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Purpose: Chronic obstructive pulmonary disease (COPD) is among the three leading causes of death worldwide, with its prevalence, 
morbidity, and mortality rates increasing annually. Oxidative stress (OS) is a key mechanism in COPD development, making the 
identification of OS-related biomarkers beneficial for improving its diagnosis and treatment.
Methods: The genetic data from patients with COPD and controls were obtained from the Gene Expression Omnibus database to 
identify OS-related genes (OSRGs). Functional enrichment analysis was conducted using the Kyoto encyclopedia of genes and 
genomes signaling pathway and gene ontology (GO). Protein-protein interaction networks were constructed to identify the core genes, 
which were further evaluated using receiver operating characteristic (ROC) curves. Diagnostic models were developed based on the 
core genes. Besides, the correlation between the expression of the core genes and the immune cells was analyzed using single-sample 
gene set enrichment analysis. Drug-gene interactions were explored to predict target drugs, and related microribonucleic acid (miRNA) 
and transcription factors (TFs) were identified using miRNet.
Results: In this study, we identified 299 differential genes, including 16 OSRGs. Among these, five core genes—heat shock protein 
family A (Hsp70) member 1A (HSPA1A), glutamate-cysteine ligase modifier subunit, interleukin-1 beta (IL-1β), intercellular adhesion 
molecule 1 (ICAM1), and glutamate-cysteine ligase catalytic subunit (GCLC)—were screened and validated using ROC curve 
analysis. The results of GO enrichment analysis were mainly focused on the OS response, the negative regulation of the exogenous 
apoptosis signaling pathway, and the regulation of the apoptosis signaling pathway. Additionally, 33 target drugs were predicted, 
including ofloxacin, cisplatin, and pegolimumab, among others. Meanwhile, the regulatory networks comprising 33 miRNAs related to 
the core genes and 38 TFs associated with HSPA1A, IL-1β, ICAM1, and GCLC were constructed. A diagnostic model based on the 
five genes was constructed and validated with an area under the curve of 0.981 (95% confidence interval: 0.941–1.000).
Conclusion: This study identifies potential biomarkers for diagnosing COPD, new potential targets, and new directions for drug 
development and treatment.
Keywords: oxidative stress, COPD, biomarkers, bioinformatics, diagnostic model

Introduction
Chronic obstructive pulmonary disease (COPD) is a heterogeneous ailment characterized by progressively worsening 
airflow limitation, manifesting clinically through symptoms such as dyspnea, cough, and expectoration.1 Due to its 
protracted, recurrent, and evolving nature, COPD has become a prevalent and refractory condition in clinical practice. 
According to the World Health Organization, the prevalence of COPD is projected to increase significantly over the next 
four decades, driven by increasing smoking rates in developing nations and aging populations in high-income countries. 
By 2060, deaths related to COPD and associated disorders are expected to exceed 5.4 million annually.1,2 This increasing 
trajectory is intrinsically linked to continuous exposure to COPD risk factors and demographic senescence.3 COPD 

International Journal of Chronic Obstructive Pulmonary Disease 2025:20 841–855                    841
© 2025 Jiang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Chronic Obstructive Pulmonary Disease       

Open Access Full Text Article

Received: 4 July 2024
Accepted: 21 March 2025
Published: 26 March 2025

In
te

rn
at

io
na

l J
ou

rn
al

 o
f C

hr
on

ic
 O

bs
tr

uc
tiv

e 
P

ul
m

on
ar

y 
D

is
ea

se
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0009-0009-1336-6080
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


presents a formidable public health challenge but remains amenable to early preventive and therapeutic interventions. 
The research elucidates that the etiology of COPD is multifaceted, correlated with smoking, age, utilization of biomass 
fuels, and genetic predispositions. These risk elements contribute to airway inflammation, oxidative stress (OS) 
responses, cellular apoptosis, and a protease-antiprotease imbalance, all of which play a critical role in the disease’s 
pathogenesis. The OS denotes a dynamic disequilibrium between oxidants and antioxidants precipitated by intrinsic or 
extrinsic stimuli, resulting in damage to DNA, lipids, and proteins, thereby inducing cellular apoptosis and tissue injury.4 

