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Background and Aim: The rapid advancement of nanotechnology has opened new avenues for biomedical applications, particularly 
in antimicrobial, anti-inflammatory, and anticancer therapies. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant 
extracts offers an eco-friendly and biocompatible alternative to traditional chemical methods. This study explores the synthesis of 
ZnO-NPs using Syzygium aromaticum (clove) bud extract (CBE) and evaluates their multifaceted biomedical potential, including 
anticancer, antibacterial, and anti-inflammatory properties.
Methods: Clove bud extract-zinc oxide nanoparticles (CBE-ZnO-NPs) were synthesized and characterized using scanning electron 
microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), dynamic light 
scattering (DLS), and Brunauer-Emmett-Teller (BET) analyses to confirm their size, morphology, elemental composition, and surface 
properties. The anticancer efficacy was tested against tongue carcinoma (HNO-97) cells using the sulforhodamine B (SRB) assay. 
Antibacterial activity was assessed against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus, 
while anti-inflammatory potential was evaluated using a mouse macrophage cell line (RAW 264.7).
Results: The SEM analysis confirmed a non-uniform shape of ZnO-NPs, while FTIR revealed functional groups responsible for 
stabilization and bioactivity. DLS measurements indicated an average particle size of 249.8 nm with a zeta potential of −3.38 mV, 
ensuring moderate colloidal stability. BET analysis demonstrated a high porosity (30.039 m²/g) and a mean particle size of 19.52 nm. 
CBE-ZnO-NPs exhibited moderate anticancer activity against tongue carcinoma cells (IC50 > 100 µg/mL), potent antibacterial activity 
(MIC = 62.5–125 μg/mL), and anti-inflammatory effects (IC50 = 69.3 µg/mL).
Conclusion: This study highlights the potential of CBE-ZnO-NPs as a promising multi-functional nanomaterial with potent 
antibacterial, anticancer, and anti-inflammatory properties. The findings pave the way for further exploration of ZnO-based nanother-
apeutics in biomedical applications, particularly in cancer therapy, infection control, and inflammatory disorders.
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Introduction
The field of nanotechnology is rapidly advancing, particularly in the synthesis of nanoparticles derived from natural 
sources.1,2 This approach has the potential to revolutionize several industries, particularly in biomedicine and environ-
mental applications.3,4 The shift toward utilizing sustainable, environmentally friendly, and cost-effective natural 
resources to produce nanoparticles offers numerous advantages, particularly in biological and medical applications 
where purity and safety are of utmost importance. Plant-derived nanoparticles, due to their non-toxic nature and ease 
of disposal, are becoming increasingly favored compared to those produced through traditional physicochemical 
methods.5 This green synthesis not only enhances the stability and efficacy of nanoparticles but also provides 
a sustainable alternative to conventional chemical manufacturing, which often requires harmful stabilizers and solvents. 
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Despite these benefits, the rate of synthesis of nanoparticles through biological means has not yet surpassed that of 
traditional methods,6 highlighting an area of continued research for optimizing production processes.

Among the various metallic nanoparticles, zinc oxide nanoparticles (ZnO-NPs) have garnered significant attention 
due to their versatility, stability, and broad-spectrum biomedical applications, including antimicrobial, anticancer, and 
anti-inflammatory activities.6–9 ZnO-NPs are widely utilized in drug delivery systems, diagnostics, biosensors, and 
therapeutic formulations owing to their low toxicity, high surface area, and ability to generate reactive oxygen species 
(ROS), which disrupt pathogenic microorganisms and cancerous cells.10,11 While traditional ZnO-NP synthesis relies on 
physical and chemical techniques, these methods often involve toxic stabilizers, harsh reaction conditions, and environ-
mental concerns.12 Consequently, the transition to “green synthesis” of ZnO-NPs using plant extracts has emerged as 
a promising alternative, offering enhanced biocompatibility and reducing toxic byproducts.13,14 Despite the well- 
documented biological activities of ZnO-NPs, there remains a pressing need for further investigation into their anti- 
inflammatory and anticancer mechanisms, particularly when synthesized using bioactive-rich plant extracts.15,16

The increasing prevalence of antimicrobial resistance and the urgent need for novel therapeutic agents have 
accelerated research into medicinal plants as a source of bioactive compounds.17 Plants possess diverse phytochemicals 
with antimicrobial, anticancer, and anti-inflammatory properties, which, when integrated into nanoparticle synthesis, can 
significantly enhance the biological potential of the resulting nanomaterials.18,19 Among these medicinal plants, Syzygium 
aromaticum (clove) has demonstrated remarkable pharmacological properties due to its rich composition of bioactive 
compounds, including eugenol, flavonoids, tannins, and terpenoids.20,21 Clove extract has been widely recognized for its 
potent antimicrobial, antioxidant, and anti-inflammatory effects, making it an ideal candidate for the green synthesis of 
ZnO-NPs.22,23 The unique phytochemical profile of clove not only stabilizes the nanoparticles during synthesis but also 
functionalizes ZnO-NPs with additional therapeutic properties, thereby enhancing their biomedical efficacy.24

The antibacterial activity of ZnO-NPs has been extensively documented, with studies demonstrating their ability to 
disrupt bacterial membranes, inhibit enzymatic pathways, and induce oxidative stress, leading to bacterial cell death.25,26 

