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Abstract: Radiomics received a lot of attention because of its potential to provide personalized medicine in a non-invasive manner, 
usually focusing on the analysis of the entire lesion. A new method called habitat can identify subregional phenotypic changes within 
the lesion, thereby improving the ability to distinguish heterogeneity. The clustering method can be applied to multiple measurement 
parameters to separate different tumor habitats by segmentation. A data-driven repeatable voxel clustering method to identify 
subregions reflecting live tumors will be valuable for clinical diagnosis and further treatment. In this review, we aim to briefly 
summarize the widely used cluster analysis algorithms in subregion segmentation and the application of habitat analysis in tumor 
imaging. By analyzing many literatures, the commonly used K-means algorithm and other algorithms such as hierarchical clustering 
and consensus clustering are summarized. By identifying intratumoral heterogeneity, the key findings of habitat analysis in oncology 
are described, such as tumor differentiation, grading, and gene expression status. The latest progress and innovations in predicting 
tumor therapeutic effects and prognosis using habitat analysis are reviewed, including multimodal imaging data fusion, integration 
with artificial intelligence technologies, and non-invasive diagnostic methods. The limitations and challenges of habitat analysis in 
tumor imaging are also discussed, such as dependence on image quality and imaging techniques, insufficient automation and 
standardization, difficulties in biological interpretation, and lack of clinical validation. Finally, future directions for increasing the 
level of automation and standardization of habitat analysis to improve its accuracy and efficiency and reduce reliance on expert 
intervention are proposed. Habitat analysis represents a significant advancement in radiomics, offering a nuanced understanding of 
tumor heterogeneity. By leveraging sophisticated clustering algorithms and integrating multimodal imaging data, habitat analysis has 
the potential to transform clinical decision-making, enabling more precise diagnostics and personalized treatment strategies, ultimately 
advancing the field of precision medicine. 
Keywords: habitat, cluster analysis, tumor imaging, K-means, radiomics

Introduction
Radiomics refers to the use of advanced imaging technologies and computational methods to extract and analyze a large 
number of quantitative features from medical images (such as CT, MRI, PET, etc), in order to reveal the heterogeneity 
and underlying biological information of the entire lesion (especially tumors), thereby providing support for disease 
diagnosis, prognosis assessment, and monitoring of treatment response. As the importance of tumor microenvironment 
and its impact on cancer progression and treatment response have been confirmed,1,2 an emerging method that can better 
quantify intra-tumor heterogeneity, namely habitat, has received increasing attention.3–5 Habitat analysis can classify 
tumors into subregions containing voxel clusters with similar characteristics, and personalize subregions.6,7 It usually 
involves a variety of imaging techniques, including magnetic resonance imaging (MRI), positron emission tomography 
(PET), computed tomography (CT), etc., and their combination use, such as PET/CT and MRI/CT.8–10 In recent years, 
habitat analysis has been widely used in the medical field, especially in the field of tumor imaging, and there have been 
a lot of research work on tumor identification, grading, expression, tumor prognosis assessment, therapeutic effect 
monitoring, and therapeutic resistance analysis.11,12 Jiaqi Li et al developed ITH score, which quantifies intra-tumor 
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heterogeneity (ITH) of non-small cell lung cancer (NSCLC) by integrating local radiomic features and global pixel 
distribution patterns, which is helpful for tumor classification.13 Wu, Hao et al conducted a habitat analysis of PET/CT 
images to predict the Ki-67 status in high-grade serous ovarian cancer and to explore the stratification effect of this model 
on progression-free survival (PFS) in ovarian cancer patients. These studies demonstrate the application of habitat 
analysis in the study of tumor heterogeneity, where both the inter-tumor heterogeneity between different lesions and the 
intra-tumor heterogeneity within the same lesion are crucial for patient prognosis. This represents a significant challenge 
in the field of individualized and precise cancer treatment, providing important scientific evidence for the diagnosis and 
treatment of tumors. As a non-invasive analytical method, habitat analysis may provide an alternative to traditional 
biopsy to reduce the risk and discomfort of patients.14 In terms of new drug development and evaluation, habitat analysis 
can help to identify specific tumor regions where drugs act, accelerate the drug evaluation process, and show great 
application prospects.15 Integrate habitat analysis with genomic data to explore the genetic and molecular characteristics 
of tumors, providing a basis for personalized treatment. The most commonly used method for regional segmentation in 
habitat analysis is the K-means clustering algorithm.16,17 In addition, other algorithms such as Consensus Clustering,18 

