS survey of PC. (G) Release profile of Cu 
in buffer solution of different pH values. (H) Representative fluorescence imaging of cellular uptake in 4T1 after FITC labeled RC and PC. Data are presented as mean ± SD. 
Student t test. *** p< 0.001.
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−13.2 mV (PDA@Cu) to −17.6 mV (PC) after coating of PCM (−17.9 mV). These results verified the successful coating of 
PCM on PC NPs. Elemental mapping patterns and Energy-dispersive X-ray spectroscopy (EDX) were used to confirm the 
composition of PC NPs, as shown in Figure 1E and F. The results confirmed the existence of Cu, N and C elements, and these 
elements were distributed in PC NPs uniformly.

The release behavior of Cu at different pH buffers was further investigated, as shown in Figure 1G. Almost no 
significant ion Cu release was detected in a buffer with pH 7.4. While significant amount of Cu content was observed in 
the buffer of the group with a pH value of 6.0, reaching as high as 79.2% amount of total Cu.

Figure 2 PC NPs could radiosensitize by inducing cuproptosis. (A) ROS production and DNA damage in 4T1 cells after different treatments (RT: radiotherapy). (B) Cell 
viability in all treatment groups on CT26 cells. (C) Measurement of GSH level. (D) Surviving fraction in each group. (E) Immunofluorescence staining of DLAT. (F) WB 
analysis and gray analysis. Data are presented as mean ± SD. Student t test. *** p< 0.001.
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In this work, 4T1, CT26 and MCF-10A cells were obtained from purchased from the Pricella Biotechnology (China). 
To evaluate and compare the cellular uptake efficacy of PC NPs, erythrocyte membrane camouflaged PDA@Cu (termed 
RC) was also synthesized. 4T1 cells were co-incubated with either FITC-labeled RC or PC NPs, respectively. Next, the 
cells were fixed for measurements of the number of NPs cellular uptake by CLSM imaging. A significant amount of 
green fluorescence representing NPs was observed in the PC NPs treatment group (Figure 1H) than that of RC NPs 
group, indicating higher intracellular entry and accumulation of PC NPs.

Evaluation of Anti-Tumor Effect of PC NPs Enhanced RT
The cytotoxicity of both RC and PC NPs on MCF-10A was verified through CCK8 method based on the studies in the 
previous section. As shown in Figure S1, cell viability of MCF-10A decreased with RC or PC NPs concentrations 
increase, which exceeded 90% survival rate under 30 μg/mL Cu concentration, suggesting satisfied biocompatibility at 
the concentration of 30 μg/mL. The antitumor efficacy in vitro was further evaluated. As highly reactive molecules, ROS 
with strong oxidation property can lead to cell death. The ROS production after various treatments was assessed using 
DCFH-DA probe. As shown in Figure 2A, the intensity of green fluorescence was strongest in PC+RT group among all 
groups, while weaker intensity was observed in RC+RT group. This result indicated that significant amount of ROS was 
generated by PC+RT under GSH conditions at acidic buffer due to the PCM coating. Because ionization irradiation can 
induce cell death by direct DNA damage, γ-H2AX staining was used for DNA DSBs staining. Slight red fluorescence was 
observed in 4T1 cells under RT. In addition, RC combined with RT exerted apparent DNA damage on 4T1 cells, however 
remarkable amount of red fluorescence intensity appeared in PC+RT group. The fluorescence intensity evaluation further 
confirmed the result, as shown in Figure S2. Next, cell viability evaluation was performed using CCK8 kit on CT26. As 
shown in Figure 2B, PC group showed modestly reduced cell viability while RC+RT group obviously destroy tumor 
cells. By striking contrast, PC+RT significantly killed tumor cells. Next, GSH consumption in different groups was 
qualified in Figure 2C. It showed that the GSH level decreased in RT group and PC group because RT exhausted GSH 
content and cuproptosis process of PC in cells. Compared with RC+RT group, PC+RT group showed more robust GSH 
elimination efficacy. The cancer cell proliferation in all groups was assessed by colony formation assay, as shown in 

Figure 3 ICD effect assessment in vitro. CLSM for (A) Schematic illustration for PC+RT induced ICD (B)CRT efflux detection and (C) HMGB1 release and (D) HMGB1 
release in medium. (E) Released ATP detection. (F) DC maturation. Data are presented as mean ± SD. Student t test. *** p< 0.001.
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Figure 2D. The surviving fraction of 4T1 cancer cells and CT26 cancer cells reduced to 10% in PC+RT group. It shows 
that this therapy is effective for breast cancer and colon cancer.

Subsequently, the cuproptosis induced by PC+RT was assessed. As an important intracellular signaling related to 
cuproptosis, DLAT aggression was investigated by fluorescence staining (Figure 2E). A large amount of DLAT was 
observed in 4T1 cells treated with PC NP, indicating that PC can induce cuproptosis. PC+RT showed the most significant 
DLAT aggression. Ferredoxin 1 (FDX1) showed an important role in copper metabolism, since it involved in the Fe-S 
proteins and electron transfer processes.37 From the result of Western blot analysis and protein quantification, the FDX1 
downregulated after the PC treatment (Figure 2F). This confirmed that the cuproptosis was induced by PC. Surprisingly, 
PC combined RT exhibited the most obvious downregulation of FDX1 protein. These above results verified that both RT 
and PC can consume intracellular GSH, PC showed higher cellular uptake of RC which increased the antitumor efficacy 
in vitro. The PC showed potential in inducing cuproptosis, while the cuproptosis was more robust in combination therapy 
of PC and RT.