Prior research has indicated that reducing the size of ZnO-NPs enhances their antibacterial efficacy, as smaller nanoparticles 
exhibit increased surface reactivity and stronger interactions with microbial cells.27 Reports have shown that ZnO-NPs 
effectively eliminate Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus, underscoring 
their potential as alternative antimicrobial agents.7,9,10 While numerous studies have examined the antibacterial activity of 
ZnO-NPs, fewer investigations have explored the therapeutic implications of ZnO-NPs in cancer treatment and inflammation 
modulation, particularly when synthesized using biofunctionalized plant extracts.28 The interaction between biosynthesized 
ZnO-NPs and cancerous cells remains an area of ongoing research, as ZnO-NPs can induce apoptosis, inhibit tumor growth, 
and modulate cellular oxidative stress, making them promising candidates for nanomedicine applications.29–31

Despite recent investigations into the biosynthesis of ZnO-NPs using clove bud extract (CBE),22 their full therapeutic 
potential remains largely unexamined, particularly concerning their anti-cancer, antibacterial, and anti-inflammatory 
effects. Given the increasing global demand for biocompatible and multi-functional nanomaterials, the present study aims 
to biosynthesize and characterize ZnO-NPs using Syzygium aromaticum bud extract (CBE-ZnO-NPs) and systematically 
evaluate their antimicrobial, anticancer, and anti-inflammatory properties. Unlike previous studies that have primarily 
focused on antimicrobial applications, this research specifically examines the effects of CBE-ZnO-NPs on tongue 
carcinoma (HNO-97) cells, their potential role in inflammation suppression, and their bacterial inhibition mechanisms. 
The novelty of this study lies in its integrated exploration of multiple therapeutic applications of biosynthesized CBE- 
ZnO-NPs, paving the way for safer and more effective nano-based treatments in oncology, infection control, and 
inflammatory disorders. These findings will contribute to the advancement of plant-derived nanomaterials as potential 
next-generation biomedical agents, offering a sustainable and biocompatible alternative for clinical applications.

Materials and Methods
Bacterial and Cell Line Culture
The bacterial strains Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa 
ATCC 9027, and Bacillus cereus ATCC 9634 were obtained from Nawah Scientific Inc. (Mokatam, Cairo, Egypt). 
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These strains were cultured in 100 mL of tryptic soy broth (TSB) composed of casein peptone (1.7 g), soy peptone (0.3 
g), sodium chloride (0.5 g), dipotassium hydrogen phosphate (K₂HPO₄, 0.25 g), and dextrose (0.25 g). The cultures were 
incubated at 37 °C for 24 hours to assess the antimicrobial activity of the biosynthesized CBE-ZnO-NPs. Ciprofloxacin 
and gentamicin (Oxoid, United Kingdom) were used as positive control antibiotics for comparison.

The HNO-97 and mouse macrophage (RAW 264.7) cell lines (Nawah Scientific Inc., Mokatam, Cairo, Egypt) were 
also used in this study. The HNO-97 cell line, derived from oral squamous cell carcinoma (OSCC),32 is widely used as an 
in vitro model to evaluate anticancer potential, particularly for assessing the cytotoxic effects of nanoparticles on OSCC. 
The HNO-97 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich, Merck Millipore)33 

supplemented with 100 units/mL penicillin, 100 µg/mL streptomycin (Oxoid, United Kingdom), and 10% heat- 
inactivated fetal bovine serum (FBS; Thermo Fisher Scientific, Gibco™ Brand). The cells were incubated in 
a humidified atmosphere containing 5% (v/v) CO₂ at 37 °C for 24 hours to ensure optimal growth conditions. 
Similarly, the RAW 264.7 cell line, derived from BALB/c mice, is a well-established in vitro model for macrophage 
research. The RAW 264.7 cells were cultured in DMEM supplemented with 10% FBS, 4 mm L-glutamine, 1 mm sodium 
pyruvate, and 4.5 g/L glucose.34,35 The cells were seeded in a 96-well microplate and incubated under the same 
conditions (37 °C, 5% CO₂) for 24 hours before further experimental procedures.

Preparation of Aqueous Extract from Syzygium Aromaticum
The collected clove (Syzygium aromaticum) buds were identified by Prof. Dr. Dalia A. Ahmed at Botany Department and 
the corresponding herbarium specimen was deposited in the Tanta University Herbarium (TANE) under the accession 
number TANE-14307. To prepare the CBE, dried clove blossoms were finely ground using an electric grinder. The 
grinding process was conducted in short pulses to prevent excessive heat generation, which could degrade the bioactive 
compounds.36–38 The powdered clove buds were then mixed with sterile distilled water at a 1:10 (w/v) ratio and gently 
simmered for 10 minutes to facilitate the extraction of bioactive components. The mixture was subsequently filtered to 
remove solid residues and allowed to cool at room temperature, yielding the CBE. The extract was stored under 
controlled conditions for further use.

