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Abstract: Metabolic dysfunction-associated fatty liver disease (MAFLD), which is characterized by hepatocyte lipid accumulation 
driven by systemic metabolic dysregulation, represents a critical therapeutic challenge in the context of the global metabolic syndrome 
epidemic. The clinically recommended drugs for MAFLD mainly include antioxidants, hepatoprotective anti-inflammatory drugs, and 
weight-loss drugs. However, the mechanisms underlying the progression of MAFLD is characterized by nonlinearity, highlighting the 
urgent need for safer multi-target alternative therapies. Although existing single-target pharmacological interventions often show 
limited efficacy and adverse effects, the multi-component and multi-target nature of the active ingredients in traditional Chinese 
medicine (TCM) formulations represent new opportunities for systemic metabolic regulation. In this study, by searching PubMed and 
Web of Science, we identified 108 experimental studies. By evaluating multiple mechanisms, such as improving lipid metabolism and 
insulin resistance, alleviating oxidative stress damage, inhibiting liver inflammation, suppressing liver fibrosis, reducing endoplasmic 
reticulum stress, regulating hepatocyte autophagy, inhibiting hepatocyte apoptosis, improving mitochondrial dysfunction, and regulat-
ing the intestinal flora, we constructed a cross-scale regulatory network for the treatment of MAFLD by the active components of 
TCM. Subsequently, the dynamic target groups were screened, and a new paradigm of “mechanism-oriented and spatiotemporal- 
optimized” design for TCM compound prescriptions was proposed, providing a theoretical framework for the development of precise 
therapies that can improve liver lipid metabolism, block inflammation and fibrosis, and restore intestinal homeostasis. 
Keywords: metabolic dysfunction-associated fatty liver disease, traditional Chinese medicine, active ingredient, lipid metabolism 
disorder, action mechanism

Introduction
With the growing prevalence of obesity and metabolic syndrome, metabolic dysfunction-associated fatty liver 
disease (MAFLD) has become the main cause of chronic liver disease worldwide. MAFLD affects 30% of adults 
globally, and its incidence is greater than 40% among individuals with diabetes and severe obesity. The prevalence is the 
highest in Asia-Pacific (32–35%), followed by the Middle East and Western nations. Over 20% of the cases of MAFLD 
show progression to advanced fibrosis within a decade, and these cases show a 5-fold higher risk of hepatocellular 
carcinoma (HCC).1 Moreover, MAFLD imposes a substantial economic burden, with annual direct medical costs 
exceeding $100 billion globally, which are primarily driven by cirrhosis management and HCC treatments. This factor 
highlights the increasing demand for cost-effective treatment of MAFLD.
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MAFLD manifests as a spectrum of overlapping pathological states, including steatosis, inflammatory nonalcoholic 
steatohepatitis (NASH), fibrosis, and HCC, that progress through heterogeneous trajectories. Instead of showing a linear 
sequence, these states often coexist and interact through the crosstalk among metabolic dysfunction, oxidative stress, and 
chronic inflammation. Notably, fibrosis can develop independently of NASH in subsets of patients with specific genetic/ 
metabolic risk profiles. Importantly, persistent inflammatory injury and advanced fibrosis (F3-F4) significantly elevate the 
risk of HCC, with epigenetic reprogramming and oncogenic signaling driving malignant transformation in a subset of 
MAFLD cohorts. This continuum underscores the need for personalized therapeutic strategies targeting multifactorial 
pathways, particularly interventions capable of interrupting the steatosis-inflammation-fibrosis-carcinogenesis axis.2 The 
progression of MAFLD and its nonlinear characteristics can be represented by the flowchart shown in Figure 1.

