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Introduction: Cell death contributes to the pathogenesis of rheumatoid arthritis (RA) through various pathways. Disulfidptosis is
a recently discovered novel form of cell death characterized by the abnormal accumulation of intracellular disulfide bonds. It remains
unclear for the association between RA and disulfidptosis.

Methods: A comprehensive analysis of three GEO datasets was presented in this study. First, the analysis involved the use of
weighted gene co-expression network analysis (WGCNA) and differential analysis and were employed to identify the key module
genes related to RA and disulfidptosis-related genes. The machine learning algorithms were used to identify the hub genes. Second,
a diagnostic model was constructed for RA based on the hub genes. The nomogram and receiver operating characteristic (ROC) curves
were utilized to evaluate the diagnostic value of the model. Third, two RA subtypes were identified based on hub genes by using
consensus clustering analysis. Then, the disease activity scores, clinical markers, and immune cells were compared between the two
RA subgroups. Finally, the differential expression of hub genes was validated between healthy controls and RA patients by qPCR.
Results: Four hub genes (KLHL2, POLK, CLEC4D, NXT2) were identified. The expression of the four hub genes was verified to be
significantly higher in RA patients compared with healthy controls. The superior diagnostic value of the model was validated, which
demonstrated that the model outperforms each hub gene individually. Two subtypes of RA were determined. Patients in cluster
A exhibited relatively lower levels of DAS28-CRP, DAS28-ESR, CDAI, SDAI, RF, CRP, and MMP3. In contrast, patients in cluster
B had significantly higher levels of the above markers.

Conclusion: Four hub genes were identified to provide unique insights into the role of disulfidptosis in RA. Additionally, a promising
diagnosis model and patient stratification were established based on the hub genes to assess the risk of RA onset and RA disease
activity.
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Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by persistent synovitis and the destruction of joint
cartilage and bone.! Additionally, it affects the function of various organs, such as the heart, lungs, and kidneys, leading to
a decline in quality of life.* The prognosis of RA is influenced by early diagnosis and proper treatment.* The biological and
targeted synthesis disease modifying anti-rheumatic drugs (DMARDs) have been demonstrated to yield superior outcomes for
patients suffering RA compared with conventional DMARDs. However, approximately 30%—40% patients have no response to
the current treatment. Additionally, no treatment can be demonstrated to fully cure the disease.® In accordance with the well-
known heterogeneity of RA, variable prognosis and response to RA treatment are linked to the variable underlying pathogenesis

Journal of Inflammation Research 2025:18 4157—4175 4157
Received: 10 November 2024 © 2025 Liu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
AT 2nd incorporate the Creative Commons Attribution — Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

Accepted: 11 March 2025
Published: 19 March 2025

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).


http://orcid.org/0000-0003-3609-8479
http://orcid.org/0000-0001-6351-6758
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com

Liu et al

in individual patients.”” The stratification of RA patients is paramount for the evaluation of prognosis and the selection of
appropriate treatment options.''' However, this is challenging due to the lack of clarity regarding the pathogenesis of RA.

12-14 and environmental factors.!>!'® Recent studies

It is generally accepted that RA is associated with genetic susceptibility
indicated that a variety of immune cells, including B cells,'”"'® T cells,'**° macrophages,21 dendritic cells,?>** mast cells,”*
and neutrophils,”® were involved in the development and progression of RA. Furthermore, cell death contributes to the

2627 cuproptosis,*® and

pathogenesis of RA through various pathways. The diverse cell death modes, including ferroptosis,
pyroptosis,”’>® were involved in RA. For instance, the inhibition of ferroptosis may result in a reduction of RA synovium
proliferation by means of the alleviation of oxidative stress response, and may also affect the polarization of macrophages to
reduce the inflammatory re:sponse>.3l’32 Liu et al identified disulfidptosis, as a novel form of cell death, was associated with
abnormal accumulation of intracellular disulfide bonds, particularly under conditions of glucose deprivation. Cells with high
expression of SLC7A 11 increase intracellular disulfide bond formation under glucose-starved conditions by promoting cystine
uptake. This accumulation depletes intracellular NADPH and then leads to disulfidptosis.”® Unlike traditional apoptosis or
necrosis, disulfidptosis promotes cell death by altering the disulfide bond status of cellular scaffold proteins, a process closely
linked to cellular redox balance.** It is common for RA synovial tissue characterized by anoxia present of oxidative stress,
namely redox imbalance.*>*® However, to our knowledge, there are no studies on disulfidptosis in RA.