Biosynthesis of CBE-ZnO-NPs
To synthesize CBE-ZnO-NPs (Supplementary Figure 1), 5 mL of clove bud extract (CBE) was mixed with 95 mL of 0.01 
M zinc acetate dihydrate solution (Zn(CH₃COO)₂.2H₂O) in sterile distilled water. The mixture was continuously stirred 
at 70°C for 1 hour, and the pH was adjusted to approximately 8 using 0.1 M NaOH to facilitate nanoparticle formation. 
The appearance of a granular brown precipitate during the reaction indicated the successful synthesis of ZnO-NPs.39 The 
synthesized CBE-ZnO-NPs were then transferred to large glass Petri plates and allowed to dry overnight at 60°C to 
achieve complete desiccation, resulting in a dry powder for further evaluations.36,37

Phytochemical Analysis
To analyze the phytochemical composition of the CBE, a methanolic extract was prepared. Dried clove buds were finely 
ground, and 200 mL of methanol was added for maceration, allowing the mixture to soak overnight to facilitate the 
extraction of bioactive compounds. The mixture was then filtered, and the residual solid material underwent a second 
round of maceration in methanol for one hour, followed by filtration. This extraction process was repeated twice to 
ensure the exhaustive extraction of phytoconstituents.40 The final methanolic extract was concentrated and analyzed 
using gas chromatography-mass spectrometry (GC-MS) on a SHIMADZU QP2010 system (Japan), following the 
methodology previously described.41 GC-MS is widely recognized as one of the most efficient, precise, and rapid 
analytical techniques for identifying and quantifying bioactive compounds in plant extracts. The major phytochemicals 
identified in the CBE, such as phenolics, flavonoids, and terpenoids, play a critical role in the biosynthesis, capping, and 
stabilization of CBE-ZnO-NPs. These phytochemicals contain functional groups (eg, hydroxyl, carbonyl) that act as 
reducing and stabilizing agents during nanoparticle synthesis, thereby enhancing the biological properties of the resulting 
nanoparticles.
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Characterization of Biosynthesized CBE-ZnO-NPs
The biosynthesized CBE-ZnO-NPs were characterized using multiple analytical techniques to evaluate their optical 
properties, structural composition, surface morphology, particle size, surface charge, and porosity. The surface morphol-
ogy of the CBE-ZnO-NPs was analyzed using scanning electron microscopy (SEM; JEOL JSM-6390LA, Tokyo, Japan, 
EMU of Taif University) at an accelerating voltage of 20 kV. Prior to imaging, the nanoparticles were coated with a thin 
layer of gold using a Cressington Sputter Coater (108 Auto, thickness controller MTM-10, UK) for 10 minutes to 
enhance conductivity and prevent charging effects during SEM analysis.

The elemental composition of the synthesized CBE-ZnO-NPs was determined using EDX analysis (JEOL 6390LA). 
The EDX analysis was performed under the following acquisition conditions: accelerating voltage of 20.0 kV, process 
time and mode set to PHA Mode T3, live time of 25.81 seconds, real time of 28.88 seconds, dead time of 10%, counting 
rate of 2137 counts per second (cps), and an energy range of 0–20 keV.

Fourier-transform infrared spectroscopy (FTIR; PerkinElmer, USA) was employed to identify the functional groups 
present on the surface of the nanoparticles. These functional groups play a critical role in the stabilization and capping of 
the nanoparticles during biosynthesis.2 The particle size distribution (PSD), polydispersity index (PDI), and Z-average 
diameter (nm) of the CBE-ZnO-NPs were determined using DLS measurements on a ZetaSizer Nano Series (HT), Nano 
ZS (Malvern Instruments, UK).42,43 The zeta potential of the nanoparticles was also measured using the same instrument, 
with water as the dispersing medium, to evaluate the colloidal stability of the nanoparticles.42,43

The specific surface area, pore size, and porosity of the CBE-ZnO-NPs were evaluated using the Brunauer–Emmett– 
Teller (BET) method (Quantachrome, USA).44 Approximately 0.3 g of the nanoparticles was placed in a BET analysis 
tube and degassed at 175 °C for 2 hours under nitrogen flow to remove adsorbed moisture and impurities. The 
mesoporous properties of the nanoparticles were further analyzed using the Barrett–Joyner–Halenda (BJH) method, 
which was applied to the N₂ adsorption-desorption isotherm data obtained using the Tristar 3000 system (Micromeritics 
Instrument Corp., Norcross, GA, USA).45 Additionally, the micropore area was calculated using the t-plot method, 
providing detailed insights into the structural porosity of the CBE-ZnO-NPs.

Biological Applications of CBE-ZnO-NPs
Cytotoxicity and Anti-Cancer Analysis
The cytotoxic efficacy of CBE-ZnO-NPs and their half-maximal inhibitory concentration (IC₅₀) were evaluated in RAW 
264.7 and HNO-97 cell lines using the SRB assay.46 Briefly, cells were seeded at a density of 5 × 10³ cells per well in 96- 
well plates containing Dulbecco’s Modified Eagle Medium (DMEM) and incubated for 24 hours at 37°C in a humidified 
atmosphere with 5% CO₂. After incubation, the cells were treated with 100 μL of media containing varying concentra-
tions of CBE-ZnO-NPs (0.05–500 μg/mL for RAW 264.7 and 0.01–100 μg/mL for HNO-97) and incubated for 72 hours. 
Following treatment, the cells were fixed by adding 150 μL of 10% trichloroacetic acid (TCA) to each well and 
incubating at 4°C for 1 hour. After fixation, the TCA solution was removed, and the cells were washed thoroughly 
with distilled water. Subsequently, 70 μL of a 0.4% (w/v) SRB solution was added to each well, and the plates were 
incubated at room temperature in the dark for 10 minutes. The plates were then washed three times with 1% acetic acid to 
remove unbound dye and allowed to dry overnight. To solubilize the protein-bound SRB dye, 150 μL of 10 mm TRIS 
buffer was added to each well. The absorbance of the solubilized dye was measured at 540 nm using a TECAN Infinite 
F50 microplate reader (Switzerland). The IC₅₀ values of CBE-ZnO-NPs for both cell lines were calculated to determine 
their cytotoxic potential.47,48