Promotion of ICD by PC NPs Enhanced RT via Cuproptosis
ICD can activate immune response, which is characterized by damage-associated molecular patterns (DAMPs) including 
releasing of ATP, surface-exposed calreticulin (CRT) and DNA bound high-mobility histone 1 (HMGB1). An experiment 
in vitro was designed for the study of in vitro ICD induction and dendritic cell (DC) maturation assays of 4T1 cells 
(Figure 3A). The ICD-related DAMPs by fluorescence imaging under various treatment groups were tested. The “eat me” 
signal of CRT was observed using CLSM imaging (Figure 3B). Negligible amounts of green fluorescence were observed 
in RT or PC or RC+RT treatment groups. However, PC+RT treatment group exhibited significant amount of CRT 
exposure among all groups. Besides, significant amount of HMGB1 was released into medium after treatment of PC+RT 
group (Figure 3C and D), which was 1.50 times higher than that of RC+RT group. Meanwhile, PC+RT group had the 
highest relative concentration of ATP, which was 1.54 times higher than that of RC+RT group (Figure 3E). Maturated 

Figure 4 Identification of PC enhanced RT in tumor growth inhibition in vivo. (A) Biodistribution in main organs and tumors after administration of RC or PC NPs 
respectively. (B) Relative tumor volume curve. (C) Immunofluorescence staining of LIAS and FDX1, HE staining. (D) Tumor weight measurement. (E) Body weight 
fluctuation. Data are presented as mean ± SD. Student t test. *** p< 0.001.
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mouse bone marrow-derived DCs were incubated with pretreated 4T1 cells before using flow cytometry to assess the DC 
maturation, as shown in Figure 3F. PC+RT showed the highest population of mature DC proportion, reaching as high as 
54.1% CD80+CD86+ DC, which was significantly higher than that of RT group. These results indicated a more robust 
ICD effect after the addition of PC, suggesting the radiosensitization by PC.

Antitumor Efficacy Evaluation on Subcutaneous Tumor Model
Tumor-specific targeting in vivo was studied on subcutaneous 4T1 tumor bearing mice. Animal experiments were 
conducted following the guidelines of the National Institutes of Health and approved by the Animal Ethics Committee 
of Guangxi Medical University (Approval number: 2023-KY (0932)). 105 4T1 cells were subcutaneously injected on the 

Figure 5 Observation of biosafety. (A) Identification of damage to main organs with HE staining analysis. (B) The ALT, AST and ALP levels in mice received injection of PBS 
and PC. (C) BUN and (D) CRE concentration in PBS and PC treatment groups.
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right lap of 6-week-old female BALB/c mice to form tumor models. After 24 h injection of RC or PC NPs via tail vein, 
Cu concentration biodistribution in main organs and tumors was quantified using ICP-AES, as shown in Figure 4A. The 
results confirmed that PC had higher tissue accumulation than that of RC, implying PC NPs had significant active tumor 
targeting ability than RC. Besides, the subcutaneous 4T1 tumor bearing model on BALB/c mice was established to 
examine the antitumor efficacy of this integral method. The day 1 was set as the next day of treatment and all the mice 
were executed at day 16, as shown in Figure 4B. Mild tumor inhibition was observed under treatment of RT alone, while 
obvious tumor suppressing was observed in RC+RT group. Surprisingly, integral treatment of PC+RT was proven to be 
the most efficient strategy among all, significantly higher than that of other groups, which was consistent with the results 
in Figure 4C.

Immunofluorescence and HE staining were further performed. Lipoic acid synthetase (LIAS) and FDX1 play 
important roles in influencing cuproptosis. The tumor tissue of PC+RT treatment exhibited decreasing expression of 
LIAS with minimal red fluorescence intensity, as confirmed in Figure 4D. PC+RT treatment also effectively promoted 
FDX1 reduction. And most substantial cell death was observed in PC+RT group. These in vivo results demonstrated that 
the integral treatment of PC and RT showed potential in tumor growth inhibition.

Moreover, body weight had no significant change after these treatment strategies (Figure 4E). It is necessary to 
evaluate the biosafety of nano-radiosensitizers for cancer treatment. Therefore, the biosafety of PC NPs in vivo was then 
further evaluated. Ten healthy mice received administration of PBS buffer or PC NPs solution and were executed after 10 
days. Histological analysis of main organs including heart, liver, spleen, lung and kidney confirmed positive compat-
ibility of PC NPs, as shown in Figure 5A. In addition, blood biochemical analyses of alanine transaminase (ALT), 
aspartate transaminase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN) and creatinine (CRE) were 
evaluated, and found that there was no significant difference between PBS and PC group (Figure 5B–D).

Conclusion
This work developed a biomimicking TME responsive cuproptosis induced nanoplatform PC for radiosensitization. PC 
NPs can efficiently target and accumulate tumor tissues through PCM camouflage. Since the high cellular uptake 
property of PC NPs, PDA@Cu is successful transport into cells. Under acidic TME, PDA@Cu is dissembled in cell 
matrix, releasing a burst of Cu2+ ions which consume reducible GSH to generate Cu+. Next, Cu+ induces DLAT 
aggression occurred under RT irradiation. Meanwhile, ROS generated from RT also lead to decreasing GSH content. 
Both Cu+ and RT lead to severe cell cuproptosis, enhance ICD effect in vitro, and promote DC maturation. The antitumor 
efficacy of integral treatment of PC and RT is significant as proven both in vitro and in vivo. This work hereby provided a 
potential strategy by radiosensitization induced by PC to enhance cuproptosis, holding great promise in the treatment of 
cancer.
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