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Background: Periodontitis (PD) and type 2 diabetes mellitus (T2DM) represent interlinked global health burdens, commonly causing 
significant clinical complications when coincident. Therefore, managing both conditions (T2DM with periodontitis, DP) simulta-
neously poses considerable challenges, necessitating novel therapeutic strategies. KQJF has been clinically proven to treat DP with 
good efficacy, but its pharmacological substances and targets are not clear and urgently need to be clarified.
Aim: To define the potential active components and targets of KQJF for the treatment of DP.
Materials and Methods: The investigation commenced with the application of UPLC-Q-TOF/MS analysis to delineate the active 
constituents of KQJF and their associated targets in addressing DP. Additionally, the research incorporated subsequent methodologies such 
as machine learning, network pharmacology, molecular docking, molecular dynamics simulations, and a DP rat model was established and 
validated by in vivo experiments using H&E staining, immunohistochemistry, quantitative real-time PCR, and Western blot.
Results: KQJF was found to contain 49 prototype compounds and 121 metabolites with potential activity against PD and T2DM. 
Network pharmacology revealed 66 overlapping genes between the pharmacological targets of KQJF and known targets of PD and 
T2DM. Further exploration through PPI network and enrichment analyses illuminated the involvement of multi-target and multi- 
pathway mechanisms. Molecular docking and dynamics simulations confirmed the robust interactions between key compounds within 
KQJF and proteins associated with the diseases. In vivo validation demonstrated that KQJF treatment ameliorated DP-associated 
histopathological changes and modulated the expression of crucial proteins (including ABCG2, CCND1, CDKN1B, HIF1A, and 
PIK3R1) in a DP rat model.
Conclusion: In summary, KQJF exhibits potential therapeutic benefits for DP through a multi-component and multi-target approach, 
potentially offering a novel integrative treatment strategy. This study underscores the importance of integrating traditional medicine 
with modern molecular techniques to explore novel therapeutic avenues for complex comorbid conditions, providing a blueprint for 
future pharmacological explorations.
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Introduction
Diabetes mellitus (DM) has long been acknowledged not only for its primary metabolic impairments but also for its role in 
developing secondary complications among which periodontal disease stands prominent. It’s increasingly clear that diabetes 
exacerbates the incidence and progression of periodontitis (PD), impacting significantly on oral health and, hence, overall 
quality of life.1,2 Conversely, severe PD can adversely affect glycemic control and contribute to the progression of diabetes,3 

demonstrating an intricate bi-directional relationship. T2DM with periodontitis (DP), as a common oral complication in 
patients with DM, it has become one of the hot issues in dentistry and diabetes research worldwide.4 With changes in human 
lifestyle and diet, the number and age of diabetic patients are on the rise, further fueling the prevalence of DP. This growing co- 
morbidity calls for innovative approaches in both diagnostics and therapeutics.

Chinese medicine posits that dampness-heat and toxicity, stagnation of blood and blood stasis, and depletion of qi and yin 
are the central pathomechanisms of DP. The key to treating this condition lies in clearing heat and toxins, relieving dampness, 
harmonizing blood, and nourishing yin and qi. Kouqiangjie Formula (KQJF), a clinical formulation developed collaboratively 
by our group and the hospital’s pharmacy department, consists of twelve medicinal ingredients, including Rhizoma Smilacis 
Glabrae (20 g, the dried rhizome of Smilax glabra Roxb)., Taraxaci Herba (20 g, the dried whole herb of Taraxacum 
mongolicum Hand.-Mazz., T. borealisinense Kitam. Or plants of the same genus)., Herba Portulacae (20 g, the above ground 
parts of Portulaca oleracea L)., Polygonati Rhizoma (20 g, the dried rhizomes of Polygonatum kingianum Collett & Hemsl., 
P. sibiricum F. Delaroche. or P. cyrtonema Hua)., Plantaginis Herba (20 g, the dried whole herb of Plantago asiatica L. or 
P. depressa Willd)., Agrimoniae Herba (15 g, the dried above-ground parts of Agrimonia pilosa Ledeb)., Semen Coicis (20 g, 
the tried mature seed kernels of Coix lacryma-jobi var. ma-yuen (Rom.Caill). Stapf), Chuanxiong Rhizoma (10 g, the dried 
rhizome of Ligusticum chuanxiong Hort)., Sepiae Endoconcha (20 g, the dried inner shell of Sepiella maindroni de 
Rochebrune or Sepia esculenta Hoyle)., Cyathulae Radix (10 g, the dried root of Cyathula officinalis K.C.Kuan), Radix 
Glycyrrhizae (10 g, the dried roots and rhizomes of Glycyrrhiza uralensis Fisch)., and Fructus Mume (10 g, the dried nearly 
mature fruit of Prunus mume Siebold & Zucc).5 As well as the names of the botanical sources of the constituent herbs of the 
formula have been checked on World Flora Online (www.worldfloraonline.org). This formulation aims to clear heat, detoxify 
toxins, relieve dampness, and harmonize blood to support qi and yin. Primarily used for addressing symptoms such as soreness 
and distension of teeth, mastication pain, dry mouth, halitosis, gingival swelling, epistaxis, and pus overflow due to dampness 
and heat, as well as chronic PD with similar manifestations, KQJF has demonstrated significant therapeutic efficacy during its 
clinical application over several years.6 Notably, no apparent adverse reactions have been reported, and the formulation has 
secured a Chinese invention patent (No. ZL202211294394.7). However, its composition is complex, and the main active 
ingredients and mechanisms that exert the efficacy have not been fully revealed.

Advances in the field of biopharmaceuticals have led to the adoption of cutting-edge techniques such as serum 
pharmacochemistry analysis, which is considered a practical means of discovering the effective substances for the treatment 
of disease in herbal medicines by understanding the chemical composition of serum following drug administration.7,8 

Furthermore, the development of predictive models using network pharmacology and machine learning canvases an integral 
strategy allowing for the identification of novel biomarkers and therapeutic targets.9–11 Additionally, molecular docking and 
molecular dynamics simulations serve pivotal roles in drug development by predicting how small molecules interact with their 
protein targets, thus providing insights into the molecular basis of drug action.12,13 Complementing these in silico approaches, 
animal models have been indispensable in simulating the human conditions of DP, thus providing critical insights into the 
disease process, and evaluating the efficacy of potential pharmacological interventions prior to human trials. In conclusion, the 
amalgam of traditional and novel research methods such as network pharmacology, molecular docking, molecular dynamics 
simulations, and strategic animal experiments creates a robust platform for the holistic understanding and innovative treatment 
of the nexus between diabetes and periodontal disease.

Hence, the objective of this investigation is to utilize a diverse array of technical methodologies, including serum 
pharmacochemistry analysis, machine learning, network pharmacology, molecular dynamics, molecular docking, and 
animal experimentation, to thoroughly explore the active constituents and underlying mechanisms of KQJF in the 
treatment of DP. This interdisciplinary approach not only aids in deciphering the mechanisms by which KQJF addresses 
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DP but also paves the way for innovative therapies that could significantly alleviate the burden of these interconnected 
diseases. Furthermore, it serves as a valuable methodological reference for the study of other compound agents.