Chronic inflammation affecting the airways, lung parenchyma, and pulmonary vasculature constitutes characteristic 
alterations in COPD, where an upsurge in pulmonary reactive oxygen species (ROS) exacerbates pro-inflammatory 
cytokines, driving the recruitment of inflammatory cells, such as neutrophils and macrophages, augments ROS levels, 
perpetuating a malignant cycle of OS and chronic pulmonary inflammation. Moreover, OS significantly impacts cellular 
apoptosis, protease-antiprotease disequilibrium, and immune responses.5–7 It catalyzes the release of chemokines such as 
C-C motif chemokine ligand 2, mobilizing dendritic cells and lymphocytes, which partake in immune reactions, thereby 
promoting autoantibody production and culminating in pulmonary damage. Advancing research has identified several 
OS-related biomarkers, including glutathione,8 protein sulfhydryls,9 malondialdehyde,10 and 8-hydroxydeoxyguanosine.
11 While these biomarkers are primarily used in scientific research, they are yet to be widely adopted in clinical practice. 
Current therapeutic strategies for COPD focus on the administration of glucocorticoids and bronchodilators. The OS- 
targeted therapies, such as mucolytic agents, including N-acetylcysteine, have demonstrated effectiveness in mitigating 
acute exacerbations, enhancing patient quality of life, and prolonging survival.12 Given the critical role of OS in COPD 
evolution and progression, further exploration into its mechanisms is imperative. This study exploits gene expression data 
related to COPD from the Gene Expression Omnibus (GEO) database to identify OS-related biomarkers. Using various 
databases, it performs a comprehensive analysis, establishes and validates a diagnostic model, and predicts relevant 
microribonucleic acid (miRNA) and targeted therapeutics. These findings aimed to offer potential targets and methods for 
diagnosing and treating COPD.

Materials and Methods
Data Sources
Gene expression datasets related to COPD were retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/)13 

using “COPD” as the search term. This search yielded three datasets: GSE130928, GSE11906, and GSE11952. The 
GSE130928 was designated as the training set, comprising gene expression profiles from alveolar macrophages in 
bronchoalveolar lavage fluid from 22 patients with COPD and 24 with healthy controls. The GSE11906, serving as the 
validation set, contained gene expression profiles from the airway epithelium of 33 patients with COPD and 72 with 
healthy controls. Given that smoking is the primary risk factor for COPD and is closely associated with OS,14 the 
GSE11952 was also utilized as a validation set, including gene expression profiles from small airway epithelia of 38 non- 
smokers (healthy controls) and 45 smokers. The OS-related genes (OSRGs) were acquired from the Human Gene 
Database (https://www.genecards.org/), totaling 878 genes (Supplementary Table 1). The above data were obtained from 
public databases, and their download and use were reviewed and approved by the Ethics Committee of the First Affiliated 
Hospital of Henan University of CM (Opinion No. 2024HL-536).

Construction of Weighted Gene Co-Expression Network and Module Identification
The weighted gene co-expression network analysis (WGCNA) package (version 1.72-5) was used to conduct a WGCNA 
on the GSE130928 dataset to identify gene modules associated with COPD. Initial steps included clustering of samples to 
remove outliers and setting the optimal threshold to ensure the WGCNA gene network adhered to a scale-free topology 
assumption. Based on the similarity of gene expression, genes were categorized into modules, with free genes (genes 
with low or no change in expression) being discarded. Subsequent association analyses between clinical traits and these 
modules yielded genesignificance (GS) scores and modulemembership (MM) values for each gene. Finally, modules with 
a correlation (|Cor|) > 0.4 were selected as key modules for further analysis.
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Identification and Functional Enrichment Analysis of Candidate Genes Associated with 
OS in COPD
Intersections were conducted among differentially expressed genes (DEGs), OS genes, and genes from key modules to 
identify OSRGs using the Venn diagram package (version 1.7.3). Subsequently, the cluster profiler package (version 
4.10.1) was used for gene ontology (GO) biological function enrichment and Kyoto encyclopedia of genes and genomes 
(KEGG) pathway analyses of the candidate genes. A significance threshold of P < 0.05 was set to filter and visualize 
enriched biological functions or pathways. Moreover, the OmicCircos package (version 1.32.0) was utilized to depict the 
genomic locational distribution and expression levels of the candidate genes.