Hierarchical Clustering,19 Fuzzy-C-Means (FCM) clustering algorithm,20 Simple Linear Iterative Clustering (SLIC) 
algorithm,21 and Otsu thresholding method22 have also been applied in scientific research. Each method has its specific 
application scenarios and advantages, and researchers select the appropriate clustering technique based on the character-
istics of the data and the research objectives. In the rapid development of habitat analysis research, there are also many 
challenges: the first is the standardization of technology; the second is model validation and generalization;23 in addition, 
the reproducibility and repeatability of radiomics features are the main challenges in the field, affecting the reliability and 
effectiveness of the models;24 the transformation of habitat analysis from research to clinical practice needs to overcome 
multiple barriers, including technical, ethical, and legal ones. In this brief review, our goal is to summarize the research 
progress, application prospects, and challenges of habitat analysis in the field of tumor imaging in recent years.

Habitat Imaging Model Algorithm
Subregion segmentation is an image analysis technique that reflects the internal heterogeneity of tumors by partitioning 
tumors into multiple subregions.25 Each subregion may have different biological characteristics and therapeutic 
responses.8 Subregion segmentation can be based on different image features (such as density, signal strength, texture, 
count or SUV, etc), which can be achieved by manual segmentation26,27 or by various algorithms (such as cluster 
analysis).28 In tumor habitat analysis, cluster analysis is used to group similar voxels together, which helps to identify 
subregions with similar biological characteristics within tumors and quantify significant regional changes in tissues after 
treatment.29 Ruili Wei et al used the K-means clustering algorithm to cluster four habitats (H1, H2, H3, and H4) to 
identify subregions with similar biological characteristics within tumors.30 In the study to evaluate the early response and 
prediction results of OPSCC in oropharyngeal squamous cell carcinoma, a robust consensus clustering method was used 
to divide the primary tumor and the involved lymph nodes into subregions based on 18F-FDG PET and comparative CT 
imaging.21 Tumor habitats may be characterized by different cell density, vascular distribution and metabolic activity. 
This research method can help to improve the description of tumor heterogeneity and provide a new perspective for the 
precise treatment of tumors. In this section, we illustrate some emerging applications of cluster analysis methods in tumor 
habitat analysis.

K-means Clustering Algorithm
In the field of habitat analysis, K-means clustering algorithm plays a key role. The general process includes initialization, 
that is, K data points are randomly selected as the initial clustering center; Each data point is assigned to the nearest 
cluster center to form K clusters; Calculate the average of all points in each cluster; Repeat the assignment and update 
steps until the cluster center no longer changes or a predetermined number of iterations is reached; Indicators such as 
contour coefficient and Calinski-Harabasz index were used to evaluate the clustering effect.31 K-means algorithm is 
simple and efficient, suitable for large-scale data sets, and provides an effective automated method for habitat analysis. It 
has been widely used in various medical image analysis, especially in tumor imaging and radiomics research, showing 
many characteristics and advantages.32 First, the K-means algorithm can automatically divide tumors into multiple 
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subregions according to their image features (such as signal intensity, texture, etc). The imaging features of these 
subregions help to reveal the heterogeneity within tumors, which is very important for understanding the biological 
characteristics of tumors and predicting clinical outcomes. Second, K-means clustering can improve the performance of 
the model by extracting the features of different subregions of the tumor. Third, K-means clustering provides a more 
objective and repeatable way to define tumor subregions without relying on manual segmentation by subjective expert 
judgment; Fourth, K-means clustering can achieve multi-parameter and multi-sequence fusion, which helps to capture 
tumor features from different angles and enhance the generalization ability of the model. Fifth, K-means clustering can 
be compatible with advanced imaging techniques to extract deeper tumor features through combined use.33 At the same 
time, K-means clustering algorithm also faces many challenges: for very large data sets, it may require a lot of computing 
resources and time; It is sensitive to noise and outliers, which may affect the quality of clustering results. The 
interpretability of clustering results may be limited, especially if the clustering lacks a clear physical meaning.34 To 
sum up, K-means clustering algorithm has been widely used in many fields due to its high efficiency, and its advantages 
and characteristics make it a valuable tool in radiomics research. However, there are also some challenges, especially 
when dealing with complex data structures and high-dimensional data. Future research may focus on improving the 
algorithm’s stability, adaptability, and interpretability.