The pathogenesis of MAFLD is influenced by many genetic and environmental factors, and is not fully understood at present. 
The conceptualization of MAFLD pathogenesis has been profoundly shaped by two landmark theories. The first of these 
theories, the “two-hit” hypothesis, proposed a sequential mechanism wherein the first hit (hepatic lipid accumulation driven by 
insulin resistance [IR] and de novo lipogenesis) primes the liver for the second hit (oxidative stress and inflammatory cascades 
triggering NASH and fibrosis). This framework revolutionized the field in the late 1990s by shifting the paradigm from passive 
lipid storage to dynamic cellular injury processes, providing the first mechanistic roadmap for therapeutic development.3 

Nevertheless, while the two-hit hypothesis yielded groundbreaking contributions, some critical limitations of this hypothesis 
gradually became evident. Clinical observations challenged its assumption of linear progression, since up to 28% of patients 
show advanced fibrosis without prior NASH, particularly those harboring PNPLA3 rs738409 polymorphisms. Subsequent 
studies demonstrated that lipid overload, mitochondrial dysfunction, and gut-derived endotoxins such as lipopolysaccharide 
(LPS) often coexist rather than follow a strict temporal sequence. Moreover, emerging evidence highlighted the role of 
extrahepatic crosstalk, wherein adipose tissue dysfunction and skeletal muscle IR independently exacerbate hepatic injury, 
mechanisms irreconcilable with the original two-step model.

These insights led to the “multiple parallel hit” theory, which emphasizes synchronized insults from metabolic 
dysregulation, epigenetic modifications, and microbiota-derived signals.4 This paradigm shift directly informs our study’s 
focus on traditional Chinese medicine (TCM) components with multiple targets, such as quercetin modulating the 
adenosine monophosphate (AMP)-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/farnesoid X receptor (FXR) path-
ways and berberine regulating proprotein convertase subtilisin/kexin type 9 (PCSK9)/nuclear factor (NF)-κB/liver 
X receptor (LXR) networks. The pleiotropic mechanisms underlying these effects inherently align with the need for 
combinatorial pathway modulation in MAFLD management.

Figure 1 The progression of MAFLD and its non-linear characteristics.Upon activation, TGF-β collaborates with Wnt/β - catenin through Smad3 to promote fibrosis. The 
inactivation of the Hippo pathway leads to the nuclear translocation of YAP/TAZ, which then activates the PI3K/AKT/mTOR pathway, accelerating tumor progression. (a) 
TGF-β/Smad, Action stages: Hepatic Fibrosis (HF). (b) Wnt/β-catenin, Action stages: Non - alcoholic Steatohepatitis (NASH), Hepatocellular Carcinoma (HCC). (c) Hippo/ 
YAP/TAZ, Action stages: HF, HCC. (d) PI3K/AKT/mTOR, Action stages: NASH, HCC. (e) Nrf2/ARE, Action stages: MAFLD, NASH.
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MAFLD was originally known as nonalcoholic fatty liver disease. In 2020, a panel of experts from 22 countries 
proposed a new definition that is internationally independent of other liver diseases, renaming this condition as MAFLD 
to more accurately reflect its association with metabolic disorders.5 The newly proposed MAFLD framework also aligns 
with the holistic approach of TCM treatment. For example, berberine simultaneously improves insulin sensitivity, 
reduces hepatic fat synthesis, and regulates gut microbiota. Current first-line therapies, such as vitamin E and pioglita-
zone, have limited efficacy and pose risks of cardiovascular complications and osteoporosis with long-term use. Although 
dietary modification and exercise remain the cornerstones of MAFLD treatment and management, 80% of patients are 
unable to adhere to lifestyle interventions for more than six months. In contrast, the multi-target mechanisms and 
formulation flexibility of TCM can synergistically regulate pathways involved in lipid oxidation, inflammation, and 
fibrosis, reducing or even eliminating the occurrence of these adverse reactions and making TCM a viable option for 
patients who have difficulty adhering to dietary control. Considering the nonlinear progression, concurrent triggers, and 
organ interactions in the pathogenesis of MAFLD, the multi-target strategy of TCM can address the complexity of 
MAFLD more effectively than single-pathway drugs, highlighting the increasing importance of the TCM paradigm in 
metabolic disease research.