Core Gene Selection and Identification
The STRING database (https://cn.string-db.org/) was applied to establish a protein-protein interaction network, and the 
network data were imported into the Cytoscape software (version 3.8.2). The cytoHubba plugin was used to analyze the 
network, determining node degrees to identify core genes. These genes were then validated through receiver operating 
characteristic (ROC) curve analysis to assess their discriminative power between COPD and control groups within the 
GSE130928 dataset, with genes achieving an area under the curve (AUC) > 0.7 being designated as core genes. Relative 
expression levels of these genes in the test and control groups of the GSE130928 dataset were visualized using the 
ggpubr package (version 0.6.0).

Immune Infiltration and Gene Set Enrichment Analysis (GSEA) of Core Genes
We conducted GSEA enrichment analysis using molecular feature databases To explore the functions of these genes 
(https://www.gsea-msigdb.org/gsea/msigdb). The downloaded c2. cp. kegg. Hs. symbols. gmt gene set was used as 
a reference for enrichment analysis of high and low expression samples, with P < 0.05 as the screening condition to 
determine significantly enriched pathways. The first three pathways with normalized enrichment scores > 0 and < 0 were 
visualized.

Patients with COPD often have immune dysfunction.15 We used single-sample GSEA (ssGSEA) to perform immune 
infiltration analysis on core genes and evaluate the correlation between core genes and 28 types of immune cells.

Construction of Core Gene Regulatory Networks and Drug Prediction
The miRNET database16 (https://www.mirnet.ca/) was used to predict microRNAs (miRNAs) and transcription factors 
(TFs) regulating core genes and elucidate the regulatory networks involving core genes and related signal transduction. 
Furthermore, potential therapeutic drugs for core genes were predicted using the Drug-gene interaction database17 

(https://dgidb.genome.wustl.edu/). Results were visualized using Cytoscape software.

Diagnostic Model Construction and Validation
Constructing a lasso regression diagnostic model using core genes related to OSRG. Gene expression data and gene lists 
were read, and genes included in the lists were selected from the expression data. The glmnet package (version 4.1-8) 
was used to apply the least absolute shrinkage and selection operator (LASSO) regression analysis to derive model 
construction coefficients. To validate the model’s effectiveness, the GSE130928 dataset served as the training set to 
differentiate between disease and control groups using the model, evaluated using confusion matrix and ROC curve 
analyses. GSE11906 and GSE11952 datasets were used as validation sets to repeat the analysis and assess the model’s 
validity.

Results
Identification of DEGs and WGCNA Network Modules
A total of 299 DEGs were identified in the examination of expression data from disease and control groups within the 
GSE130928 dataset, with 156 upregulated and 143 downregulated genes (Figure 1). To construct the WGCNA network, 
gene data from all samples were incorporated into a dendrogram, and outliers were excluded. This facilitated the creation 

International Journal of Chronic Obstructive Pulmonary Disease 2025:20                                                https://doi.org/10.2147/COPD.S485505                                                                                                                                                                                                                                                                                                                                                                                                    843

Jiang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://cn.string-db.org/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.mirnet.ca/
https://dgidb.genome.wustl.edu/


of a scale-free network (Supplementary Figure 1), followed by the division of genes into various modules based on 
expression similarity (Figure 2). A total of 20 modules were identified (Supplementary Figure 2). Subsequent correlation 
analysis with clinical expressions led to the selection of modules with an absolute correlation coefficient (|Cor|) > 0.4. 
These modules were labeled with the colors orange, black, dark orange, yellow, sapphire, cyan, and grey (Figure 3).