Otsu Threshold Method
Otsu method is a technique based on image threshold segmentation, which is used to automatically divide an image or 
data set into background and foreground. This technology determines the optimal threshold by maximizing inter-class 
variance or minimizing intra-class variance, so that the difference in grayscale values between the foreground and 
background after segmentation is maximized, while the grayscale differences within each part are minimized. Otsu 
threshold method is a dynamic threshold segmentation algorithm, it divides the image into two parts according to the 
gray level of the image, and finds a suitable gray level as the threshold by calculating the variance, and then divides the 
image. This method is simple, efficient and insensitive to parameter selection. It is especially suitable for threshold 
segmentation and simple binary classification in image processing. Many scholars used the Otsu sectionalized method to 
divide the region of interest (ROI) of glioma.35,36 In this way, the high and low expression clusters of each map are 
obtained. By defining each possible cluster combination as a distinct habitat, spatial habitat maps are then drawn in each 
patient’s image. However, threshold-based approaches have limitations.

Other Cluster Analysis Methods
In cluster analysis methods, in addition to K-means clustering algorithm, Beig, Niha et al. In this study, hierarchical 
clustering algorithm was used to perform cluster analysis on Differentially Expressing Genes (DEGs).37 Hierarchical 
clustering does not require the number of clusters to be specified in advance; it organizes the data by building a cluster 
hierarchy. It can be condensed (starting with a single data point and gradually merging into clusters) or split (starting with 
all data points as a cluster and gradually splitting into a single data point). This algorithm can provide a hierarchical view 
of the data; For large data sets, the computational complexity is high, and it is suitable for scenarios where small and 
medium-sized data sets and data hierarchy are required. Some studies have mentioned the use of consensus clustering to 
identify tumor subregions.38 Consensus clustering is a robust clustering method that determines the final clustering result 
by randomly resampling the data several times and performing the clustering, calculating the consistency between 
different clustering results. Consensus clustering is insensitive to initial conditions. Can identify the inherent cluster 
structure in the data; Due to the need to repeat the clustering process many times, the calculation cost is high, and it is 
suitable for scenarios requiring high stability and reliability of clustering results, such as gene expression data analysis. In 
addition, Parra, N Andres et al mentioned in their research the use of Fuzzy-C-Means clustering algorithm to process 
DCE-MRI data.20 Tabassum, Mehnaz et al mentioned NMF (Non-negative Matrix Factorization) as a clustering method 
in their research.39 Kazerouni, Anum et al mentioned the clustering algorithm for multi-parameter voxel data from DW- 
MRI and DCE-MRI.40 Wu, Jia et al mentioned the use of Simple Linear Iterative Clustering (SLIC) algorithm to conduct 
super pixel segmentation of CT scan and 18F-FDG PET imaging data.21 These clustering methods have their specific 
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application scenarios, each has its own advantages and limitations, which method to choose depends on the specific data 
characteristics and analysis objectives.

Future Feasible Directions
In response to the limitations of the K-means clustering algorithm, future research should focus on improving the 
stability and adaptability of the algorithm. For instance, by introducing noise handling mechanisms and optimizing 
initialization methods, the algorithm’s capability to process complex data structures and high-dimensional data can be 
enhanced. Concurrently, exploring new clustering effectiveness evaluation indicators to enhance the interpretability of 
clustering results is essential. The integration of multimodal data from various imaging techniques (such as MRI, PET, 
CT, etc) is also a significant direction for future development. By developing more advanced fusion algorithms to capture 
tumor features from different perspectives, a more comprehensive revelation of the biological characteristics of tumors 
can be achieved. For example, leveraging deep learning technology to realize automatic feature extraction and fusion of 
multimodal data can improve the accuracy and generalization ability of models.