To identify disulfidptosis-related genes associated with RA, we first used transcriptomic data from public databases to
confirm disulfidptosis-related genes by weighted gene co-expression network analysis (WGCNA) and differential
analysis, and then applied three machine learning algorithms, LASSO regression, SVM-RFE, and Random Forest, to
find hub genes. Second, we constructed a prediction model for RA diagnosis using the hub genes. To evaluate the
diagnosis value of the model, we performed internal and external validation. Third, we determined two RA subtypes
based on the hub genes and compared the disease activity scores, clinical markers, immune checkpoints and immune
cells between 2 subgroups of RA patients, trying to indicate the hub genes for RA patient stratification. Finally, the
expression of hub genes was experimentally validated between RA patients and healthy controls.

The objective of this study was to construct a promising diagnostic model and validate its diagnostic value, and then
provide a patient stratification, effectively distinguishing two RA subtypes by distinct clinical and molecular constituents.
This has the potential to identify new therapeutic targets and enhance personalized treatment strategies for RA patients.

Methods

Dataset Sources and Preprocessing

The dataset used in the current study was obtained from the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) using “rheumatoid arthritis” as the search term. Data sets were selected according to the following
criteria: gene expression profiles were from human samples; samples included both healthy controls and patients. Three
datasets were selected from GSE110169°7 and GSE93272,*® which contained whole-blood gene expression data using
microarray analysis, and GSE89408*°*° containing synovial biopsy data by high-throughput sequencing. The informa-
tion of three datasets is shown in Table 1.

The study flowchart was shown (Figure 1). The raw datasets were normalized using the Limma package. In instances
where multiple probes were mapped to an identical gene, the median of these values was assigned as the gene’s
expression level. This process resulted in the formulation of a refined expression matrix by converting the probe
identifiers to their respective gene symbols. The GSE89408 dataset was log2 transformed to normalize the variance
within gene expression levels and prepared the data suitable for further analytical processes. Meanwhile, the GSE93272

Table | GEO Datasets Information

Datasets Platform | Disease Samples Measurement Source Type
GSEI10169 | GPLI13667 | Rheumatoid Arthritis | 84 RA and 77 controls Microarray Whole blood
GSE93272 GPL570 Rheumatoid Arthritis | 232 RA and 43 controls | Microarray Whole blood
GSE89408 GPLI1154 | Rheumatoid Arthritis | 152 RA and 28 controls | High-throughput sequencing | Synovial biopsies

Abbreviation: RA, rheumatoid arthritis.
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Figure | Flowchart of the study.
Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RA, rheumatoid arthritis; ROC, receiver
operating characteristic; ssGSEA, Single-sample Gene Set Enrichment Analysis; SVM-RFE, Support Vector Machine Recursive Feature Elimination; WGCNA, Weighted Gene
Co-expression Network Analysis.

dataset, which presented with gaps in clinical data, underwent imputation via the k-nearest neighbor (KNN) algorithm,

leveraging the 10 nearest neighbors to surmise the missing entries.*'

Weighted Gene Co-Expression Network Analysis and Identification of Significant

Module Genes

The Weighted Gene Co-expression Network Analysis (WGCNA) was performed using the WGCNA R package (version
1.70.3). First, sample clustering was conducted to identify potential outliers (Supplementary Figure 1A). Second, a scale-
free co-expression network was constructed using the pickSoftThreshold function in R to compute the soft thresholding
power. The soft power was determined to be 14 (scale independence of 0.9) (Supplementary Figure 1B). The adjacency
matrix was then transformed into a topological overlap matrix (TOM), and the gene ratio along with its corresponding

dissimilarity (1-TOM) were computed. Then, hierarchical clustering and dynamic tree-cutting methods were applied to
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cluster the genes. The minimum number of gene modules was set to 30, and an appropriate cutoff value was chosen to
merge similar modules (Supplementary Figure 1C and D). Finally, gene significance (GS) and module membership