Screening and Functional Enrichment Analysis of OS-Related Candidate Genes
By intersecting 299 DEGs with 12,286 module genes and 878 OS genes, 16 OSRGs were identified (Supplementary 
Table 2). The GO enrichment analysis performed on these OSRGs yielded 734 results, including 645 biological processes 
(BPs) entries primarily related to OS responses, negative regulation of extrinsic apoptotic signaling pathway, and 
mediation of apoptotic signaling pathway; a total of 35 cellular component entries mainly involving aggresomes, stress 

Figure 1 (a) Differential gene volcano map; (b) Differential gene heatmap.

Figure 2 (a) Gene trees of all samples after removing outliers; (b) Cluster Tree.
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fibers, inclusion bodies, and myosin complexes; and 54 molecular functions (MFs) entries primarily concerning calcium- 
dependent protein kinase C activity, protein kinase C activity, and calcium-dependent phosphotransferase activity. The 
KEGG pathway enrichment analysis was used to highlight 38 pathways, involving the AGE-RAGE signaling pathway in 
diabetic complications, ferroptosis, glutathione metabolism, and the nuclear factor kappa B (NF-κB) signaling pathway 
(Figure 4). Recent studies have demonstrated that gene loci are closely associated with COPD development and 
progression.18,19 Establishing the chromosomal positions of relevant genes helps in understanding whether candidate 
genes influence COPD through genetic factors. The results indicated that the candidate genes are distributed across 
various chromosomes (Figure 5), with the most substantial number present on chromosome 6.

Figure 3 Module and Disease Correlation.
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Core Gene Selection and Identification
The 16 OSRGs were identified through the screening. To screen for core genes, a protein interaction network of candidate 
genes was constructed using the STRING website, and network topology analysis was performed using cytoHubba 

Figure 4 (a) Venn diagram of intersected genes; (b) GO enrichment analysis pie chart; (c) KEGG pathway enrichment analysis diagram; (d) GO enrichment analysis bar 
chart.

Figure 5 (a) Chromosomal positions of candidate genes. 
Notes: The expression levels of candidate genes in the GSE130928 dataset are represented in the internal circular heatmap. Red represents upregulation, blue represents 
downregulation, the outer circle of the heatmap represents the control group, and the inner circle represents the disease group; The outermost circle represents 
chromosomes, and lines from each gene point to their specific chromosomal positions. (b) Manhattan map of candidate genes.
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(Figure 6). Five core genes were identified using the degree value (Supplementary Figure 3): heat shock protein family 
A (Hsp70) member 1A (HSPA1A; located on chromosome 6), glutamate-cysteine ligase modifier subunit (GCLM; 
located on chromosome 1), interleukin-1 beta (IL-1β; located on chromosome 2), intercellular adhesion molecule 1 
(ICAM1; located on chromosome 19), and glutamate-cysteine ligase catalytic subunit (GCLC; located on 
chromosome 6).

Subsequent expression analysis of these core genes within the training set indicated elevated expression levels in the 
COPD group for all five genes (Supplementary Figure 4). The ROC curve analysis yielded AUC values substantiating 
their diagnostic potential: HSPA1A (AUC = 0.843), GCLM (AUC = 0.841), IL-1β (AUC = 0.860), ICAM1 (AUC = 
0.826), and GCLC (AUC = 0.979), all surpassing the threshold of 0.7, thus qualifying for further analytical scrutiny. Co- 
expression analysis demonstrated a positive correlation among all core genes, with particularly strong correlations 
between IL-1β and ICAM1, as well as between HSPA1A and GCLM (Figure 7).

GSEA
GSEA was conducted on the core genes to further explore their MFs and associated pathways. All five core genes were 
enriched in the “cytokine-cytokine receptor interaction” pathway with an upregulated expression profile. Additionally, 
GCLM, ICAM1, and IL-1β were upregulated in the “chemokine signaling pathway”. The “mitogen-activated protein 
kinase (MAPK) signaling pathway” indicated upregulation for GCLM, ICAM1, and IL-1β, whereas GCLC was down
regulated in this pathway. In the “Parkinson’s disease pathway”, GCLC, GCLM, and IL-1β were all downregulated. 
Furthermore, low expression levels of HSPA1A, ICAM1, and IL-1β were associated with the “ribosome” pathway 
(Figure 8).