Materials and Methods
Serum Pharmacochemistry Analysis
Sample Preparation
To investigate the pharmacokinetic properties of KQJF, we utilized six Sprague-Dawley rats. These were allocated into 
two groups: a control group and a KQJF-treated group. The administered dose for the KQJF-treated group was set at 78 
g/kg/d, informed by the dosage reported in high-dose treatments from previous literature.5 We administered the treatment 
via oral gavage over a period of three days. Blood samples were collected at 0.5, 1, and 2 hours following the final dose 
on the third day. Serum was isolated from these samples, pooled in equal volumes, and then subjected to UPLC-Q-TOF/ 
MS analysis to study the drug’s systemic presence and characteristics.

UPLC-Q-TOF/MS Analysis Conditions
The KQJF sample underwent analysis utilizing a Waters H-Class ultra-high performance liquid chromatography 
(UHPLC) system in conjunction with an AB Sciex Triple TOF® 4600 high-resolution mass spectrometer. 
Chromatographic separation was achieved utilizing a Waters ACQUITY® UPLC® HSS T3 column (2.1 × 150 mm, 
1.8 µm) maintained at 30°C. The mobile phase comprised 0.1% formic acid in water and acetonitrile, delivered at a flow 
rate of 0.3 mL/min. An injection volume of 5 µL was utilized, and detection occurred over a wavelength range spanning 
190–400 nm. Mass spectrometric analysis was conducted in both positive and negative ion modes.

Network Pharmacology and Bioinformatics Analysis
Target Acquisition for KQJF
To identify bioactive compounds entering the bloodstream from the KQJF, the UPLC-Q-TOF-MS method was employed, 
successfully detecting 49 blood-borne components. Subsequently, typical SMILES structures corresponding to these active 
components were retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). These SMILES formats of 
the screened compounds were then input into the Swiss Target Prediction database (http://www.swisstargetprediction.ch/) 
to forecast potential targets, using a selection threshold where the Probability of target prediction is greater than 0. This 
process yielded UniProt IDs for the target proteins of the selected compounds. Using the ID mapping tool on UniProt 
(https://www.uniprot.org/), these UniProt IDs were converted into Gene symbols, with duplicates being removed to finalize 
the list of active component targets. Further target prediction was performed through the Comparative Toxicogenomics 
Database (CTD, https://ctdbase.org/) for the 49 bloodborne components, enhancing the robustness of target identification. 
Finally, the predicted targets from both the Swiss Target Prediction and CTD databases were consolidated and deduplicated, 
culminating in a comprehensive list of KQJF-related targets for subsequent analyses.

Acquisition of Disease-Related Targets
To explore the gene expression patterns linked to PD, we conducted a search in the Gene Expression Omnibus (GEO) 
database using “periodontitis” as the query term. Our investigation led us to the dataset GSE16134, which is built upon the 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array platform. This dataset comprises samples 
from 241 PD patients and 69 healthy individuals, serving as the primary dataset for our analysis. Subsequently, our focus 
shifted to identifying genes associated with T2DM. Employing “type 2 diabetes mellitus” as the search query, we retrieved 
pertinent gene information from two distinct disease gene repositories: GeneCards (https://www.genecards.org/) and the 
CTD (https://ctdbase.org/). The retrieved data from both databases were systematically compiled to identify potential 
T2DM disease targets, forming the basis for our subsequent analyses.

PD Disease Differential Analysis and Weighted Gene Co-Expression Network Analysis (WGCNA)
In our investigation, we utilized R software to preprocess the chosen dataset (GSE16134) for normalization and differential 
analysis. Employing a cutoff of |log2 fold change (FC)| ≥ 0.585 with an adjusted P value < 0.05, we identified differentially 
expressed genes (DEGs). Subsequently, we applied the “WGCNA” package in R to conduct weighted gene co-expression 
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network analysis (WGCNA) for module identification. To ensure result accuracy, we included the top 25% of genes exhibiting 
the most significant expression variations in the WGCNA. An optimal soft-thresholding power was determined to construct 
a weighted adjacency matrix, which was then transformed into a topological overlap matrix (TOM). Using hierarchical 
clustering, modules were delineated based on TOM dissimilarity, with a minimum module size of 100. Each module was 
assigned a distinct color for ease of identification. The module eigengene, representing the principal component of gene 
expression patterns within each module, was utilized to summarize its expression profile. To quantify the relationship between 
these modules and disease status, we calculated module significance (MS), reflecting the correlation between the module 
eigengene and clinical traits of interest. Additionally, gene significance (GS) was evaluated as the correlation between 
individual gene expression and clinical phenotypes, providing insights into potential gene-disease associations.

Target Screening for DP Treatment With KQJF
To delineate the potential interactions among targets associated with PD identified through the WGCNA analysis, main 
components of KQJF, and T2DM, we intersected the sets of relevant targets from each category. We utilized the “Venn” 
package in R software to perform a visual analysis and generate a Venn diagram that illustrates the overlapping targets 
among these conditions.

Constructing Protein-Protein Interaction (PPI) Networks
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, available at https://cn.string-db.org/) is a renowned 
bioinformatics resource designed to aggregate and disseminate data concerning protein-protein and gene-protein inter-
actions. For the current study, intersecting targets were uploaded to the STRING database, applying a minimum 
interaction score threshold of 0.4 to refine the results. After this filtering process, both the PPI network diagram and 
the corresponding TSV (Tab-separated Values) file were downloaded and preserved for further analysis. Subsequently, 
the visualization and multidimensional network construction of the PPI, under the study designation “KQJF-PD-T2DM”, 
were carried out using Cytoscape software (version 3.9.0). This software facilitates a detailed visual representation of the 
interaction networks, providing a platform for in-depth biological interpretation and analysis.

Functional Enrichment Analysis of GO and KEGG Pathways
Using the R software, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses to investigate the potential biological functions and principal signaling pathways involved 
in the treatment of DP with KQJF. The analyses were based on a significance threshold set at a q-value of <0.05. The 
results were ordered in descending importance based on their p-values, allowing for the identification of statistically 
significant enriched terms. Specifically, the top 10 GO terms across three categories, including biological process (BP), 
cellular component (CC), and molecular function (MF). And the top 20 KEGG pathways were systematically extracted 
and are presented herein.

Core Gene Identification
We employed three distinct machine learning algorithms, namely SVM-RFE (Support Vector Machine-Recursive Feature 
Elimination), LASSO (Least Absolute Shrinkage and Selection Operator), and Degree analysis, to pinpoint key genes 
among intersected targets. The LASSO method and the SVM classifier were utilized to categorize biomarkers for PD 
diagnosis. Ten-fold cross-validation using the glmnet package was conducted to distinguish between PD patients and 
healthy controls, minimizing overfitting and enhancing model reliability. To refine the selection of high-potential genes, 
the SVM-RFE algorithm was executed with the e1071 and svmRadial packages. Subsequently, topological analysis using 
the Cytoscape software was applied to the intersecting targets to identify the top 20 targets in the PPI network. Genes that 
intersected across the three selection algorithms were considered crucial for the diagnostic analysis of DP. To gauge the 
predictive efficacy of the DP diagnostic model, we employed the pROC package. The accuracy of the prediction model 
was evaluated by computing the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), where higher 
AUC values signify enhanced predictive accuracy. Furthermore, line plots were generated to project the diagnostic 
efficacy for DP.
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Gene Set Enrichment Analysis (GSEA)
To investigate the associations between core target genes and signaling pathways, we divided the PD cohort into two 
subgroups based on the median expression levels of core target genes. Subsequently, we conducted GSEA analysis for 
each subgroup, setting the threshold for statistical significance at adjusted p-value less than 0.05.