(MM) were calculated to explore the relationship between modules and clinical traits. Meanwhile, we obtained a heatmap
illustrating the correlation between 20 gene modules and clinical traits.

|dentification of Differentially Expressed Genes (DEGs) Associated With

Disulfidptosis

According to the previous research, ten genes were associated with disulfidptosis, including GYS1, LRPPRC, NCKAPI,
NDUFS1, NDUFA11, NUBPL, OXSM, SLC3A2, RPN1, and SLC7A11.*? To identify DEGs, we estimated disulfidptosis
scores within the 232 RA samples of the GSE93272 dataset using the single-sample Gene Set Enrichment Analysis
(ssGSEA) algorithm in the GSVA package (version 1.46.0). The RA samples were divided into two groups with high and
low disulfidptosis scores, based on the median score. Consistent with the previous study,** differential expression
analysis between the two groups was performed using the limma package (version 3.54.0) with P value < 0.05 and |
log2FC| > 0.25. The genes meeting these criteria were considered as DEGs. These genes were displayed using volcano
plot and heatmap, providing a clear visual differentiation of gene expression to facilitate the interpretation of the results.

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)

Enrichment Analysis

The pathway enrichment analysis provided by KEGG served as a comprehensive knowledge base for systematic gene
function analysis.*> GO analysis, covering Biological Processes (BP), Molecular Functions (MF), and Cellular
Components (CC), yielded invaluable insights into gene functionality.** Enrichment analysis was performed by the
R package “clusterProfiler (version 3.14.3)”,* and the top 10 GO terms in each category were visualized using the

R package “ggplot2”. These analyses were based on screening criteria: P value < 0.05.

Machine Learning Algorithms and Hub Genes Identification

To identify hub genes, three machine learning algorithms were employed for variable selection in this research. LASSO
regression constructed generalized linear models and was used to mitigate model overfitting, which incorporated penalty
terms to shrink unimportant feature coefficients to zero, effectively facilitating variable selection.*® Support Vector
Machine Recursive Feature Elimination (SVM-RFE) was applicable to small datasets and was an algorithm that retained
variables relevant to outcomes while effectively eliminating redundant factors.*” Additionally, Random Forest was
capable of handling high-dimensional data, allowing predictive models to be built and ranking the importance of feature
variables.*® The intersection of genes obtained from the three machine learning algorithms was hub genes.

Single-Sample Gene Set Enrichment Analysis (ssGSEA)
We performed ssGSEA to identify the relationship between hub genes and hallmark gene sets.*’ First, we downloaded the h.
all.v7.4.symbols.gmt subset from the Molecular Signatures Database (http://www.gsea-msigdb.org/gsea/downloads.jsp) to

identify relevant pathways and molecular mechanisms. Then, we calculated the enrichment scores of each sample in the
gene sets using gene expression profiles. Finally, an enrichment score matrix was obtained, and the results were visualized
as a correlation heatmap.

The Construction and Validation Accuracy of the Nomogram

To construct a diagnostic model, we employed a regression equation in the GSE110169 dataset. Subsequently, we
visualized the nomogram using the R package “rms (version 6.2.0)”. The nomogram was based on the regression
coefficients of all features. We established scoring criteria for each feature’s different expression levels. By calculating
the total score for each sample, we were able to predict the probability of each sample developing RA. Furthermore, we
evaluated the accuracy of the model predictions and validated the predictive value of hub genes using ROC curve,
calibration curve, and decision curve.

4160 https: Journal of Inflammation Research 2025:18


https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
http://www.gsea-msigdb.org/gsea/downloads.jsp

Liu et al

External Verification of Nomogram and Hub Genes

We performed external validation of the nomogram and hub genes using the GSE93272 and GSE89408 datasets. The
GSE93272 dataset included 275 whole blood samples, of which 232 were RA samples and 43 were controls. The
GSE89408 dataset comprised 180 synovial biopsy samples, including 152 RA samples and 28 controls. ROC curves
were plotted for each dataset to assess the predictive accuracy.