Habitat Analysis
Tumor heterogeneity refers to the differences in genotype and phenotype of cells within the tumor, which has an 
important impact on the prognosis and treatment response of the tumor. Tumor heterogeneity exists not only between 
different lesions (inter tumor heterogeneity), but also between different cells within the same lesion (intra tumor 
heterogeneity),41 which is a major challenge in the field of precision cancer therapy and brings great difficulties to the 
individualized treatment of tumors. We are concerned about the application of habitat analysis in tumor imaging.42 These 
applications demonstrate the potential of habitat analysis in oncology research and clinical practice, including tumor 
diagnosis, classification, prognostic assessment, treatment response monitoring, and the development of personalized 
treatment strategies. In scientific research, after completing subregional segmentation with habitat analysis, it is necessary 
to carry out feature extraction, selection, model establishment and evaluation. Radiomics and machine learning methods 
are often used to achieve these operations. Wang, Xinghao et al used LIFEx software and ITK-SNAP tool to extract 
features, Pearson correlation coefficient (PCC), principal component analysis (PCA), Lasso regression and other methods 
for feature selection, and used common classifiers. Including support vector machine (SVM), logistic regression (LAD), 
decision tree, random forest and naive Bayes algorithm to build the model. Models with high AUC values and strong 
generalization ability are selected from different models to be included in the final model selection. Kaplan-Meier 
survival curve and K-M test were used to evaluate the model’s ability to predict progression-free survival. Decision curve 
analysis (DCA) was performed to evaluate the classification and predictive power of different models, as well as the 
predictive power of patient outcomes. These steps develop and validate a PET/CT image-based radiomic model for 
predicting Ki-67 status in high-grade serous ovarian cancer (HGSOC) and explore the stratification effect of this model 
on progression-free survival (PFS) in ovarian cancer patients.43 In this mini-review, we summarize the key findings, 
challenges, and future directions of habitat analysis by analyzing multiple articles.

Evaluation of Tumor Heterogeneity, Classification of Tumor Subtypes and Tumor 
Staging
Habitat analysis can be used to assess intra-tumor heterogeneity, including features such as metabolism, perfusion, and 
tissue diffusion, to reveal the complexity and diversity of the tumor. Park, Ji Eun et al Electrical characteristic 
Tomography (EPT), diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI) were used to identify 
and analyze different microenvironments inside tumors, namely the so-called “tumor habitat”.34 Xie, Peiyi et al Explored 
the subregional histogram features of APTw MRI and compared them with those of diffusion-weighted imaging (DWI), 
proposed a new method to predict the tumor bud (TB) grade of rectal cancer (RC). This may have important implications 
for clinical decision-making and treatment planning.44 Xu, Run et al, used the K-means clustering algorithm to categorize 
voxels from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging 
(DWI), and assigned them to three distinct spatial habitats defined based on perfusion and diffusion patterns. Studies 
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have shown that the ability to distinguish triple-negative breast cancer from non-triple-negative breast cancer can be 
improved by analyzing the multi-parameter MRI habitat and fractal characteristics of tumors, providing potential imaging 
biomarkers for clinical diagnosis and treatment.45 Some studies have found that the Metabolic Tumor Volume (MTV) 
and Total Lesion Glycolysis (TLG) in FDG PET/CT imaging are closely related to the staging of lung cancer,46 laryngeal 
cancer,47 and ovarian cancer,48 thereby providing a more comprehensive basis for the assessment of treatment response 
and survival prognosis.