Immunocyte Infiltration Analysis
Immunocyte infiltration analysis was conducted utilizing the CIBERSORT algorithm, accessible at http://cibersortx. 
stanford.edu, to ascertain the relative proportions of 22 types of infiltrating immune cells within each tissue sample. The 
immune score for each sample was computed utilizing the “ESTIMATE” algorithm. Additionally, the relationship 
between signature genes and quantities of infiltrating immune cells was evaluated through Spearman’s rank correlation 
analysis, implemented in R software.

Molecular Docking
Firstly, key protein structures related to the identified core targets from the intersectional target screening are retrieved 
from the RCSB Protein Data Bank (PDB format). Concurrently, structural data of key active compounds are extracted 
from the PubChem database. Before docking, these proteins and small molecule compounds are preprocessed using the 
AutoDock software (version 1.1.2), which also facilitates the conversion of formats and the analysis of the binding sites 
on the proteins, aiming to locate active docking pockets. Following the preparation, both target proteins and small 
molecule compounds are imported into the AutoDock Vina software for docking. This involves setting the coordinates 
for the docking sites and performing docking validation. The outcomes of the docking trials are represented in a tripartite 
table, detailing the binding affinities between the small molecules and the target proteins. For a subset of the results, 
visualizations are rendered using the PyMOL software to provide a clear depiction of the molecular interactions and 
bindings observed.

Molecular Dynamics Analysis
Molecular dynamics simulations were performed using GROMACS 2022 software. Small molecules were parameterized 
with the General Amber Force Field (GAFF), while proteins used the AMBER14SB force field and TIP3P water model. 
Simulations ran under constant temperature and pressure with periodic boundary conditions. Constraints on hydrogen 
bonding were enforced with LINCS, and an integration timestep of 2 fs was used. Electrostatic interactions were 
calculated via the Particle-Mesh Ewald (PME) with a cutoff of 1.2 nm. Non-bonded interactions were truncated at 10 
Å, and the neighbor list updated every 10 steps. Temperature was controlled with a V-rescale thermostat at 298 K, and 
pressure was maintained at 1 bar with the Berendsen barostat. Equilibration involved 100 ps of both NVT and NPT 
simulations at 298 K. A 100 ns production MD simulation was conducted, with snapshots saved every 10 ps.

Experimental Verification
Establishment of a T2DM Rat Model
Eighteen healthy male Sprague-Dawley rats from Sichuan Viton Lihua Laboratory Animal Technology Co. (Chengdu, 
China) were used to develop a T2DM model. Initially, twelve rats were fed a high-fat, high-sugar diet for two weeks, 
followed by fasting and intraperitoneal injections of streptozotocin (STZ) at 30 mg/kg for three consecutive days. Two 
weeks post-STZ, the rats underwent glucose and insulin tolerance tests (IGTT and ITT) with glucose measurements at 
specific intervals during the tests, and repeated blood glucose level assessments over four weeks. A T2DM model was 
confirmed in rats showing three consecutive fasting blood glucose levels exceeding 11.1 mmol/L and random levels 
above 16.7 mmol/L.

Establishment of a PD Model in T2DM Rats
In an experiment spanning seven weeks, 12 T2DM model rats developed periodontitis via a combined anesthesia 
approach using intraperitoneal sodium pentobarbital and inhaled isoflurane. They had orthodontic ligatures soaked in 
Porphyromonas gingivalis W83 and tied around their first molars, supplemented by bi-daily injections of P. gingivalis 
lipopolysaccharide (LPS) into the gingival sulcus. Meanwhile, six control rats received saline injections similarly. After 
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four weeks, periodontal health was assessed by criteria including pocket probing depth, attachment loss, x-ray confirmed 
alveolar bone resorption, tooth mobility, and furcation involvement, indicating significant periodontal degradation in the 
experimental group compared to controls.

Experimental Grouping and Administration
Following the successful induction of a DP rat model in 12 specimens, they were promptly administered KQJF at 
a concentration of 0.78 g/mL, with a dosage of 19.5 g/kg/day, twice daily. Concurrently, rats in the control group received 
an equivalent volume of 0.9% (w/v) normal saline (NS) twice daily for two weeks before euthanasia. Eighteen SD rats 
were randomly divided into three cohorts (6 per group): a control group (NC), a DP model group, and a DP+KQJF 
treatment group. The entire experimental duration spanned 7 weeks.

H&E Staining
To analyze tissue and cellular structure, maxillae were first decalcified in a 15% EDTA solution at room temperature, 
with solution changes every three days, for a duration of six weeks. Subsequently, the samples underwent dehydration 
using a graded series of alcohols and were then paraffin-embedded. Sagittal sections, 4 μm thick, were prepared, 
deparaffinized, rehydrated, and stained using hematoxylin and eosin (H&E). Morphological examination was conducted 
using a microscope (Eclip80i; Nikon, Tokyo, Japan), and images were captured with a digital scanner (Panoramic 250; 
3DHISTECH, Budapest, Hungary).

Immunohistochemistry Analysis
Sections were first deparaffinized, hydrated, and then subjected to antigen retrieval using 0.1% trypsin at 37°C for 
30 minutes. This was followed by a 3% hydrogen peroxide treatment to inhibit peroxidase activity and a blocking step 
involving 5% bovine serum albumin (BSA) for 60 minutes at ambient temperature. Primary antibodies from various 
sources, including rabbit anti-HIF-1α (Affinity, Cincinnati, OH, USA) and CCND1 (Affinity), PI3KR1 (Abcam, 
Cambridge, MA, USA), CDKN1B (Proteintech, Rosemont, IL, USA), and ABCG2 (Proteintech) were prepared in 1% 
BSA and applied to the sections, which were then incubated overnight at 4°C. Detection was achieved using 
a diaminobenzidine (DAB) kit (Servicebio, Wuhan, China) and nuclei were stained with haematoxylin. The resultant 
images were analyzed using Image-Pro Plus software (version 7.0, Media Cybernetics, Inc., Rockville, MD, USA).

Quantitative Real-Time PCR
Total RNA was extracted from mouse periodontal tissues using TRIzol reagent, and RNA concentration was quantified. 
cDNA was synthesized with the BeyoRT™ II cDNA First-strand Synthesis kit (Beyotime, Shanghai, China) under the 
following conditions: 25 °C for 10 min, 55 °C for 15 min, and 85 °C for 5 min. Amplification was performed on an ABI 
Prism® 7300 Real-time PCR System (Thermo Fisher Scientific, Waltham, MA, USA) using the BeyoFast™ SYBR Green 
qPCR Mix kit (Beyotime) with the following cycling parameters: initial denaturation at 95 °C for 60s, followed by 40 
cycles of denaturation at 95 °C for 15s, annealing at 60 °C for 15s, and extension at 72 °C for 45s. Primer sequences were 
designed using Primer 5.0 software (Supplementary Table S1) and synthesized by Shanghai Bioengineering Co., Ltd., 
with GAPDH as the internal control. Threshold cycle (Ct) values were recorded, and mRNA expression levels were 
calculated using the 2−ΔΔCt method. Each sample was prepared in triplicate, and experiments were conducted at least 
three times.