Immune Infiltration Analysis

The “Cibersort” algorithm was used in the GSE93272 dataset to convert the normalized gene expression matrix into the
composition of infiltrating immune cells.”® We removed immune cells with zero abundance and obtained the abundance
of 20 immune cell types in RA samples and controls utilizing the R package “Cibersort”. The relative proportions of the
20 immune cell types in both groups were visualized using a barplot, and the expression differences of immune cells
were compared between the two groups using boxplots. The correlations were displayed among the 20 immune cell types
using the R package “corrplot”. Additionally, the correlation between hub genes and the 20 immune cell types was

assessed.

Clinical Data Analysis

The clinical scores, including disease activity score in 28 joints (DAS28), clinical disease activity index (CDAI), and
simplified disease activity index (SDAI), were commonly used to assess disease activity for RA patients.’'>* In this
analysis, we further clarified the association between hub genes and clinical scores, including DAS28-CRP, DAS28-ESR,
CDALI, and SDALI, using data from the GSE93272 dataset. The RA patients were categorized into four groups based on
different scoring systems as described in Table 2. We compared the expression differences of hub genes among different
groups and performed correlation analyses between hub genes and clinical indicators. Scatter plots were generated to
illustrate the correlation between hub genes and DAS28-CRP, DAS28-ESR, CDAI, SDAI, MMP3 and RF.

Consensus Clustering Analysis

Stratifying patients based on the disease characteristics was essential for personalized treatment of RA.> The
“ConsensusClusterPlus” package was used to generate a consensus matrix and cumulative distribution function (CDF)
plot. The relative change in the area under the CDF curve was assessed, and a tracking plot was used to determine the
optimal number of clusters. Then, principal component analysis (PCA) was used to assess the ability to distinguish
patients with different subtypes. The clinical markers differences between the two subtypes were compared and the
results were displayed using boxplots. The visualization of differential expression of hub genes among different subtypes
was achieved using a heatmap and boxplot. Finally, we analyzed the infiltration of 28 immune cells by using ssGSEA.
The immune checkpoints were compared among different subtypes.

Table 2 The Assessment of RA Disease Activity by Different
Evaluation Tools

Disease activity DAS28 CDAI SDAI
remission <26 <28 <33
low activity 226and <32 | >28and <10 | >33 and< 11
moderate activity | 232and<5.1 | 210and <22 | 2 || and £ 26
high activity > 5.1 >22 > 26

Abbreviations: CDA\, clinical disease activity index; DAS28, disease activity score in 28
joints; RA, rheumatoid arthritis; SDAI, simplified disease activity index.
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Validation of Hub Gene Expression by gPCR Analysis
This study included blood samples from 11 RA patients and 12 healthy individuals. The RA patients met the classification
criteria of the ACR/EULAR 2010.°° All participants signed a written informed consent form, and the study was approved by
the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University (Approval No. XJTU1AF2022LSK-168).
Total RNA was extracted from the whole blood using an RNA isolation kit (5201050, Simgen, China). The RNA was then
reverse transcribed into cDNA using the Reverse Transcription Kit (RR037A, Takara, Japan). The gPCR was performed using
TB Green Premix Ex Taq II (RR820A, Takara, Japan). The sequences of the primers used were as follows: KLHL?2 (forward
primer: 5'-AGAGCCGAGCAAAGAGAGTTA-3'; reverse primer: 5'-CCTAAGCAGTTGACAGGGTGA-3"); POLK (forward
primer: 5-TGAGGGACAATCCAGAATTGAAG-3"; reverse primer: 5'-CTGCACGAACACCAAATCTCC-3'); CLEC4D
(forward primer: 5'-CTGATACCTTCGGTTATTGCTGT-3"; reverse primer: 5'-GCACTCCTGTGCCTCTCTTAC-3"); NXT2
(forward primer: 5'-GGACAAGGCCACCTTAATATGG-3'; reverse primer: 5-TGGAACTCACTAGAAGGCAATGT-3'); and
18S (forward primer: 5'-GCAATTATTCCCCATGAACG-3; reverse primer: 5'-GGCCTCACTAAACCATCCAA-3"). The 18S
gene served as an internal control, and the relative expression of genes was determined using the 2-AACT method.