Anti-Bacterial Activity
The bacterial strains Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa 
ATCC 9027, and Bacillus cereus ATCC 9634 were cultured on tryptic soy agar.49 The inoculum was prepared by 
incubating the plates at 37°C for 24 hours. The resulting bacterial cultures were suspended in sterile saline solution to 
achieve a final concentration of 1 × 10⁶ CFU/mL.50 For the broth microdilution assay, 100 μL of CBE-ZnO-NPs at 
a concentration of 1000 μg/mL was added to the first well of a 12-well plate. Each subsequent well was filled with 50 μL 
of Mueller-Hinton Broth (MHB; Sigma, St. Louis, MO, USA), followed by serial dilution to obtain nine different 
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concentrations ranging from 1000 to 1.953 μg/mL. To achieve a final bacterial concentration of 5.0 × 10⁵ CFU/mL, 
50 μL of the prepared inoculum was added to each well. Additionally, 50 μL of each bacterial strain suspension was 
diluted and cultured separately to confirm the inoculum density. Each plate included a growth control well (containing 
inoculated broth) and a negative control well (containing broth alone). The plates were incubated at 37°C for 24 hours. 
Ciprofloxacin and gentamicin were used as positive controls at concentrations ranging from 1000 to 1.953 μg/mL. The 
minimum inhibitory concentration (MIC) was determined as the lowest concentration of CBE-ZnO-NPs that inhibited 
visible bacterial growth. To complement the MIC results, the minimum bactericidal concentration (MBC) was also 
assessed. For MBC determination, 50 μL aliquots from wells showing no visible bacterial growth were plated onto agar 
plates and incubated at 37°C for 24 hours. The MBC endpoint was defined as the lowest concentration of CBE-ZnO-NPs 
that resulted in a 99.9% reduction in bacterial viability.50

Anti-Inflammatory Assay
RAW 264.7 cells (1 × 10⁵ cells/well) were cultured in DMEM, seeded into a 96-well microplate, and incubated for 
24 hours at 37°C with 5% CO₂. The following day, inflammation was induced in the experimental group by treating the 
cells with 1 μg/mL of lipopolysaccharide (LPS), while the control group remained untreated and received only fresh 
media. Cells were then treated with varying concentrations of CBE-ZnO-NPs (0.05, 0.5, 5, 50, and 500 μg/mL). 
Quercetin (30 μM) was used as a positive anti-inflammatory control.46,51 Nitric oxide was quantified using ELISA 
plate reader and measuring absorbance at 540 nm.52

Statistical Analysis
Data analysis was performed using GraphPad Prism 9.0. The bactericidal efficacy of antimicrobials was compared using 
one-way ANOVA. The mean and standard deviation (SD) of three independent replicates were calculated. Statistical 
significance was considered at a P-value of ≤ 0.05.

Results and Discussion
Characterization of Biosynthesized Nanomaterials
Phytochemical screening of the clove bud extract (CBE) was performed using gas chromatography-mass spectrometry 
(GC-MS), as illustrated in Figure 1. Analysis of the CBE revealed six primary compounds, which were identified and 
organized based on their elution and retention times. The major component was eugenol (C₁₀H₁₂O₂), accounting for 
45.46% of the composition, followed by eugenol acetate (42.73%), caryophyllene, palmitic acid methyl ester, oleic acid 
methyl ester, and arachidonic acid (Table 1). The chemical composition of the clove extract aligns with the eugenol-rich 
chemotype, as supported by numerous studies that have identified and quantified these components. For instance, 
Syzygium aromaticum extract from southern Brazil was reported to contain eugenol as the primary constituent 
(90.3%).53 Similarly, Egyptian clove plants were found to contain eugenol (82.84%), acetyl eugenol (6.29%), and β- 
caryophyllene (8.13%).54 In cloves collected from India, eugenol was documented as the major component, constituting 
50% of the extract.55 The variations in eugenol content and overall composition of clove extracts can be attributed to the 
geographical origin of the plant. These differences are likely influenced by biotic and abiotic factors, such as seasonal 
variations, developmental stages, plant age, and climatic conditions.55

In this study, green synthesis of ZnO-NPs was achieved using Syzygium aromaticum bud extract. Visual inspection of 
the reaction mixture confirmed the formation of ZnO-NPs. Prior to incubation, the extract appeared as a clear brown 
solution; however, upon the addition of zinc acetate (precursor), the color changed to dark brown, indicating the 
reduction of Zn²⁺ ions to ZnO-NPs37 (Figure S1). The synthesis process yielded 3.25 g of ZnO-NPs, which were 
subsequently used for further characterization and analysis. In the CBE, eugenol (45.46%) serves as a crucial stabilizing 
agent, preventing nanoparticle agglomeration and ensuring the formation of well-defined ZnO-NPs. Caryophyllene 
(8.14%) may act as a capping agent, directing the growth and morphology of the nanoparticles. Additionally, other 
components, such as eugenol acetate (42.73%), contribute to enhancing the biological activities of the synthesized 
nanoparticles. This diverse phytochemical composition enables the efficient and controlled synthesis of ZnO-NPs with 
tailored properties.22 SEM images of the biosynthesized CBE-ZnO-NPs revealed the formation of irregularly shaped 
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nanoparticles with non-uniform size distribution, as shown in Figure 2A. EDX analysis further confirmed the presence of 
zinc as the primary elemental component, along with significant amounts of carbon and oxygen on the nanoparticle 
surface (Figure 2B). The presence of carbon and oxygen is attributed to the organic compounds derived from the CBE, 
which was used as a reducing and stabilizing agent during the synthesis process.37