Tumor Prognosis Assessment, Treatment Response Monitoring and Treatment 
Resistance Analysis
Habitat analysis can also be used to predict progression-free survival (PFS) and overall survival (OS) of patients, 
providing quantitative indicators for clinical prognosis assessment. Mu, Wei et al Study to predict the prognosis of locally 
advanced cervical cancer patients receiving chemotherapy and radiotherapy. Habitat analysis is used to monitor tumor 
response to treatment, including early response assessment and post-treatment changes.49 Lee, Da Hyun et al Studied 
whether tumor habitat on structural and physiological magnetic resonance imaging (MRI) could distinguish between 
surviving tumors and radionecrosis in brain metastases after stereotactic radiation therapy (SRS), involving treatment 
response monitoring.29 Longitudinal physiological magnetic resonance imaging (MRI) was used to analyze tumor 
habitats of brain metastases to predict tumor recurrence after stereotactic radiation therapy (SRS), involving treatment 
response monitoring and treatment resistance analysis.50

Radiogenomics Research and Non-Invasive Diagnosis
Combined with habitat analysis and genomic data, genetic and molecular characteristics of the tumor were explored to 
provide basis for personalized treatment. Beig, Niha et al Studied the Radiomic Risk Score (RRS) based on radiomic 
characteristics. Used to predict Progression-Free Survival (PFS) of Glioblastoma (GBM) patients from the tumor 
microenvironment on conventional magnetic resonance imaging (MRI). The association between these prognostic 
radiomic features and molecular signaling pathways was explored.37 Zhang, Yunfei et al, studied habitat imaging to 
predict the recurrence risk of hepatocellular carcinoma (HCC) and its surrounding microenvironment, involving non- 
invasive diagnosis.51 Wu, Jingran et al, developed a radiomic nomogram combining deep learning, radiomics and clinical 
variables to predict EGFR mutation status in patients with stage I non-small cell lung cancer (NSCLC), which is a non- 
invasive diagnostic method.52 These involve radiometric genomics studies that use image data to identify tumor features 
associated with genetic information and explore the use of non-invasive diagnostic methods in tumor evaluation. 
A study53 developed a predictive model for the KRAS/NRAS/BRAF mutation status in colorectal cancer patients 
through habitat analysis, integrating radiological features and genomic data. By analyzing the metabolic activity and 
structural characteristics within the tumor, it is possible to identify tumor subregions with specific gene mutations, 
thereby providing a basis for personalized treatment.

The Emerging Role of Habitat Analysis in the Context of Artificial Intelligence and 
Machine Learning
With the rapid development of Artificial Intelligence (AI) and Machine Learning (ML) technologies, Habitat Analysis 
can be combined with them to achieve automated feature extraction: The study by Sachpekidis, Christos et al54 

demonstrates how to use deep learning algorithms to automatically extract heterogeneous features within tumors. 
Through Convolutional Neural Networks (CNNs), researchers are able to extract high-dimensional features from multi-
modal imaging data (such as PET/CT and MRI), which can more accurately reflect the biological characteristics of 
tumors. Li, Hebei et al55 explored in their study how to use Generative Adversarial Networks (GANs) to generate high- 
quality synthetic imaging data for model training and validation. This method not only improves the generalization 
ability of the model but also reduces the need for large amounts of real data. In addition to this, it can also enhance the 
predictive power of the model. Liu, J et al56 and others have developed models for predicting tumor prognosis and 
treatment response by combining habitat analysis features with machine learning algorithms (such as random forests and 
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support vector machines). These models, validated on multiple independent datasets, have shown high accuracy and 
reproducibility.

Challenges and Limitations of Habitat Analysis
Although habitat analysis has shown great potential in multiple studies, there are still some challenges and limitations in 
the field of oncology imaging. First, the accuracy of habitat analysis is highly dependent on image quality and imaging 
techniques. Different equipment and scanning parameters may lead to variation of habitat characteristics and affect the 
consistency and repeatability of analysis results. Second, the automation and standardization of habitat analysis needs to 
be improved. Currently, many habitat analysis methods require manual intervention by experts, which limits their 
widespread application in clinical practice. In addition, the biological interpretation of habitat analysis remains 
a challenge. The association between habitat features and tumor biology is not fully understood, and further studies 
are needed to elucidate the biological significance of these features. Finally, the clinical application of habitat analysis 
requires more prospective studies to verify its predictive performance and clinical value.57,58