Data Analysis

The bioinformatics analyses and data visualization were performed using R software (version 4.2.0). Statistical analysis was
conducted using GraphPad Prism (version 9.0). Group comparisons were made using Student’s ¢-test for two groups, and one-
way ANOVA for three or more groups (with Holm-Sidak’s multiple comparison), with statistical significance set at P < 0.05.

Results

Identification of Disulfidptosis-Related Genes in RA and Functional Enrichment
Analysis

To identify significant module genes in RA, we performed WGCNA analysis using the GSE110169 dataset. The correlation
heatmap revealed that the palevioletred3 module was the most significantly positively correlated with RA (»=0.42, P=3x 1079,
while the darkorange2 module was the most significantly negatively correlated (r = —0.43, P = 2x10°") (Figure 2A).
Furthermore, the Module Membership and Gene Significance for the palevioletred3 and darkorange2 modules showed
significant correlation (Supplementary Figure 2A and B). Genes were selected based on criteria of geneTraitSignificance

>0.40 and geneModuleMembership >0.60 to further analyze these modules. Genes meeting these conditions were considered
important for the modules. A total of 472 genes, identified as important genes from both modules, were merged for subsequent
analysis.

To explore the relationship between RA and disulfidptosis, we calculated the disulfidptosis score for each sample of
RA. A total of 1576 disulfidptosis-related DEGs were identified comparing the high-scoring group with the low-scoring
group. The volcano plot and heatmap displayed all DEGs, with 871 genes upregulated and 705 genes downregulated
(Figure 2B, Supplementary Figure 3). Finally, we identified 49 important genes by intersecting the DEGs associated with

disulfidptosis and the significant module genes in RA (Figure 2C).
The KEGG pathway enrichment analysis revealed the association between the intersecting genes and signaling pathways.
The analysis results indicated that the intersecting genes were primarily enriched in pathways such as “Ribosome”, “Cardiac

muscle contraction”, “Protein export”, “Thermogenesis”, and “Oxidative phosphorylation” (Supplementary Figure 4A). GO

analysis, covering Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF), was employed to
assess the functional enrichment of genes. In the BP term, significant enrichments included “amide biosynthetic process”,
“protein localization to membrane”, and “establishment of protein localization to membrane” (Supplementary Figure 4B).

CEINNTI

Notable differences in CC were observed in “organelle envelope”, “envelope”, and “ribosomal subunit” (Supplementary

Figure 4C). Within the MF category, prominent enrichments were seen in “structural constituent of ribosome”, “cytochrome-c
oxidase activity”, and “heme-copper terminal oxidase activity” (Supplementary Figure 4D).

4162 https: Journal of Inflammation Research 2025:18


https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx
https://www.dovepress.com/get_supplementary_file.php?f=505746.docx

Liu et al

A

Module-trait relationships

MElightcyan1 '(%%'2 (200%2 -
) -0.19 0.19
MEmediumpurple3 (0.02) (0.02)
MEpalevioletred3 (52'-4023) (3;1%,8)
. 0.33 50188
MEsienna3 (2e-05) (2e-05)
MEdarkolivegreen (%})Z) (_000128)
, 0.21 -0.21 - S
MEfloralwhite (0.008) (0.008)
0.062 -0.062
MEred (0.4) (0.4)
043 -0.43
MEdarkorange?2 (2e-08) (2e-08)
MEpaleturquoise (%"12) (-0021)
. 0.19 -0.19
MEthistle1 (0.02) (0.02) o
0.2 -0.2
MEdarkgrey (0.01) (0.01)
0.091 -0.091
MEpurple . (0.3) (0.3)
-0.041 !
MElightsteelblue1 (%.%) ?002)1
. 0.21 -0.21
MElightyellow (0.008) (0.008)
0.2 -0.2 0
MEplum2 (0.01) ©.01) -
MEdarkturquoise . ;8%3 ?0073)
-0.23 0.23
MEyellowgreen (0.004) (0.004)
MEdarkgreen . ((JOOS;S _(%(4)1?6
0.16 -0.16
MEtan (0.05) (0.05)
-0.13 0.13 T
MEgrey (0.1) 0.1)
Control RA
logP
e 5 RA Disulfidptosis
e 10
® 15
. change
5 - DOWN
o NOT
S - UP
(=]
o
I