Table 1 Phytochemical Composition of Syzygium Aromaticum Buds Extract

Peak RT Area % MW Compound Name Molecular Formula Structure

1 13.58 45.46 164 Eugenol C10H12O2

2 15.56 8.14 204 Caryophyllene C15H24

3 17.59 42.73 206 Phenol, 2-methoxy-4-(2-propenyl)-, acetate  

(Eugenol acetate)

C12H14O3

4 19.35 0.68 304 Arachidonic acid C20H32O2

5 27.26 1.18 270 Hexadecanoic acid, methyl ester  
(Palmitic acid, methyl ester)

C17H34O2

6 30.56 0.86 296 11-Octadecenoic acid, methyl ester  

(Oleic acid, methyl ester)

C19H36O2

Abbreviations: RT, retention time; MW, molecular weight.

Figure 1 Chromatogram of Syzygium aromaticum bud extract obtained through GC-MS, illustrating the major phytochemical components.
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The distinct signals observed in FTIR arise from substance-specific molecular vibrations. FTIR spectra of the CBE and CBE- 
ZnO-NPs were recorded in the range of 400–4000 cm⁻¹ (Figure 3A and B). The FTIR spectra of CBE-ZnO-NPs exhibited several 
distinct peaks compared to the CBE extract alone (Table 2). In this regard, a broad peak at 3242 cm⁻¹ was attributed to the N–H 
stretching vibration and overlapped with the O–H stretching vibration of hydroxyl groups.56,57 Absorbance peaks at 2922 cm⁻¹ 
were consistent with C–H stretching vibrations.58 The bands observed at 1558 cm⁻¹ were assigned to C=O functional groups 
present in the samples. The peak around 1401 cm⁻¹ corresponded to C=C stretching in aromatic rings, C=O stretching in 
polyphenols, and C–N stretching of amide-I in proteins. Bands at 1341 cm⁻¹ were associated with C–H asymmetric vibrations. 
Peaks at 1192 and 1021 cm⁻¹ were identified as C–O stretching vibrations, while a peak at 752 cm⁻¹ was linked to C–H bending 

Figure 2 Photomicrograph showing the surface morphology of the biosynthesized CBE-ZnONPs by SEM (A) and the main composition on their surfaces using EDX (B).
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vibrations. A distinct absorption band at 415 cm⁻¹ confirmed the successful formation of ZnO, with the 400–600 cm⁻¹ region 
representing ZnO stretching vibrations.59 The appearance of additional absorption bands in the FTIR spectra, beyond the 
characteristic Zn-O stretching, can be attributed to several factors. One key factor is surface functionalization or adsorption. 
When nanoparticles are synthesized using plant extracts, biomolecules such as proteins, polyphenols, and flavonoids from the 
extract may cap the nanoparticle surface. These organic compounds introduce additional absorption bands corresponding to 

Figure 3 FTIR spectra of CBE (A) and biosynthesized CBE-ZnO-NPs (B), highlighting the functional groups responsible for nanoparticle stabilization and bioactivity.

Table 2 FTIR Analysis of CBE-ZnO-NPs

No Absorption Peak  
(cm−1) in ZnO-NPs

Bond/Functional  
Groups

1. 3242.78 OH stretching vibrations

2 2922.23 C-H stretching
3. 1558.02 C=C stretch in aromatic ring and C=O stretch in polyphenols

4. 1401.47 C – N stretch of amide-I in protein

5. 1341.84 C–H asymmetric vibration
6. 1192.74 C–O stretching vibration

7. 1021.29 C–O stretching vibration

8. 752.92 C–H bending vibration
9. 661.90 C- alkyl chloride

10. 575.01 Hexagonal phase ZnO

11. 415.572 ZnO
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functional groups like C=O (carbonyl), O-H (hydroxyl), C-N (amine), and C=C (aromatic rings). Additionally, ZnO nanoparticles 
often exhibit structural defects, such as oxygen vacancies or zinc interstitials, which can introduce new vibrational modes not 
present in bulk ZnO. The presence of residual water or hydroxyl groups adsorbed on the nanoparticle surface can also result in 
absorption bands, particularly in the 3300–3500 cm⁻¹ region (O-H stretching) and around 1600 cm⁻¹ (H-O-H bending). 
Furthermore, a metallic group signal at 575 cm⁻¹ in the FTIR spectrum of the synthesized adsorbent confirms the presence of 
ZnO.60 The adsorption process was facilitated by functional groups such as N–H, O–H, C=C, and C–O present in the sample.61 

Sharp peaks at 661.90 and 575.01 cm⁻¹ were attributed to C-alkyl chloride and the hexagonal phase of CBE-ZnO-NPs, 
respectively.62 The presence of various functional groups in the CBE, particularly phenolic compounds, likely facilitated the 
biological reduction of Zn²⁺ ions to CBE-ZnO-NPs. Additionally, carboxylic and phenolic acid groups played a crucial role in the 
bio-capping and stabilization of the synthesized ZnO-NPs.37