Western Blot Analysis
Proteins were extracted from periodontal tissues in the NC, DP, and DP+KQJF groups using RIPA buffer supplemented 
with protease and phosphatase inhibitors (Solarbio, Beijing, China). Quantification of proteins was conducted using the 
BCA method (Beyotime, Shanghai, China). Equal amounts of protein were separated via SDS-PAGE and subsequently 
transferred to PVDF membranes (Merck Millipore, Billerica, MA, USA) at 100 V for 1 hour. Membranes were then 
subjected to overnight incubation at 4°C with primary antibodies targeting HIF-1α, CCND1 (both from Affinity), 
PI3KR1 (Abcam), CDKN1B, ABCG2 (both from Proteintech), and GAPDH (Affinity). Following this, the blots were 
probed with HRP-linked secondary antibodies (MultiSciences, Hangzhou, China) and visualized using an ECL system 
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(BL523B; Biosharp, Beijing, China). Band densities were quantified using Image-Lab software (Bio-Rad, version 6.1; 
Hercules, CA, USA), with GAPDH serving as the normalization control.

Statistical Analysis
Statistical analyses were conducted utilizing IBM SPSS Statistics (version 23.0; IBM, Armonk, NY, USA). Data are 
expressed as mean ± standard deviation (SD). For multiple group comparisons, one-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc test was applied. Statistical significance was defined as a p-value < 0.05.

Results
Identification of Components Absorbed Into the Blood by KQJF
To delineate the pharmacologically active compounds in KQJF, we employed UPLC-Q-TOF/MS for the analysis of 
serum samples from the blank and KQJF groups. The total ion chromatograms pre- and post-KQJF administration are 
depicted in Figure S1A-D, respectively. Leveraging multistage mass spectrometry data and integrating results from the 
characterization of the components present in KQJF (Supplementary Table S2 and Figure S2), as well as relevant 
literature concerning the herbs contained in KQJF, we identified a repertoire of 49 prototype compounds including Citric 
acid, Macrozamin, Neochlorogenic acid, Protocatechuic aldehyde, Cryptochlorogenic acid among others, in the medi-
cated serum samples (Supplementary Table S3). Additionally, 121 metabolites were detected (Supplementary Table S4). 
This comprehensive profiling not only enhances our understanding of the active constituents of KQJF but also under-
scores the complex transformation those components undergo post-administration.

Acquisition of KQJF Drug-Related Targets and DP Disease-Related Targets
To identify molecular targets related to KQJF, our initial queries utilizing the Swiss Target Prediction database and the 
CTD database revealed 448 and 570 potential targets, respectively. Upon merging and deduplicating these datasets, 
a consolidated list of 873 unique targets associated with KQJF was generated. Subsequent analysis was directed towards 
PD datasets (GSE16134). To mitigate batch effects among the samples, normalization procedures were implemented 
prior to differential analysis (Figure S3A-B). Differential expression analysis was performed utilizing the “limma” 
package in R software, identifying 156 DEGs. These findings were visually depicted in a volcano plot (Figure 1A) and 
a heatmap (Figure 1B). Subsequent exploration involved retrieving targets associated with T2DM, utilizing the 
GeneCards database (with a relevance score threshold of ≥10) and the CTD database (with an inference score of ≥30). 
This search yielded 6333 and 6376 potential targets from each respective database. Merging and deduplicating these lists 
resulted in a total of 9551 unique T2DM-associated targets.

Identification of Key Gene Modules Associated With PD Through WGCNA Analysis
To pinpoint key gene modules linked to PD, we utilized WGCNA analysis to establish co-expression networks and 
modules in both healthy controls and PD patients. Gene expression variance was computed across all genes within the 
GSE16134 dataset, with the top 25% of genes exhibiting the highest variance selected for subsequent analysis. Setting 
a soft-threshold power of 13 yielded a scale-free topology fit index (R²) of 0.9, determining the formation of co-expressed 
gene modules (Figure 2A). Using the dynamic tree cutting method, we identified nine distinct co-expressed modules, 
color-coded, and presented as a heatmap of the topological overlap matrix (TOM), showcasing their connectivity 
(Figure 2B–C). These gene modules were subsequently correlated with clinical traits, comparing similarities and 
adjacencies in expressions between the control group and PD patients. Among these, the blue module showed the 
strongest association with PD, containing 1713 genes (Figure 2D). Furthermore, genes within the blue module demon-
strated significant positive correlation across diverse PD samples (correlation coefficient = 0.76, P-value = 8.9E-192) 
(Figure 2E). This evidence underscores the relevance of the blue module to the pathophysiology of PD.
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Figure 1 Differential analysis heatmaps and volcano plots of PD data derived from the GSE16134 dataset. (A) Heat map of the top 50 differential genes, with the normal control group in blue and the PD group in red; (B) Differential 
gene volcano map, with down-regulated genes in blue and up-regulated genes in red.
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Figure 2 Identification of co-expression modules associated with PD using WGCNA analysis. (A) Selection of genes for co-expression network construction based on variance calculation; (B and C) Construction of co-expression 
modules and visualization of the topological overlap matrix (TOM) heatmap using the dynamic tree cut algorithm; (D) The blue module showed the strongest association with PD. (E) The correlation of gene expression within the blue 
module across different PD samples.
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Intersecting Targets Screening and “KQJF-DP Disease” Network Construction
To unveil the potential mechanisms driving the therapeutic efficacy of KQJF against DP, we intersected the pharmaco-
logical targets of KQJF with the established targets implicated in both PD and T2DM. This analysis identified 66 
overlapping genes (Figure 3A). To further investigate the core components of KQJF, their targets, and their potential 
association with DP, we employed the Cytoscape software (version 3.9.0) to construct the “KQJF-DP” network. This 
network was generated by importing a specifically prepared “Network.xlxs” file into Cytoscape, resulting in a network 
comprising 98 nodes, including 30 active component nodes, 66 target nodes, and 2 disease nodes, and 263 edges 
(Figure 3B). Using the Network analyzer plugin, we analyzed the network’s topological parameters, finding an average 
degree of 5.367, network heterogeneity of 1.762, network density of 0.055, and centrality of 0.638. In this network, 
active components are represented by diamond shapes, diseases by inverted triangles, and corresponding drug-target 
interactions and disease interactions by circles. Each edge indicates the interaction between KQJF and its target nodes, 
and also between DP and its target nodes. Nodes with higher degrees within the network are considered central or “hub” 
nodes. Noteworthy central nodes among the active components include Luteolin (Degree = 28), Ferulic acid (Degree = 
15), Chlorogenic acid (Degree = 13), Ligustilide (Degree = 9), and Glycyrrhizic acid (Degree = 6) (Table 1). These 
findings suggest that KQJF may exert its therapeutic effects through multiple, strongly interactive components that serve 
as central hubs in the network. Moreover, the network reveals multiple components acting simultaneously on multiple 
targets, as well as instances where multiple components interact with a single target, highlighting the multi-component, 
multi-target modulatory nature of KQJF in the treatment of DP.