Future Development Directions of Habitat Analysis
In the future, the development of habitat technology will be committed to integrating various imaging techniques (such as 
MRI, PET, CT, etc) to achieve multimodal data fusion, and combining clinical data (such as pathological information, 
genomic data, etc) to deeply explore the correlation between habitat features and tumor biology, thereby providing 
a more solid basis for personalized treatment. Transitioning habitat analysis technology from the research phase to 
clinical application is a key objective for the future, which requires large-scale, diversified clinical data validation to 
assess its practical effects in tumor diagnosis, treatment response monitoring, and prognosis evaluation. Meanwhile, to 
realize the widespread application of habitat analysis, it is essential to enhance its level of automation and standardiza-
tion, develop standardized imaging protocols and analysis processes, reduce manual intervention, and improve the 
reproducibility and consistency of results.

Conclusion and Prospect
The application of habitat analysis in medical imaging has a broad prospect, which can not only provide the micro-
structure information of diseases, but also reveal the biological characteristics of diseases, and provide an important basis 
for the diagnosis, treatment and prognosis evaluation of diseases. Through the analysis of this review, we summarize the 
common methods used in habitat analysis, and see the key role of habitat analysis in improving diagnostic accuracy, 
optimizing treatment plans, and driving the development of precision medicine. The proportion of tumor types, image 
types, clustering methods, research purposes and other data in the literatures summarized are roughly summarized in 
Table 1 and Figure 1. The word cloud map showing the frequency of keywords in the table is shown in Figure 2. Future 

Table 1 Summary Table of Main Information of Literature

Study Cases Tumor Image 
Type

Methods Clustering Features Sub- 
region

Purpose

Xinghao Wang et al (2022)43 161 High-grade serous ovarian cancer 18F-FDG  
PET/CT

Otsu SUV 2 Biomarker

S.Y. Jeong et al (2022)8 81 Primary Central Nervous System 

Lymphoma

MRI K-means ADC, CBV 3 Therapeutic 

response

Da Hyun Lee et al (2021)27 76 Brain metastases MRI K-means Gd-T1WI, T2WI, ADC, CBV 3 Therapeutic 

response

Shuxing Wang et al (2023)16 300 Cervical cancer MRI K-means voxel_values, entropy 3 Tumor staging

Ji Eun Park et al (2021)34 60 Glioblastoma MRI K-means EPT, ADC, CBV 5 Therapeutic 

response

(Continued)
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Table 1 (Continued). 

Study Cases Tumor Image 
Type

Methods Clustering Features Sub- 
region

Purpose

Hwan-ho Cho et al (2022)23 455 Breast cancer MRI K-means Perfusion features 5 Survival

Anum S. Kazerouni et al (2022)40 86 Breast cancer MRI Hierarchical 
Clustering

Ktrans, ve, kep, ADC 3 Therapeutic 
response

Del Mar Álvarez-Torres et al 
(2020)50

184 Glioblastoma MRI Hemodynamic 
Tissue Signature

rCBVmax 4 Survival

Da Hyun Lee et al (2023)48 83 Brain Metastasis MRI K-means Gd-T1WI, T2WI, ADC, CBV 3 Therapeutic 
response

Hao Wu et al (2020)14 44 High-grade gliomas MRI Hemodynamic 

Tissue Signatures

rCBV, rCBF 4 Biomarker

Jiaqi Li et al (2022)13 1399 Non-small cell lung cancer, (NSCLC) CT Pixel clustering Radiomic features 3 Biomarker

Jia Wu et al (2020)21 162 Oropharynx 18F-FDG  

PET/CT

Consensus 

Clustering

SUV, CT_value, entropy 3 Therapeutic 

response

Yunfei Zhang et al (2023)49 264 Hepatocellular carcinoma MRI K-Means Perfusion features 4 Survival

Jingran Wu et al (2024)29 438 Non-small cell lung cancer CT K-Means Entropy, energy 3 Biomarker