The DLS technique was used to analyze the size distribution by number and zeta potential of the biosynthesized CBE-ZnO- 
NPs. The zeta potential, which measures the surface charge of colloidal particles, is a key indicator of their stability. Colloidal 
suspensions are generally considered stable if the zeta potential exceeds 15 mV.63 As shown in the size distribution by number 
graph (Figure 4A), the average size of CBE-ZnO-NPs was 249.8 nm, indicating the presence of polydisperse, larger particles. The 

Figure 4 Particle size distribution by number (A) and zeta potential distribution (B) of CBE-ZnO-NPs, as determined by DLS.
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PSD profile of the ZnO-NPs displayed a single prominent peak with 100% intensity. The PDI of the ZnO-NPs was 0.487,64 which 
is consistent with values reported in several studies that consider PDI values below 0.5 to indicate a monodisperse system.65,66 The 
larger size of ZnO-NPs detected by DLS can be attributed to the technique’s bias toward identifying larger particles or 
aggregates.67 This bias may arise from the influence of functional groups such as carbohydrates, polysaccharides, and pectin 
adsorbed on the nanoparticles from the plant extract, which can affect the zeta potential and hydrodynamic size. The slightly larger 
hydrodynamic size observed in DLS measurements is likely due to the formation of a hydrodynamic shell around the 
nanoparticles, influenced by factors such as particle shape, surface texture, and composition.68 These results remain within 
acceptable error limits. The zeta potential of the ZnO-NPs in distilled water was measured at −3.38 mV (Figure 4B), suggesting 
that the colloidal suspension is relatively stable The negative surface charge is attributed to the binding of metabolites from the 
clove bud extract to the nanoparticles, which helps stabilize the ZnO-NPs and reduce their tendency to aggregate. This finding 
confirms the dispersive capacity of the environmentally synthesized ZnO-NPs.69

The specific surface area of the ZnO-NPs synthesized from CBE was determined using the BET method, with nitrogen 
adsorption conducted at 170 °C. Figure 5 illustrates the nitrogen adsorption-desorption isotherms for the CBE-ZnO-NPs. 
According to the IUPAC classification, the isotherm can be categorized as Type IV, and the hysteresis loops are classified as 
Type H3, which is characteristic of mesoporous materials.44 The adsorption isotherm of the synthesized ZnO-NPs showed 
a gradual increase in adsorbed volume at low relative pressures (approximately 0.06 to 0.6), followed by a sharp rise at relative 
pressures above 0.6, as depicted in Figure 5. This behavior is consistent with findings reported previously.44,70 The BET 
analysis revealed a specific surface area of 30.039 m²/g, a pore volume of 0.1446 cm³/g, and an average particle size of 19.52 
nm for the ZnO-NPs. The discrepancy between the BET results and the DLS measurements can be attributed to the rough and 
porous surface of the nanoparticles, which affects the BET analysis. Unlike DLS, which measures hydrodynamic size and is 
influenced by agglomeration, the BET method provides information on the size of non-agglomerated particles. Figure 6 shows 
the BJH pore size distribution for the synthesized CBE-ZnO-NPs. The distribution clearly indicates that the majority of pores 

Figure 5 Nitrogen adsorption-desorption isotherms of CBE-ZnO-NPs, demonstrating the mesoporous nature of the nanoparticles.
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fall within the 2–50 nm range, confirming the mesoporous nature of the material. This finding aligns with the Type IV 
adsorption isotherm and is consistent with previous studies.70,71

Biological Activities
Cytotoxicity and Anti-Cancer Activities
Green synthesis is an eco-friendly and cost-effective approach that enhances production efficiency and improves 
biocompatibility for human applications. Utilizing natural compounds for biofabrication not only stabilizes nanoparticles 
but also reduces toxicity and enhances their reduction potential. The cytotoxicity of CBE-ZnO-NPs at concentrations 
ranging from 0.05 to 500 μg/mL was evaluated on RAW 264.7 cells using the SRB assay. The results demonstrated 
a concentration-dependent reduction in RAW 264.7 cell viability, with an IC₅₀ value of 382.85 µg/mL (Figure 7). These 
findings align with the study reported that Syzygium aromaticum bud extracts significantly inhibited RAW 264.7 cell 
activation at concentrations between 50 and 200 µg/mL.72

The anticancer potential of CBE-ZnO-NPs was also assessed on HNO-97 cells using the SRB assay. The nanopar-
ticles were tested at concentrations ranging from 0.01 to 100 μg/mL, and the response of the cancer cell line was found to 
be concentration-dependent. CBE-ZnO-NPs exhibited a marginal reduction in the metabolic activity of tumor cells at 
lower concentrations, with a more pronounced decline at higher concentrations. The IC₅₀ value for CBE-ZnO-NPs on 
HNO-97 cells was determined to be 73.35 µg/mL (Figure 8). This result is comparable to the IC₅₀ value reported for 
pomegranate peel-treated cell lines but significantly lower than that of blueberry dry powder (525.38 µg/mL).73 The 
anticancer activity of CBE-ZnO-NPs is likely due to the presence of bioactive molecules from the clove extract adsorbed 
onto the nanoparticle surface, which enhance their therapeutic potential.