Immune Cell Infiltration Scoring and Core Gene Correlation Analysis
A delineation of associations between pivotal genes and diverse immune cellular phenotypes was established using 
immunocyte infiltration scores. The HSPA1A was used to manifest significant positive associations with adipocyte-like 
mast cells, nascent B cells, plasmacytoid dendritic cells, central memory CD4+ T cells, activated CD4+ T cells, type 
2 helper T cells, and gamma-delta T cells while exhibiting a notable negative correlation with activated B cells. The 
GCLM displayed pronounced positive correlations with adipocyte-like mast cells, activated CD4+ T cells, and 

Figure 6 (a) Network diagram of candidate gene protein interactions; (b) Core gene network diagram.
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plasmacytoid dendritic cells and was inversely related to regulatory T cells (Tregs), T follicular helper cells, activated 
B cells, macrophages, and myeloid-derived suppressor cells. The IL-1β was positively correlated with adipocyte-like 
mast cells, cytotoxic natural killer T cells, activated CD4+ T cells, natural killer cells, nascent B cells, plasmacytoid 
dendritic cells, and type 17 helper T cells (Th17), and negatively with regulatory T cells. The ICAM1 correlated 
positively with adipocyte-like mast cells, monocytes, plasmacytoid dendritic cells, activated CD4+ T cells, natural killer 
cells, activated dendritic cells, central memory CD4+ T cells, and Th17 cells. It demonstrated negative correlations with 
regulatory T cells, activated B cells, and immature dendritic cells (Figure 9). The GCLC did not exhibit notable 
correlations with any immune cells. These findings underscored the significant relationships between core genes and 
a spectrum of T cells, B cells, dendritic cells, and mast cells, corroborating previous research on their roles in COPD 
pathogenesis.20

Core Gene Predictive Drug, miRNAs, and TFs Analysis
The Dgidb database was used to facilitate the prognostication of 33 pharmacological agents targeting these core genes 
(Supplementary Table 3). Specifically, 20 agents were predicted for IL-1β, including erythromycin, aspirin, hydrocorti
sone, ofloxacin, cephalexin, and gevokizumab; 5 agents including pegolimab and BI-505, were predicted for ICAM1; 4 
agents including cisplatin and sulfamethoxazole were foreseen for GCLC; and predictions for GCLM and HSPA1A 
involved 3 and 1 agents respectively. The miRNet database was employed to predict 33 miRNAs (Supplementary 
Table 4) and 37 TFs (Supplementary Table 5) impacting these core genes, excluding GCLM (Figure 10). For instance, 

Figure 7 (a) ROC curve analysis of core genes; (b) The correlation between core genes and expression levels; (c) IL-1β Correlation with ICAM1 expression; (d) 
Correlation between HSPA1A and GCLM expression.
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miR-335-5p was identified as a regulator for HSPA1A, ICAM1, and GCLC; TFs such as NF-κB1 and RelA were shared 
regulators for GCLC, ICAM1, and IL-1β.

Diagnostic Model Establishment and Validation for Core Genes
A diagnostic model predicated on these five core genes was constructed using LASSO regression and ROC analysis, with 
the trajectory of regression coefficients depicted. Subsequent validation through the ROC curve evidenced an AUC of 
0.981, affirming the model’s diagnostic precision. Besides, a confusion matrix demonstrated an accuracy of 0.93, 
precision of 0.96, recall rate of 0.92, and specificity of 0.95 (Figure 11). To corroborate this model, GSE11906 served 
as an external validation set for disease, indicating an AUC of 0.949, with the confusion matrix reporting accuracy of 
0.94, a precision of 0.92, a recall rate of 1.00, and a specificity of 0.81. The GSE11952, used as an external validation set 
for risk factors, indicated an AUC of 0.906, with the confusion matrix revealing an accuracy of 0.87, precision of 0.85, 
recall rate of 0.87, and a specificity of 0.87 (Figure 12). These metrics underscore the model’s general applicability and 
potential as a pre-diagnostic tool for diseases.