Figure 2 Identification of disulfidptosis-related genes in RA. (A) The heatmap showed the relationship between 2 traits and 20 modules. (B) The volcano plot displayed
DEGs associated with disulfidptosis. (C) The Venn plot showed the intersection of DEGs associated with disulfidptosis and significant module genes in RA.
Abbreviations: DEGs, differentially expressed genes; RA, rheumatoid arthritis.
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Identification of Hub Genes via Machine Learning Algorithms and ssGSEA
To select hub genes for subsequent model construction, we employed three machine learning algorithms for feature selection.
Lasso regression results revealed 5 genes (CLEC4D, KLHL2, MRPL50, NXT2, POLK) with the lowest binomial deviation
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Figure 3 Identification of hub genes via machine learning algorithms. (A) The five genes were selected as the features with the lowest binominal deviation by the LASSO
regression. (B) The nine genes were identified as the features with the lowest error rate and highest accuracy via the SVM-RFE. (C) The top fifteen genes were ranked
according to their importance score based on the Random Forest. (D) The four hub genes were identified through the intersection of three machine learning algorithms.
Abbreviations: CV, Cross Validation; SVM-RFE, Support Vector Machine Recursive Feature Elimination.
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Table 3 Genes Selected by Three Machine Learning Algorithms

Machine learning Gene Symbol

algorithm

Lasso regression CLECA4D, KLHL2, MRPL50, NXT2, POLK

SVM-RFE ACAP2, ACSL4, CD46, C50rf28, CLEC4D, KLHL2, NXT2, POLK, TMEM55A

Random Forest ACAP2, CETN3, CLEC4D, COPS2, ESYTI, GIMAP2, GOPC, KLHL2, NXT2, POLK, RSL24D|, SEC62, SRP9,
TMEMS5A, YEATS4

Abbreviation: SYM-RFE, Support Vector Machine Recursive Feature Elimination.

(Figure 3A). SVM-RFE results indicated 9 genes (ACAP2, ACSL4, CD46, C5orf28, CLEC4D, KLHL2, NXT2, POLK,
TMEMSS5A) with the highest accuracy and the lowest error rate (Figure 3B). Random Forest analysis displayed the top 15
important genes, including ACAP2, CETN3, CLEC4D, COPS2, ESYT1, GIMAP2, GOPC, KLHL2, NXT2, POLK, RSL24D1,
SEC62, SRP9, TMEMSSA, and YEATS4 (Figure 3C). Table 3 summarizes all results. As shown in Figure 3D, 4 genes, including
KLHL2, POLK, CLEC4D and NXT2, were identified by the overlapping areas of the three machine learning algorithms.
Furthermore, we investigated the relationship between hub genes and hallmark gene sets. A correlation heatmap depicted
that the associations of the four genes had a significant correlation with “IL6 JAK STAT3 SIGNALING” and
“WNT_BETA CATENIN_SIGNALING” (Supplementary Figure 5). These hallmark gene sets were regarded as the signaling
pathways associated with RA.