PPI Network Construction for Intersecting Targets
In cellular systems, the functionality of proteins largely hinges on their ability to form macromolecular complexes 
through interactions, as isolated proteins seldom perform cellular functions independently. Consequently, the study of PPI 
networks is crucial for dissecting cellular organization, biological processes, and functions, highlighting the need for 
enhanced research in this domain. Understanding these networks is particularly vital for unraveling the mechanisms 
behind the therapeutic effects of KQJF on DP diseases. To elucidate the interaction dynamics among targets implicated in 
DP, we analyzed the intersection targets within a PPI network. Specifically, 66 proteins associated with DP intersection 
targets were uploaded into the STRING database to clarify the relationships between these component targets. This 
analysis yielded a network comprising 66 proteins with 231 interactions. In this network representation, darker colors 
denote higher degree values indicating a protein’s prominence in the network, with larger node sizes reflecting greater 
significance. The drug-disease intersection interactions and the PPI network are depicted in Figure 3C. The derived PPI 
data were then visualized using the Cytoscape software, with results presented in Figure 3D. To pinpoint the core targets 
potentially crucial in the treatment of DP by the KQJF, the top 20 proteins ranked by degree values were deemed central 
targets, as listed in Table 2. These 10 core targets are posited to play significant roles in the onset and progression of DP 
under treatment with KQJF.

Enrichment Analysis
Through the application of the “Cluster Profiler” package in R software, a comprehensive GO functional enrichment and 
KEGG pathway enrichment analysis was conducted for 66 intersecting targets involved in DP. The GO analysis resulted 
in 1375 entries, distributed across biological processes (1223 entries), molecular functions (92 entries), and cellular 
components (60 entries). Key biological processes included positive regulation of cytokine production, response to toxic 
substances, chemokine production, response to drugs, and response to steroid hormones. In terms of molecular function, 
the analysis highlighted activities such as cyclin-dependent protein serine/threonine kinase regulator activity and cytokine 
receptor binding. The cellular components analysis predominantly involved entities like the serine/threonine protein 
kinase complex and the cyclin-dependent protein kinase holoenzyme complex (Figure 4A). These results suggest 
potential molecular targets involved in inflammation and cell cycle processes, which are closely associated with the 
pathogenesis of DP. This indicates that the treatment efficacy of KQJF in DP may involve several biological processes.
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Further KEGG pathway analysis utilizing the same “Cluster Profiler” package revealed 105 significantly enriched 
pathways (q-value <0.05), including critical signaling pathways such as the FoxO, HIF-1, JAK-STAT, AMPK, AGE- 
RAGE in diabetic complications, TNF, PI3K-Akt, p53, B cell receptor, and NOD-like receptor pathways (Figure 4B). In 
the “active ingredient-target-pathway” (Figure 4C), from the outside to the inside, the signaling pathway is represented 
by pink nodes, the purple nodes represent the active ingredient, and the target is represented by green circular nodes. The 

Figure 3 Network construction and PPI network analysis. (A) Venn diagram of KQJF, PD and T2DM related targets. (B) Network diagram of “KQJF-PD_T2DM disease”; 
(C) PPI interaction network map obtained by String database analysis; (D) The PPI network of KQJF-PD_T2DM analysed by Cytoscape software.
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network, consisting of 72 nodes connected by 177 edges, was analyzed using the Network Analyzer plugin, revealing an 
average of 4.917 neighbors per node, network heterogeneity of 0.795, network density of 0.069, and centrality of 0.219. 
This multi-component, multi-target, and multi-pathway characteristic of the KQJF’s active components underscores its 
therapeutic potential against DP through multiple layers of interaction and regulatory mechanisms.

Identification and Diagnostic Potential of Key Genes for PD Using Machine Learning 
Algorithms
To assess the diagnostic potential of intersection targets in PD compared to a healthy population, we employed three 
machine learning algorithms (SVM-RFE, LASSO, and Degree) on a PD dataset to isolate meaningful core targets 
capable of distinguishing PD patients. Using the SVM-RFE algorithm, we identified 37 out of 66 intersection targets as 
core targets (Figure 5A). The LASSO algorithm selected 23 genes from the same set of intersection targets (Figure 5B), 
and the top 20 targets were determined based on the Degree values from the PPI network (Figure 5C). By combining the 
results of these three algorithms, five genes (Including CCND1, PIK3R1, CDKN1B, ABCG2, and HIF1A) were 
identified as key genes (Figure 5D). To evaluate the diagnostic capability of these key genes in differentiating PD 
samples from healthy controls, expression profiling and specificity analysis were conducted. Results, depicted in a line 
graph (Figure 5E), demonstrated that these key genes have significant accuracy and specificity in distinguishing between 
PD and control samples. This evidence underscores the high diagnostic accuracy and specificity of these core targets in 

Table 1 Ranking List of Core Compounds of KQJF for DP Treatment

Name Degree BC CC

Luteolin 28 0.05291068 0.444954128
Ferulic acid 15 0.018460425 0.391129032

Chlorogenic acid 13 0.014420736 0.384920635

Ligustilide 9 0.008496226 0.370229008
Glycyrrhizic acid 6 0.002186001 0.336805556

Liquiritigenin 6 0.004264578 0.356617647

Vicenin-2 6 0.00110676 0.329931973
12-Hydroxyjasmonic acid sulfate 5 0.003560944 0.354014599

Citric acid 5 9.30E-04 0.329931973
Cyasterone 5 0.001337346 0.329931973

Benzyl β-primeveroside 3 3.01E-04 0.312903226

Liquiritin 3 8.00E-04 0.325503356
Roseoside 3 3.10E-04 0.314935065

Apigenin 7-O-β-D-glucuronide 2 4.21E-04 0.343971631

Chikusetsusaponin Iva 2 1.02E-04 0.310897436
Liquiritin apioside 2 0.001837261 0.351449275

Luteolin-7-O-β-D-glucuronide 2 4.21E-04 0.343971631

Taxifolin 7-O-glucoside 2 0.001837261 0.351449275
Tiliroside 2 4.21E-04 0.343971631

Tuberonic acid glucoside 2 1.02E-04 0.310897436

Chicoric acid 1 0 0.306962025
Cryptochlorogenic acid 1 0 0.341549296

Deacetylasperulosidic acid methyl ester 1 0 0.341549296

Dihydrokaempferol 3-glucoside 1 0 0.341549296
Isoliquiritin apioside 1 0 0.314935065

Licoricesaponin G2 1 0 0.310897436

Licuraside 1 0 0.314935065
Neochlorogenic acid 1 0 0.341549296

Protocatechuic aldehyde 1 0 0.341549296

Taxifolin 3-O-glucoside 1 0 0.341549296
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differentiating PD patients from healthy controls. Furthermore, expression levels and ROC curve analyses of these core 
targets were performed (Figure 5F–G). The results indicated significantly elevated expression levels of CCND1, PIK3R1, 
CDKN1B, and HIF1A in PD patients, with all corresponding AUC values exceeding 0.5. This underscores the robust 
diagnostic potential of these markers for PD.