The dose-dependent anticancer effects of CBE-ZnO-NPs, as illustrated in Figure 8, highlight their potential as 
a promising therapeutic agent. Nanoparticles enhance bioavailability, enable targeted delivery, improve stability, and 
increase tissue-specific effects, thereby enhancing therapeutic efficacy and safety.74 ZnO is widely used in modern drug 

Figure 6 Barrett-Joyner-Halenda (BJH) pore size distribution of CBE-ZnO-NPs, showing the majority of pores within the 2–50 nm range.
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delivery systems due to its ease of synthesis, low cost, tunable structures, low toxicity, high drug-carrying capacity, and 
ability to facilitate controlled and targeted drug release.75 Porous ZnO nanostructures, such as nanotubes, nanobelts, 
nanorods, and nanocages, are particularly effective in selective drug delivery systems.76 The anticancer effect of ZnO- 
NPs is largely dependent on their ability to generate a sufficient amount of ROS, leading to DNA damage, lipid 
peroxidation, and protein dysfunction, ultimately causing cell death.77 This mechanism is facilitated by the broad 
semiconductor properties of ZnO. As a wide bandgap semiconductor, ZnO, when exposed to ultraviolet or visible 
light, undergoes electron excitation from the valence band to the conduction band, leaving behind positively charged 
holes (h⁺). These electrons and holes participate in redox reactions with oxygen and water molecules on the ZnO surface, 
resulting in the production of highly reactive ROS.77 The pro-inflammatory response and redox reactions triggered by 
ZnO-NPs contribute to apoptotic cell death.78 However, distinguishing between cancerous and normal cells remains 
a significant challenge in classifying a substance as anticancer.79 A lack of selectivity can lead to systemic toxicity. 
Notably, several studies have demonstrated that ZnO-NPs exhibit selective cytotoxicity toward cancer cells. For instance, 
ZnO-NPs have been shown to preferentially kill Jurkat cancer cells while causing minimal damage to normal 
CD4+T cells.80 ZnO-NPs exhibit 28–35 times greater cytotoxicity against malignant cells compared to normal cells.81 

This selectivity is attributed to the enhanced permeability and retention effect, which allows nanoparticles to accumulate 
preferentially in tumor tissues due to their leaky vasculature and poor lymphatic drainage. Additionally, the electrostatic 
properties of ZnO-NPs enhance their targeting efficiency toward tumor cells.75 A growing body of evidence supports the 

Figure 8 Anticancer activity of CBE-ZnO-NPs on the HNO-97 cell line, illustrating the concentration-dependent reduction in cell viability.

Figure 7 Effect of CBE-ZnO-NPs on the viability of RAW 264.7 cells, with the half-maximal inhibitory concentration (IC50) determined using the SRB assay.

https://doi.org/10.2147/IJN.S507214                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 4310

Hussien et al                                                                                                                                                                        

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



potential of ZnO-NPs as a promising anticancer agent for various types of tumor cells. Their ability to selectively target 
cancer cells while minimizing damage to normal cells makes them a valuable candidate for cancer therapy.

Antibacterial Activity and Mechanisms of Action
The antibacterial activity of CBE-ZnO-NPs was evaluated against several reference strains: Escherichia coli ATCC 8739, 
Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 9027, and Bacillus cereus ATCC 9634, at 
concentrations ranging from 1000 to 1.953 μg/mL (Figure S2). As shown in Table 3, the MIC values of CBE-ZnO- 
NPs ranged from 62.5 to 125 μg/mL, while the MBC values ranged from 125 to 1000 μg/mL. Notably, CBE-ZnO-NPs 
exhibited significant antibacterial activity against Bacillus cereus ATCC 9634 (MIC = 6.25 µg/mL, MBC = 125 µg/mL) 
and Pseudomonas aeruginosa ATCC 9027 (MIC = 125 µg/mL, MBC = 1000 µg/mL). In comparison, the positive 
controls, ciprofloxacin and gentamicin, demonstrated MIC values of less than 1.93 μg/mL and MBC values of less than 
1.95 μg/mL for all tested strains, except for Staphylococcus aureus ATCC 29213, which had a MIC of 31.25 μg/mL. 
None of the CBE-ZnO-NP concentrations exhibited greater antibacterial potential than the positive controls, which 
served as effective benchmarks (Table 3). The antibacterial activity of CBE-ZnO-NPs was dose-dependent, and these 
findings align with previous studies on biosynthesized ZnO-NPs.82

The strong bactericidal properties of CBE-ZnO-NPs are likely attributed to the bioactive compounds adsorbed onto 
their surface. These nanoparticles represent a promising alternative to conventional antibacterial agents due to their 
broad-spectrum physicochemical properties, which enable them to act through multiple mechanisms.8 As illustrated in 
Figure 9, the antibacterial activity and mechanism of action of CBE-ZnO-NPs are strongly influenced by oxidative stress. 
These include the disruption of bacterial cell membranes, interference with enzyme pathways, DNA and RNA poly-
merase inhibition, folic acid disruption, and impairment of protein synthesis.36,83 Zn²⁺ ions have been shown to reduce 
the activity of respiratory enzymes.84 ZnO-NPs can degrade bacterial cell membranes and generate ROS, such as O₂•⁻, 
H₂O₂, and OH•. These ROS can impair enzyme function, induce oxidative stress, and promote cell death by facilitating 
the uptake of Zn²⁺ ions, which further generate ROS free radicals capable of damaging DNA and cell membranes.85 

Additionally, the internalization of ZnO-NPs disrupts the energy metabolism of bacterial cells.86 The ROS generated by 
ZnO-NPs can break the chemical bonds of bacterial organic matter, contributing to their bactericidal effect. While 
negatively charged peroxides cannot penetrate the cell membrane, OH⁻ ions accumulate on the membrane surface, 
leading to its destruction. In contrast, H₂O₂ can penetrate the cell membrane, causing damage to both the membrane and 
intracellular components. The physicochemical properties of ZnO-NPs may also hinder bacterial growth by interfering 
with DNA and plasmid replication, membrane depolarization, protein leakage, structural changes, and increased 
membrane fluidity.87 These mechanisms collectively enhance the bactericidal potential of CBE-ZnO-NPs.