The Model Construction Based on Hub Genes and the External Verification

To assess the value of the hub genes for RA diagnosis, we used data from three datasets: GSE110169 as the training set, and
GSE89408 and GSE93272 as external validation sets, for the model construction and validation. Initially, we observed
significantly higher expression of hub genes in RA compared with Healthy control (HC) across all three datasets (Figure 4A,
Supplementary Figure 6A and B). Subsequently, the model was constructed and visualized using the nomogram in

GSE110169. The nomogram displayed scoring criteria for each feature’s different expression levels. By calculating the
total score for each sample, we predicted the probability of each sample developing RA (Figure 4B). ROC curves demon-
strated that the model exhibited worthy predictive performance and the model’s predictive performance surpassed that of each
hub genes (Figure 4C). Similarly, in an external validation set that included data from both whole blood and synovial biopsy
samples, the model also showed promising predictive value (Supplementary Figure 6C and D). In the GSE110169 dataset, the
AUC values and 95% confidence intervals for NOMOSCORE (AUC: 0.833, 95% CI: 0.768-0.899), KLHL2 (AUC: 0.813,
95% CI: 0.745-0.880), CLEC4D (AUC: 0.792, 95% CI: 0.722-0.862), NXT2 (AUC: 0.77, 95% CI: 0.696-0.843), and POLK
(AUC: 0.78, 95% CI: 0.708-0.853) were shown (Supplementary Figure 7A). Supplementary Figure 7B shows that in the
GSE93272 dataset, the NOMOSCORE model (AUC: 0.895, 95% CI: 0.847-0.943) demonstrated superior predictive power
compared to each hub gene (Supplementary Figure 7B). Furthermore, we were somewhat surprised to find that in the
GSE89408 dataset, which contained synovial biopsy samples, NOMOSCORE exhibited markedly higher predictive power
(AUC: 0.977, 95% CI: 0.952—1.000) compared to each hub gene (Supplementary Figure 7C). The calibration curve indicated
relatively high accuracy of the nomogram (Figure 4D). Decision curve analysis showed that the net benefit of the constructed
model exceeded that of the default method (Figure 4E).

Immune Infiltration Analysis and the Relevance With Hub Genes

The imbalance of immune cells played a pivotal place in the pathogenesis of RA, which necessitated a comprehensive
analysis of immune infiltration in each sample. Utilizing the Cibersort analysis, we obtained profiles of 20 immune cell
types after excluding two cells with zero abundance. The barplot illustrated the relative percentages of these 20 immune
cells (Figure 5A). Then, significant differences were demonstrated among 7 immune cell types, including T cells CD8,
T cells CD4 naive, T cells CD4 memory activated, Tregs, T cells gamma delta, dendritic cells activated and mast cells
resting among different groups (Figure 5B). Furthermore, correlation analysis revealed significant associations between
hub genes and the 20 immune cell types. For example, CLEC4D demonstrated a significant positive correlation with
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Figure 4 Validation of hub genes in RA. (A) The different expression of the four hub genes in RA and HC; **: P < 0.001. (B) The hub genes were utilized in the
construction of the nomogram to predict the risk of RA. (C) The predicted value of the nomogram and the hub genes using the ROC curve. (D) The calibration curve
showed the accuracy of the nomogram. (E) The decision curve analysis indicated that the net benefit of the constructed model surpassed that of the default method.
Abbreviations: AUC, area under the curve; HC, Healthy control; RA, rheumatoid arthritis; ROC, receiver operating characteristic.

https:

4166

Journal of Inflammation Research 2025:18



Liu et al

Expression

Cell Type
B cells naive
[0 B cells memory
M Plasma cells
M T cells CD8
I T cells CD4 naive
[T T cells CD4 memory activated
T cells follicular helpe 'F
[ Tcells regulatoay regs)
I T cells gamma delta
I NK cells resting
I Monocytes
[ Macrophages M0
Macrophages M1
& Macrophages M2
I Dendritic cells restin
| M Dendritic cells activated
I Mast cells resting
[ Mast cells activated
Eosinophils
0.00 Neutrophils

0.50

Relative Percent

0.25

group Bl Control B RA

NS NS NS s+ *xx *x NS s s+ NS NS NS NS NS NS = = NS ns ns
0.61

0.4

0.24

o,o.uﬂuﬁﬂ**_;ua‘*#-L-...1-........1.-.-1 _

e (\o“ 0 NS N
FSTES S
QIO F &
S\ ?>° $ @
¥ & [
0

Neutrophils

Eosinophils
Mast.cells.activated
Mast.cells.resting
Dendritic.cells.activated
Dendritic.cells.resting
Macrophages.M2
Macrophages.M1
Macrophages.MO
Monocytes