Discussion
COPD is a common respiratory system disease, with OS as its primary pathogenic mechanism. Currently, clinical 
interventions targeting OS are limited, and there is a scarcity of relevant diagnostic biomarkers. Early diagnosis or 
screening of COPD remains a challenging issue in clinical settings. With the recent escalation in environmental pollution, 
including smoke from cigarettes and cooking oils, and PM2.5, there has been an increase in both exogenous ROS caused 
by these pollutants and endogenous ROS produced by lung inflammation and structural cells. This increase results in 
damage to the airway epithelial cells, induces the proliferation of smooth muscle cells, leads to a decline in lung function, 
and makes the OS response increasingly significant in COPD development and progression.21 As a result, selecting 
biomarkers related to OS and the development of drugs targeting these markers might become hotspots in future COPD 
diagnosis and treatment research. In this study, we identified 16 biomarkers related to OS through the screening of DEGs 
in the GSE130928 dataset. The GO enrichment analysis indicated that these OSRGs are mainly involved in BPs such as 
OS responses, regulation of apoptotic signaling pathways, and protein kinase activity. Previous research has revealed that 

Figure 8 Gene set enrichment analysis (a) HSPA1A; (b) GCLM; (c) IL-1β; (d) ICAM1; (e) GCLC.
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an enhanced OS response intensifies the process of cellular apoptosis.22 The KEGG pathway enrichment analysis was 
used to demonstrate that OSRGs are primarily involved in pathways, including the AGE-RAGE signaling pathway 
related to complications in diabetes, ferroptosis, glutathione metabolism, and the NF-κB signaling pathway. These 
pathways are highly associated with OS, such as the activation of the NF-κB pathway, which induces the expression 
of various pro-inflammatory cytokines such as tumor necrosis factor-alpha, IL-6, and IL-1β, thereby promoting apoptosis 
and the OS process.23 To further analyze the functions of OSRGs, we determined their chromosomal positions and 
observed that OSRGs are related to multiple chromosomes. Relevant studies indicate that the X chromosome is 
associated with COPD-related phenotypes, and a variant near TMSB4X, rs5979771, reveals genome-wide significance 
with lung function.19 Our results indicate that most genes are located on chromosome 6, and previous studies have also 
confirmed that certain single nucleotide polymorphisms (SNPs) on chromosome 6 are consistently associated with early 
susceptibility to COPD.24 These findings suggest that these chromosomes may be significantly related to COPD, and 
identifying COPD-related SNPs also has certain clinical significance.

Through further selection, we identified five core OSRGs: HSPA1A, GCLM, IL-1β, ICAM1, and GCLC. Based on 
these genes, we explored their potential MFs through GESA, immune infiltration scoring, miRNAs, and TF predictions 
while developing a diagnostic model predicated on these core OSRGs, characterized by high sensitivity and selectivity. 
HSPA1A, GCLM, and GCLC consistently exhibited elevated expression levels in COPD samples. The HSPs form 
a superfamily whose proteins may increase in response to cellular stress associated with pollutants. Previously reported 
SNPs within HSP genes are linked to the risk and severity of COPD, and intracellular HSP levels may vary with different 
external exposures.25 Moreover, a study involving coal miners indicated that elevated plasma levels of HSPA1A could be 
associated with an increased risk of COPD among these workers.26 GCLM and GCLC are part of the glutathione 