GSEA Analysis of the Five Core Targets
To further elucidate the interplay between key molecular targets and PD, we employed GSEA analysis to investigate the 
associations between five pivotal targets and various signaling pathways implicated in PD. The outcomes demonstrated 
distinct pathway affiliations for each target, offering valuable insights into the potential mechanisms underlying PD. 
ABCG2 was significantly associated with pathways including DNA replication, fatty acid elongation, lipoic acid 
metabolism, mismatch repair, and nucleotide excision repair, suggesting a multifaceted role in cellular maintenance 
and metabolic regulation (Figure 6A). CCND1 exhibited strong links with pathways such as beta-alanine metabolism, 
biosynthesis of unsaturated fatty acids, fatty acid elongation, terpenoid backbone biosynthesis, and tyrosine metabolism, 
highlighting its involvement in lipid synthesis and amino acid processing (Figure 6B). CDKN1B showed significant 
correlations with N-glycan biosynthesis, other glycan degradation, protein export, selenocompound metabolism, and 
various types of N-glycan biosynthesis, indicating its critical role in protein glycosylation and degradation processes 
(Figure 6C). Similarly, HIF1A was notably associated with N-glycan biosynthesis, other glycan degradation, protein 
export, selenocompound metabolism, and viral protein interactions with cytokine and cytokine receptors, demonstrating 
its participation in immune response modulation and metabolic adaptation in hypoxic conditions (Figure 6D). Lastly, 
PIK3R1 revealed substantial associations with circadian rhythm, DNA replication, the Fanconi anemia pathway, 
mismatch repair, and nucleocytoplasmic transport, underscoring its involvement in fundamental cellular functions such 
as DNA maintenance and intracellular transport (Figure 6E). These findings, underscore the intricate network of 
signaling pathways engaged by the identified hub genes in PD, thus providing a richer understanding of the disease’s 
etiology and potential therapeutic targets.

Table 2 Top 20 Core Targets for Degree Value

Gene Degree Betweenness Centrality Closeness Centrality

HIF1A 31 0.27102 0.674419
ERBB2 22 0.108609 0.568627

SIRT1 22 0.110864 0.591837

CCND1 20 0.053952 0.552381
IL18 19 0.126053 0.542056

CDKN1A 16 0.02672 0.508772

PIK3R1 15 0.071038 0.522523
CDK1 14 0.021425 0.491525

TLR3 13 0.051551 0.504348
CHUK 13 0.06541 0.517857

HRAS 13 0.023563 0.5

CD36 11 0.042094 0.495726
CCNB1 11 0.008595 0.479339

CDKN1B 11 0.002754 0.491525

TOP2A 11 0.015156 0.449612
ABCG2 10 0.015758 0.471545

OCLN 10 0.014776 0.5

CCNA2 10 0.006116 0.471545
TJP1 9 0.011508 0.491525

BIRC2 8 0.012054 0.47541
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Figure 4 Enrichment analysis and construction of “active ingredient-target-pathway” network diagram. (A) GO analysis; (B) KEGG analysis; (C) The “active ingredient-target-pathway” network diagram.
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Immune Cell Infiltration Analysis
The etiology of PD is notably intricate, with the immune system playing a pivotal role in its pathogenesis. To explore the 
variances in the immune microenvironment between PD patients and healthy controls, we employed the CIBERSORT 
algorithm. As presented in Figures 7A–B, notable positive correlations were observed in PD samples with various 
immune cell types, including naive B cells, plasma cells, naive CD4 T cells, gamma delta T cells, activated memory CD4 
T cells, M0 macrophages, and neutrophils. Conversely, memory B cells, follicular helper T cells, CD8 T cells, regulatory 

Figure 5 Identification of final core targets using machine learning algorithms. (A and B) Selection of core target genes using Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms. (C) Identification of the top 20 targets based on Degree values in the PPI 
network. (D) Integration of results from three machine learning algorithms revealed five genes as key targets for discriminating PD patients. (E) Nomograms demonstrating 
the diagnostic potential of key target genes in distinguishing PD samples from healthy controls. (F and G) Expression level and ROC curve analysis of the five key target 
genes. nsp>0.05, *p<0.05, ***p<0.001.
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Figure 6 GSEA analysis of the five core targets. (A) ABCG2; (B) CCND1; (C) CDKN1B; (D) HIF1A; (E) PIK3R1.
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Figure 7 Exploration of immune microenvironment differences between PD patients and healthy controls using CIBERSORT algorithm. (A and B) The positive and negative 
correlations analysis of immune cell fractions between PD samples and healthy controls; (C) Relationship between high and low expression of core target genes and immune 
microenvironment. nsp>0.05, *p<0.05, **p<0.01, ***p<0.001.
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T cells (Tregs), resting NK cells, activated NK cells, M1 macrophages, resting dendritic cells, and resting mast cells were 
significantly negatively correlated. Furthermore, we explored the relationship between the expression levels of core target 
genes and the immune microenvironment. Our findings indicated significant positive correlations in resting dendritic cells 
with ABCG2, CCND1, and PIK3R1, while showing a negative correlation with CDKN1B. CD8 T cells exhibited 
significant negative correlations with ABCG2, CDKN1B, and HIF1A, but a positive correlation with CCND1 
(Figure 7C). These results imply that alterations in the immune microenvironment in PD patients could be closely 
linked to key genes such as ABCG2, CCND1, CDKN1B, PIK3R1, and HIF1A. This underscores the complex interplay 
between the immune system and molecular targets in the pathophysiology of PD and possibly extends to broader 
oncological contexts.

Molecular Docking
Molecular docking studies have provided deeper insights into the interaction between the components of KQJF and their 
potential therapeutic targets for DP. Core targets were identified based on results from biomarker prediction, leading to the 
retrieval of several PDB files for key proteins, specifically ABCG2 (PDB ID: 8BHT), CCND1 (PDB ID: 2W96), CDKN1B 
(PDB ID: 7ORG), HIF1A (PDB ID: 1H2K), and PIK3R1 (PDB ID: 5FOR). Extensive analysis of the “active component- 
target” network’s Degree results identified the top five active compounds: Luteolin, Ferulic acid, Chlorogenic acid, 
Ligustilide, and Glycyrrhizic acid. The strength of interaction between target proteins and active components is quantified 
using docking scores. A more favorable interaction is indicated by a more negative docking score, suggesting stronger 
binding affinity. Notably, a binding energy less than −5 kcal/mol indicates significant receptor-ligand activity, with 
exceptionally strong interactions below −7 kcal/mol. Figure 8A displays a heatmap detailing the binding energies between 
these 14 compounds and their respective targets. Results showed that KQJF’s small molecules interact effectively with their 
targets. Particularly, the five compounds with optimal binding were further analyzed to elucidate the interactions between 
the small molecule active components and protein receptors. Utilizing AutoDock Vina and PyMOL software, interaction 
diagrams were generated, highlighting the surrounding amino acid residues and their binding modes. Chlorogenic acid’s 
interaction with CCND1 exhibited a binding energy of −5.2032 kcal/mol, mainly forming hydrogen bonds with ARG 
B:139, ARG B:181, LYS B:142, GLN B:168, and LEU B:171 (Figure 8B). Glycyrrhizic acid demonstrated a highly 
favorable interaction with ABCG2, with a binding energy of −7.8345 kcal/mol, engaging in hydrogen bonds with LYS 
A:86, SER A:87, SER A:88, GLY A:85, ILE A:63, LYS A:61, LYS A:97, SER A:655, and ASP A:98 (Figure 8C). Ferulic 
acid showed a binding energy of −5.1499 kcal/mol with CCND1, mainly interacting through a hydrogen bond with GLU 
B:263 (Figure S4A). Ligustilide with HIF1A recorded a binding energy of −5.1743 kcal/mol, primarily forming hydrogen 
bonds with GLN A:204 and ALA A:300 (Figure S4B). Luteolin with HIF1A demonstrated a binding energy of −6.0907 
kcal/mol, primarily forming hydrogen bonds with THR S:796, GLN A:314, ALA A:300, GLN A:204, and TRP A:179 
(Figure S4C). These findings underscore the therapeutic potential of KQJF in targeting PD_T2DM through effective 
molecular interactions between its components and specific disease-related targets.