Anti-Inflammatory Activity
Inflammation is a complex physiological response to environmental toxins and plays a significant role in the development 
of chronic diseases.88 In this study, RAW 264.7 cells were used to evaluate the anti-inflammatory potential of CBE-ZnO- 
NPs as a therapeutic agent. As shown in Figure 10, cell viability ranged from 99.18% at 0.05 mg/mL CBE-ZnO-NPs to 
34.07% at 500 mg/mL. The anti-inflammatory activity was assessed by measuring the suppression of nitric oxide 

Table 3 Antibacterial Activity of CEB- ZnO-NPs

Tested Antimicrobials (μg/mL)Bacterial Strains

CBE-ZnO-NPs Gentamycin Ciprofloxacin

MIC MBC MIC MBC MIC MBC

Escherichia coli ATCC 8739 250 1000 <1.95 <1.95 <1.95 <1.95

Staphylococcus aureus ATCC 29213 250 1000 <1.95 <1.95 <1.95 31.25

Pseudomonas aeruginosa ATCC 9027 125 1000 <1.95 <1.95 <1.95 <1.95
Bacillus cereus ATCC 9634 62.5 125 <1.95 <1.95 <1.95 <1.95

Abbreviations: MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
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production in LPS-induced RAW 264.7 cells, with an IC50 value of 69.3 µg/mL (Figure 11). These findings indicate that 
CBE-ZnO-NPs enhance cytotoxicity in RAW 264.7 cells, thereby improving anti-proliferative capabilities. It has been 
reported that eugenol, an active compound in clover buds, exhibits significant anti-inflammatory properties.89 The 
activation of macrophages is intricately linked to various illnesses due to their central role in immune responses.90 As 
innate immune cells, macrophages primarily defend the host by performing phagocytic actions against foreign invaders.91 

When activated, macrophages amplify both acute and chronic inflammatory responses by producing excessive oxidative 

Figure 9 Proposed antibacterial action mechanism of CBE-ZnO-NPs, including ROS generation, membrane disruption, and inhibition of bacterial enzymatic pathways 
(Agreement number: ZX283CM23B).

Figure 10 Anti-inflammatory efficacy of CBE-ZnO-NPs on LPS-induced RAW 264.7 cells. (A) Control; (B–F) RAW 264.7 cells treated with varying concentrations of CBE- 
ZnO-NPs: (B) 0.05 μg/mL, (C) 0.5 μg/mL, (D) 5 μg/mL, (E) 50 μg/mL, (F) 500 μg/mL. Scale bar = 200 μm.
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stress mediators, such as ROS, nitric oxide, and inflammatory cytokines.92 Over the past few decades, nanoparticles have 
emerged as promising anti-inflammatory agents. Their unique properties, including a high surface area-to-volume ratio, 
enable them to interact effectively with biological membranes and traverse them. The nanoscale size of ZnO-NPs 
facilitates their absorption across biological membranes. Research has demonstrated that ZnO-NPs can significantly 
reduce inflammation.93 These nanoparticles exert their anti-inflammatory effects through multiple mechanisms, including 
the inhibition of myeloperoxidase, suppression of mast cell degranulation, downregulation of the NF-κβ pathway,94 

reduction of pro-inflammatory cytokine production, and decreased expression of inducible nitric oxide synthase.95

Conclusions
This study successfully demonstrates the green synthesis of ZnO-NPs using Syzygium aromaticum, showcasing their 
potential as a versatile nanomaterial with significant biomedical applications. The biosynthesized CBE-ZnO-NPs 
exhibited promising antibacterial activity against both Gram-positive and Gram-negative bacteria, with MIC values 
ranging from 62.5 to 125 µg/mL, highlighting their potential as an alternative to conventional antibiotics in combating 
microbial resistance. Furthermore, the nanoparticles demonstrated moderate anticancer activity against HNO-97 cells, 
with an IC50 value exceeding 100 µg/mL, suggesting their potential role in cancer therapy. Additionally, the anti- 
inflammatory effects of CBE-ZnO-NPs were evident in LPS-induced RAW 264.7 cells, with an IC50 value of 69.3 µg/ 
mL, indicating their ability to modulate inflammatory responses. The green synthesis approach not only enhances the 
biocompatibility and stability of the nanoparticles but also aligns with the growing demand for sustainable and eco- 
friendly nanomaterial production. The integration of bioactive compounds from clove buds, such as eugenol, into the 
nanoparticle synthesis process further enhances their therapeutic potential. This study underscores the importance of 
plant-derived nanomaterials in addressing critical biomedical challenges, including cancer, bacterial infections, and 
inflammatory disorders. Future research should focus on optimizing the synthesis process, exploring in vivo efficacy, 
and elucidating the molecular mechanisms underlying the observed biological activities. The findings pave the way for 
the development of next-generation nanotherapeutics with enhanced safety, efficacy, and environmental sustainability.
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Figure 11 Effect of CBE-ZnO-NPs on the inhibition of nitric oxide (NO) production in LPS-induced RAW 264.7 cells, demonstrating their anti-inflammatory potential.
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