Figure 9 Correlation between immune cell infiltration score and core genes (a) HSPA1A; (b) GCLM; (c) IL-1β; (d) ICAM1. 
Note: The highlighted red part on the vertical axis in the figure represents the correlation between genes and this type of immune cell (P<0.05).
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reductase system, intimately involved with the synthesis of glutathione in the body. Research has indicated that 
polymorphisms at the GCLM gene locus are related to COPD susceptibility, and GCLC expression is significantly 
upregulated in both acute exacerbation of COPD and stable patients with COPD, a phenomenon possibly linked to 
increased methylation of GCLC.27,28 IL-1β is a pro-inflammatory cytokine, and ICAM1 is a critical inflammatory 
mediator. Over-secretion of IL-1β can induce ICAM1, thereby exacerbating inflammation.29 Studies indicate that during 
acute exacerbations of COPD, serum levels of IL-1β and IL-17 are significantly higher than in stable COPD or control 
groups, correlating positively with serum C-reactive protein levels, neutrophil percentages, and smoking status.30 These 
findings suggest that increased levels of IL-1β and ICAM1 are linked to pulmonary oxidative damage and are positively 
correlated with inflammation levels. Another study confirmed that increased expression of IL-1β is closely associated 
with smoking in both smokers and non-smokers from healthy populations.31

Further exploration of the core genes revealed that they are enriched in the chemokine and the MAPK signaling pathway, 
which is persistent in previous studies.32,33 The MAPK is critical in the physiological and pathological development of 
COPD by activating key TFs and inducing the expression of cytokines and chemokines. Immune cell infiltration scoring has 
elucidated the correlation of core genes with immune cells, including mast cells, CD4+ T cells, and dendritic cells, which 
aligns closely with previous research.12,34–36 This provides a reference for subsequent treatment strategies and mechanistic 
explorations for COPD. Predictions of drugs, miRNAs, and TFs indicated various antibiotics, antibodies, and chemotherapy 
agents that could intervene with the core genes. However, no related drugs were predicted for GCLM, representing 
a potential direction for future research. Currently, using antioxidants in clinical settings primarily revolves around various 
expectorants, which, although they can improve and delay acute exacerbations of COPD, whether this effect is due to the 

Figure 10 (a) Drug prediction affecting core genes; (b) Prediction of miRNAs regulating core genes; (c) Predicting transcription factors that regulate core genes.
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mitigation of OS still requires further investigation.37,38 Consequently, it is necessary to develop new antioxidants or targeted 
drugs to provide new options for the clinical treatment of COPD. We predicted 33 miRNAs related to COPD, such as miR- 
203a-3p, which is highly expressed in patients with COPD and smokers and is associated with basal cell proliferation.39 The 
miR-221-3p can alleviate cell apoptosis and inflammatory responses in COPD.40 Among TFs and NF-κB, a dimeric TF 
involved in inflammation, immune response, and cell proliferation belongs to the Rel protein family. Another member of this 
family, RelA, was also predicted, and both are implicated in regulating genes involved in the COPD process, a mechanism 
that has been confirmed in past studies.41,42 The diagnostic model constructed based on the core genes demonstrated high 
accuracy and sensitivity in distinguishing patients from controls in both training and validation datasets. Additionally, 
attempts to use this model to differentiate between smokers and non-smokers among healthy individuals demonstrated high 
accuracy, which might be linked to the OS induced by smoking. Therefore, this model may have clinical value for diagnosing 
COPD and the potential for early screening of the disease.

Conclusion
In this study, we utilized bioinformatics tools to identify five genes highly associated with OS during COPD progression. We 
comprehensively unveiled the relationship between these genes and the disease, along with their potential for clinical application 
translation through subsequent in-depth analysis of MFs, BPs, immune infiltration, drug predictions, miRNAs, and TFs, as well 
as the construction of a diagnostic model. However, further experimental validation is still required to clarify the OS functions 
related to COPD, including the mechanisms of many upstream regulatory miRNAs that remain undefined. Moreover, the 
function of this diagnostic model to differentiate between smokers and non-smokers still needs further confirmation and 

Figure 11 Establishment and validation of LASSO regression model; (a) 10 fold cross validation chart; (b) Regression coefficient path diagram; (c) Training set ROC curve; 
(d) Training set confusion matrix.
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validation. Overall, while the steps in this study were relatively comprehensive, there are shortcomings, such as the small sample 
size of the dataset and the limited number of OSRGs identified. Nonetheless, the high sensitivity and accuracy of the model 
provide new references for COPD clinical diagnosis and offer direction for subsequent research and the development of related 
pharmaceuticals.
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