Molecular Dynamics Simulations
Based on the molecular docking results, we found that Glycyrrhizic acid had the lowest binding energy to ABCG2, 
CDKN1B and HIF1A. Therefore, we further performed molecular dynamics simulation analysis. The root mean square 
deviation (RMSD) serves as a critical indicator of system stability by summing the deviations of all atoms in 
a conformation from their target positions at a given moment. As depicted in Figure 9A, there is a gradual stabilization 
of the complex (ABCG2-Glycyrrhizic acid) structure as indicated by the RMSD, suggesting increasing structural stability 
over time. The radius of gyration (Rg) provides insights into overall structural changes and can be employed to assess the 
compactness of protein structures. Significant changes in Rg indicate system expansion. According to Figure 9B, the Rg 
of the complex remains relatively stable, underscoring a consistently stable configuration. The root mean square 
fluctuation (RMSF) quantifies the flexibility of amino acid residues within the protein. This metric is graphically 
represented in Figure 9C. For understanding the interaction of Glycyrrhizic acid on the ABCG2 surface, one approach 
involves evaluating the initial docking sites by measuring the distance between the centroid of the residue at the docking 
site and the centroid of Glycyrrhizic acid. Furthermore, the proximity between Glycyrrhizic acid and ABCG2 centroid is 
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analyzed. Figure 9D illustrates minimal fluctuations in these distances, not exceeding 0.5 nm and demonstrating gradual 
stabilization, which confirms the stability of the distance between the Glycyrrhizic acid and ABCG2. The buried solvent- 
accessible surface area (SASA) enveloping the Glycyrrhizic acid provides a measure of the interface size between 
Glycyrrhizic acid and ABCG2, offering insights into their binding state. As shown in Figure 9E, fluctuations in the buried 
SASA diminish progressively, suggesting a gradual stabilization in the contact area and, consequently, a stabilization in 
the complex formation. Hydrogen bonding, a pivotal force in protein-ligand interactions that reflects the strength of 
electrostatic interactions, is discussed lastly. Figure 9F indicates that the number of hydrogen bonds between Glycyrrhizic 

Figure 8 Molecular docking results of active ingredients in KQJF with five core targets. (A) Heat map of molecular docking binding energy; (B) Chlorogenic acid-CCND1; 
(C) Glycyrrhizic acid-ABCG2.
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Figure 9 Molecular dynamics simulations of ABCG2, CDKN1B, HIF1A and Glycyrrhizic acid. (A, G and M) RMSD of the complex, protein, and small-molecule ligand; (B, 
H and N) Rg of the complex; (C, I and O) RMSF of the protein in the complex; (D, J and P) Spacing of the proteins and the small molecules binding site (Dock site-ligand); 
(E, K and Q) Buried area between the proteins and the small molecules (Buried SASA); (F, L and R) Hydrogen bond number.
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acid and ABCG2 remains relatively consistent, fluctuating mainly between one to five bonds. This observation under-
scores the stability of electrostatic interactions within the complex. In addition, the molecular dynamics simulation results 
also showed that Glycyrrhizic acid binds to CDKN1B (Figure 9G–L) and HIF1A (Figure 9M–R) with equally good 
stability.

In Vivo Animal Experimental Validation
In order to validate the results of network pharmacology, molecular docking, molecular dynamics and machine learning 
experiments, we established a DP rat model, and firstly, we used H&E staining to carefully observe the morphological 
changes of the maxilla in different groups, and the results showed that the periodontal tissues of rats in the NC group had 
normal morphology and structure, and no obvious histopathological damage changes were seen; compared with the blank 
group, the DP group saw widening of the periodontal membrane gap, morphological and structural destruction and 
defects of the interdental papillae, degeneration and necrosis of the combined epithelium, the gingival sulcus epithelium 
and gingival epithelial cells (black arrows), a large number of neutrophils infiltration (red arrows), fibrous tissue 
proliferation (blue arrows), neonatal capillary formation (yellow arrowheads), and exposed dentin; Compared with the 
DP model group, the DP+KQJF treatment group displayed significant preservation of tissue architecture with reduced 
inflammatory cell infiltration (red arrowheads) (Figure 10A). This suggests that KQJF treatment ameliorates the 
histopathological changes associated with DP. Further, we analyzed the protein expression of five core targets screened 
by network pharmacology and machine learning. Immunohistochemical analysis demonstrated a notable increase in HIF- 
1α, CCND1, and PI3KR1 expression in the DP+KQJF group compared to the DP model group. Furthermore, KQJF 
treatment significantly downregulated the expression of CDKN1B and ABCG2, indicating a potential reversal of 
pathological processes in periodontal tissues (Figure 10B–C). These molecular changes point towards an anti- 
inflammatory and tissue-protective role of KQJF in the context of diabetic periodontitis. The qRT-PCR and Western 
blot analyses were consistent with the immunohistochemical findings, affirming the modulation of pivotal signaling 
proteins involved in cell cycle regulation, apoptosis, and metabolic stress responses. The increase in HIF-1α, CCND1, 
and PI3KR1 mRNA and protein levels alongside the decrease in CDKN1B and ABCG2 was significantly evident in the 
DP+KQJF group compared to the DP model group (Figure 11A–B). The protein quantitative analysis reaffirmed the 
significant upregulation and downregulation of these proteins, suggesting that KQJF activates a protective cellular 
program against the pathological backdrop of DP (Figure 11C). These results indicate that KQJF not only mitigates 
histological and molecular disturbances induced by PD in the presence of T2DM but also suggests the modulation of 
distinct biochemical pathways critical for disease progression and tissue integrity. Thus, KQJF emerges as a promising 
therapeutic candidate for managing DP patients.

Discussion
The present study elucidates the multifaceted pharmacological impact of KQJF on DP, providing a comprehensive molecular 
and cellular mechanistic insight. Our integration of advanced UPLC-Q-TOF/MS analytical methods, network pharmacology, 
machine learning, molecular simulations, and in vivo validations delineated the bioactive compounds in KQJF, their target 
interactions, and the subsequent modulation of disease pathways, underlining its potential as a therapeutic intervention.