NK cells.resting
T.cells.gamma.delta
T.cells.regulatory..Tregs.
T.cells follicular.helper
T.cells.CD4.memory.activated
T.cells.CD4.naive
T.cells.CD8
Plasma.cells
B.cells.memory
B.cells.naive

%

Kk

*x

Correlation
. 1.0

0.5

0.0

-0.5
o
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with hub genes.
Abbreviation: RA, rheumatoid arthritis.
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T cells gamma delta and a significant negative correlation with T cells CD4 naive. Similarly, KLHL2 exhibited
a significant positive correlation with neutrophils and a significant negative correlation with T cells CDS. Moreover,
NXT2 displayed a significant positive correlation with T cells gamma delta and a significant negative correlation with
neutrophils. Lastly, POLK showed a significant positive correlation with T cells CD4 memory activated and a significant
negative correlation with neutrophils (Figure 5C). The correlation heatmap displayed notable associations
(Supplementary Figure 8), including dendritic cells resting exhibiting the highest positive correlation with macrophages

M1 (r = 0.74), while B cells memory showed the greatest negative correlation with B cells naive (r = —0.5).

The Correlation Between Hub Genes Expression and RA Disease Activity

The scoring systems, including DAS28, CDAI and SDAI, were the most used to assess disease activity in RA. The RA patients
were divided for 4 groups according to disease activity. Then, the expression of hub genes was compared among the 4 groups.
Overall, the expression of CLEC4D, KLHL2 and NXT?2 showed an elevated trend with increasing disease activity, conversely,
the expression of POLK exhibited a decreasing trend in the patients stratified by DAS28-CRP (Figure 6A) as well as DAS28-
ESR, CDAI, and SDAI (Supplementary Figures 9A and B, Supplementary Figures 10). The correlation heatmaps demon-

strated the association between hub genes and clinical indicators (Figure 6B, Supplementary Figure 11). We observed
significant positive correlations between CLEC4D, KLHL2, NXT2 and DAS28-CRP scores (» = 0.29, P = 6.6 x 106 r=
0.23, P=3.51 x 10 »=10.19, P = 3.04 x 103, respectively), while POLK showed a significant negative correlation with
DAS28-CRP scores (r =—0.19, P =3.04 x 107>, Figure 6C). The scatter plots also illustrated the same correlations between
hub genes and DAS28-ESR, CDAI, SDAI, MMP3, and RF (Supplementary Figure 12A-E).

Two RA Subtypes Based on Hub Genes Had Different Disease Activity

In RA samples, consensus clustering analysis was performed using the expression profiles of hub genes. Based on the
consensus matrix, CDF plot, relative alterations in the area under the CDF curve, and tracking plot results, we determined
the two subtypes (Supplementary Figure 13A-D). PCA results demonstrated significant differences between most RA

samples between the two subtypes (Figure 7A). Boxplot and heatmap revealed significant differences in the expression of
hub genes between the two subtypes. Specifically, cluster B had high expression of KLHL2, CLEC4D and NXT2 and
low expression of POLK, on the contrary, cluster A had high expression of POLK as well as low expression of KLHL2,
CLEC4D and NXT2 (Figure 7B, Supplementary Figure 14A). Furthermore, the markers associated with RA disease
activity were compared between two groups, the patients of cluster B had significantly higher levels of DAS28-CRP,
DAS28-ESR, CDAI, SDAI, RF, CRP, and MMP3 than the subjects of cluster A (Figure 7C). Additionally, we observed
significant differences in 13 immune checkpoints and 15 immune cells between the two subtypes, mainly in activated

dendritic cell, effector memory CD8 T cell, Eosinophil, Gamma delta T cell, natural killer cell and associated activation
markers (Supplementary Figure 14B, Figure 7D).
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