Ruili Wei et al (2024)28 329 Grade 4 astrocytoma and 
glioblastoma

MRI K-Means T1WI, Gd-T1WI, T2WI,  
T2-FLAIR

4 Diagnosis

Wei Mu et al (2020)46 154 Cervical Cancer 18F-FDG  
PET/CT

Otsu SUV 2 Survival

Michele Bailo et al (2022)22 17 High-grade glioma (HGG) 18F-FDG  

PET/MRI

Otsu Perfusion features 8 Tumor 

heterogeneity

Ling Chen et al (2021)26 317 Non-small cell lung cancer, (NSCLC) 18F-FDG  

PET/CT

Otsu SUV, CT_value, entropy 5 Diagnosis

Jia Wu et al (2018)4 246 Breast Cancer MRI Spectral Clustering Perfusion features 3 Survival

Seung Won Choi et al (2020)19 200 Glioblastoma MRI Consensus 

Clustering

Radiomic features 3 Tumor 

heterogeneity

R. Verma et al (2022)26 150 Glioblastoma MRI Manual 

segmentation

Manual segmentation 3 Survival

Beig et al (2020)37 203 Glioblastoma MRI Manual 

segmentation

Manual segmentation 3 Survival

Ruchika Verma et al (2020)27 156 Glioblastoma MRI Manual 

segmentation

Manual segmentation 3 Survival

Hongyue Zhao et al (2024)10 62 Colorectal Cancer 18F-FDG  

PET/CT

Otsu SUV 3 Biomarker

Fangzeng Lin et al (2024)9 416 Esophageal Squamous Cell Carcinoma CT Hierarchical 

Clustering

CT-derived multiparametric 

features

3 Therapeutic 

response

Huang et al (2024)30 233 Lung metastases CT K-means Radiomic features 3 Therapeutic 

response

Run Xu et al (2024)45 142 Non-Triple-Negative Breast 
Carcinoma

MRI K-means ADC, Perfusion features 3 Biomarker

Weimin Caii et al (2024)58 246 Non-small cell lung cancer (NSCLC) CT K-means CT_value, entropy 5 Therapeutic 
response

Guan-Hua Su et al (2023)39 1991 Breast cancer MRI Similarity Network 
Fusion

Radiomic features 2 Tumor 
heterogeneity

Yu et al (2024)41 1795 Renal lesions CT Gaussian Mixture 

Model

Radiomic features 8 Diagnosis

Peiyi Xie et al (2024)44 74 Rectal adenocarcinoma MRI K-means APTw, ADC 5 Tumor staging
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research should focus on addressing existing challenges and driving innovation and clinical application of habitat 
analysis techniques to enable more precise disease management and patient care.

Through the above summary, we recognize the important role of habitat analysis in medical imaging diagnosis and 
treatment. It provides a new perspective for the diagnosis, prognosis assessment, and monitoring of treatment responses 
of tumors by accurately identifying intratumoral heterogeneity. It can not only reveal the complexity and diversity of 
tumors but also combine multimodal imaging techniques and genomic data to provide a solid basis for the development 
of personalized treatment strategies. In the future, with the optimization of algorithms, integration of multimodal data, 
and the advancement of automation and standardization, habitat analysis is expected to play a greater role in clinical 
practice, promote the development of precision medicine, and bring more precise and effective treatment plans to 
patients.

Future research should aim to increase the level of automation and standardization of habitat analysis to reduce 
reliance on expert intervention and improve its applicability in different clinical Settings. Combining multimodal image 
data with artificial intelligence techniques such as deep learning is expected to further improve the accuracy and 
efficiency of habitat analysis.At the same time, the integration of habitat analysis with clinical data, such as pathological 

Figure 1 Literature main information pie chart. In the literature listed: (A) the proportion of each type of image, of which MRI was the highest, followed by CT; (B) Among 
the various cluster analysis methods used, K_means accounts for the largest proportion, followed by Otsu; (C) The main objectives of this study were Therapeutic 
response/ survival/ biomarker, etc. (D) Among the tumor types involved, Glioblastoma/ Breast Cancer/ Non-small cell lung cancer, (NSCLC). Account for a large proportion.
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information and genomic data, will contribute to a more comprehensive understanding of the biology of diseases and 
promote the development of precision medicine. In addition, the application of habitat analysis in other disease areas, 
such as cardiovascular disease and inflammatory diseases, also deserves further exploration.
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