Initially, our analyses revealed a complex blend of 49 prototype compounds and 121 metabolites derived from KQJF, 
underscoring the broad spectrum of bioactive molecules potentially instrumental in modulating pathological processes in 
DP. Notably, components such as Citric acid, Cryptochlorogenic acid, and Neochlorogenic acid, among others, exhibited 
significant transformations post-administration, suggesting metabolic modifications pivotal in eliciting therapeutic out-
comes. It has been found that the concentration of citric acid used as a root conditioner affects the behavior of human 
periodontal ligament fibroblasts, with 10% citric acid for 90 seconds resulting in a more rapid proliferation of fibroblasts 
from human periodontal ligament compared to that with 50% citric acid.14 Cryptochlorogenic acid exhibits potent anti- 
inflammatory and antioxidant effects by inhibiting NF-κB/MAPK signaling pathways and promoting Nrf2 nuclear 
translocation, suggesting its therapeutic potential against LPS-induced inflammation and oxidative stress.15 The water 
extract from Lycium barbarum L. has been found to contain neochlorogenic acid and so on (up to 6.06%). This extract 
effectively mitigates symptoms of T2DM in rats by modulating blood glucose and lipid levels, repairing tissue injuries, 
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reversing metabolic alterations, and restoring gut microbiota dysbiosis induced by T2DM.16 Luteolin protects pancreatic 
cells by reducing oxidative stress and improving insulin resistance, leading to lower blood sugar levels.17,18 It also 
inhibits cytokines associated with PD, thus mitigating its progression.19 Ferulic acid helps alleviate oxidative damage 

Figure 10 HE staining and immunohistochemical analysis. (A) HE staining, in the NC group, the periodontal tissues had normal morphology and structure, and no obvious 
histopathological damage was observed; in the DP group, there was widening of the periodontal membrane gap, destruction of the morphology and structure of the 
interdental papillae and defects, degeneration and necrosis of the combined epithelium, gingival sulcus epithelium and gingival epithelium cells (black arrows), a large number 
of neutrophils infiltration (red arrows), fibrous tissue proliferation (blue arrows), neonatal capillarisations (yellow arrows), and exposure of the dentine bone; in the DP 
+KQJF group was seen with essentially normal periodontal interstitial space and a small amount of inflammatory cell infiltration (red arrow). (B and C) Protein expression 
and quantitative analysis of the five core targets in DP periodontal tissues was verified by immunohistochemical analysis. Data are expressed as mean ± SD, n = 6. *p<0.05 vs 
NC, #p<0.05 vs DP.
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Figure 11 The mRNA and protein expression of the five core targets in DP periodontal tissues was verified by qRT-PCR analysis and Western blot. (A) The mRNA 
expression levels of HIF1α, CCND1, PIK3R1, CDKN1B, and ABCG2 in periodontal tissues of each group of rats assessed by qRT-PCR analysis. (B and C) Protein bands and 
relative protein expressions of HIF1α, CCND1, PIK3R1, CDKN1B, and ABCG2 in periodontal tissues of each group of rats assessed by Western blot analysis. Data are 
expressed as mean ± SD, n = 6. *P<0.05 vs NC, #P<0.05 vs DP.
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caused by T2DM, suppresses inflammation, and manages blood sugar levels by enhancing insulin sensitivity.20 

Chlorogenic acid reduces oxidative stress in diabetes, preserves pancreatic function, and lowers blood sugar levels by 
inhibiting glucose absorption.21 It also suppresses inflammation in PD, aiding in tissue healing.22 In conclusion, there are 
studies that have demonstrated the potential of these ingredients to have a better treatment for periodontitis or T2DM. 
However, there are no studies demonstrating the relationship between these ingredients and DP treatment.

The elucidation of drug-related targets using databases such as Swiss Target Prediction and CTD, combined with 
differential expression analyses in gingival samples from DP individuals, allowed us to construct a robust list of targets 
which intersect with the molecular signatures of PD and T2DM. These insights provided a foundation to explore key 
gene modules via WGCNA analysis, identifying the blue module as particularly correlated with DP pathophysiology, 
thus prioritizing potential therapeutic targets. Furthermore, the construction of intersecting targets screening and the 
“KQJF-DP disease” network facilitated the identification of central compounds like Luteolin and Ferulic acid, which 
likely play critical roles in modulating disease mechanisms through their interactions with multiple targets and 
pathways.23 This network-centric approach not only highlighted the multi-target interactions but also reinforced the 
concept of network pharmacology where a holistic view is adopted rather than a single-target focus.

Recent studies have underscored the interplay between metabolic diseases such as T2DM and inflammatory conditions like 
PD, highlighting a bidirectional exacerbation influenced by common pathological processes such as inflammation, immune 
dysregulation, and altered cellular signaling.24,25 Correspondingly, our findings reveal that KQJF targets several pathways pivotal 
to both PD and T2DM, including JAK-STAT, PI3K-Akt, and TNF signaling pathways, corroborating with the literature 
suggesting these pathways are critical nodal points in the pathogenesis of both conditions.26–30 The intersection of KQJF’s 
active components with these pathways demonstrates the formula’s capability to modulate key biological processes such as 
cytokine production, immune response, and cell cycle regulation, which are significantly dysregulated in DP. The molecular 
docking and dynamics simulations offered a microscale glimpse into the interaction dynamics at the molecular level, providing 
evidence for the potential binding efficiency and stability of interactions between key proteins and KQJF-derived compounds. 
Notably, these molecular interactions, particularly those exhibiting high binding affinity and stability such as ABCG2 and 
HIF1A, which have been implicated in recent studies to play substantial roles in cellular protection against oxidative stress and 
apoptosis in diabetic environments.31,32 In evaluating immune cell contributions, our use of the CIBERSORT algorithm 
highlighted significant shifts in the immune cell landscape, suggesting KQJF may exert substantial immunomodulatory effects. 
This is particularly relevant given recent reports which indicate that modulation of specific immune cells and cytokines can 
substantially impact PD progression and T2DM complications.33–35 Such as, PD is strongly associated with M1 and M2 
macrophage polarisation, and studies have shown increased M1 macrophage activity and a relative decrease in M2 macrophages 
during periodontitis, leading to inflammatory progression and impeding tissue repair. Therapeutic strategies focus on modulating 
macrophage subtype balance to promote inflammatory relief and tissue healing.36,37

Further, the validation of our findings through in vivo experimental approaches not only corroborated the molecular 
and computational predictions but also showcased the real-world efficacy of KQJF in mitigating the histopathological 
manifestations of DP. The modulation of key protein expressions involved in cell cycle regulation, apoptosis, and 
metabolic stress responses evident in treated groups emphasized the potential of KQJF as a multi-target therapeutic agent 
in managing DP, particularly in the milieu of T2DM, provides compelling evidence of KQJF’s therapeutic potential.

Critically, while our findings align with the emerging trends in metabolic and inflammatory disease research, certain 
limitations exist. Our study primarily focuses on biochemical and cellular pathways without extensive exploration into 
the long term clinical outcomes and potential side effects, which are essential for translational relevance. Further 
longitudinal and clinical studies will be required to translate these findings into therapeutic protocols.

Conclusion
In conclusion, KQJF emerges as a promising integrative treatment strategy for managing the complex interplay of DP, 
targeting key molecular pathways, and altering the immune profile to potentially mitigate disease progression. Excitingly, 
this study epitomizes the synergy between traditional herbal medicine and modern scientific methods, shedding light on 
the intricate molecular networks in disease and offering promising avenues for therapeutic interventions with broad- 
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spectrum efficacy. Future research should aim to further validate these findings in larger cohorts and diverse population 
samples while also exploring the prospective adverse effects and optimal dosing strategies to maximize therapeutic gains.
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