A growing number of experimental studies have confirmed the advantages of the active ingredients of TCM 
formulations in preventing and improving MAFLD.6 In the present study, we used keywords such as “MAFLD”, 
“traditional Chinese medicine”, and “active ingredient” to search for relevant English-language literature published on 
PubMed and Web of Science in the past decade. The inclusion criteria covered experimental studies and studies exploring 
therapeutic mechanisms, while case reports and irrelevant studies were excluded. This study investigated MAFLD by 
reviewing data obtained through phytochemical and pharmacological experimental designs and systematically con-
structed a cross-scale regulatory network of TCM active ingredients for treating MAFLD. Subsequently, a new paradigm 
of TCM compound design, “mechanism-oriented, spatiotemporal optimization”, was proposed by screening dynamic 
target populations. This model provides a theoretical framework for the development of precision treatment modalities 
that can simultaneously improve hepatic lipid metabolism, block inflammation and fibrosis, and restore gut homeostasis.

Common Mechanisms of Action of TCM Active Ingredients in the 
Treatment of MAFLD
Numerous experimental studies have evaluated the mechanisms of action of TCM active ingredients in the treatment of 
MAFLD. Relatively stable animal models of MAFLD have been established by feeding animals high-fat diets (HFDs) or 
methionine-choline deficient (MCD) diets. The active components of TCM can antagonize the occurrence and develop-
ment of MAFLD at several interrelated levels. Their mechanisms of action are mainly related to improving lipid 
metabolism and IR, alleviating oxidative stress damage, inhibiting liver inflammation, inhibiting liver fibrosis, alleviating 
endoplasmic reticulum stress (ERS), regulating hepatocyte autophagy, inhibiting hepatocyte apoptosis, improving 
mitochondrial dysfunction, and regulating intestinal flora. The basis for classification of TCM active ingredients used 
for the treatment of MAFLD is presented in Figure 2. The mechanisms of action of these ingredients are summarized in 
the following paragraphs.

Improving Lipid Metabolism Disorders and IR
The liver is the most active organ in lipid metabolism in the body, and it participates in the digestion, absorption, 
transportation, catabolism and anabolism of fat. Disruptions in lipid metabolism may lead to increased synthesis and 
decreased breakdown of fat in the liver, and the resultant lipid overload in liver cells may eventually lead to MAFLD, 
which is closely related to IR and genetic susceptibility. Abnormal lipid metabolism, especially the metabolic imbalance 
of free fatty acids (FFA), low-density lipoprotein (LDL), triacylglycerol (TG), and total cholesterol (TC), can directly or 
indirectly lead to MAFLD.7 Therefore, targeting the overload of serum FFA, LDL, TG, TC and aspartate aminotransfer-
ase (AST) levels and increasing the production of high-density lipoprotein (HDL-C) can effectively improve liver lipid 
metabolism and reduce liver metabolic stress, thereby playing a positive therapeutic effect on MAFLD. AMPK is a key 
regulator of energy metabolism, and its phosphorylation can inhibit the biosynthesis of cholesterol, fatty acids, and 
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triglycerides, thereby reducing lipid deposition in the liver.8 Various active ingredients of TCM formulations exert 
therapeutic effects by specifically regulating the AMPK pathway, including puerarin,9 alisol a,10,11 Lonicera caerulea 
extract,12 crocin,13 dihydromyricetin (DHM),14 betaine,15 Lycium barbarum polysaccharides (LBP),16 ursolic acid,17 

Radix Hedysari polysaccharide,18 kaempferol (KAP),19 Leonurus ethanol extract,20 gardenin,21 Magnolia officinalis 
extract,22 ginsenoside Rb2,23 atractylenolide III,24 green tea extract,25 gastrodin,26 coix seed extract,27 licorice extract,28 

and Scutellaria baicalensis.29 Crucially, the components of TCM harness the spatiotemporal regulatory plasticity of 
AMPK to achieve optimized effects in different tissues. For example, ginsenoside Rb2 enhances the phosphorylation of 
the AMPKα1-Ser485 site, promoting the translocation of glucose transporter 4 (GLUT4) without triggering inflammatory 
NF-κB feedback regulation like pan-AMPK activators do. Resveratrol synchronizes the circadian oscillations of AMPK 
with the rhythms of butyrate produced by gut microbiota, enhancing lipid oxidation through co-activation with peroxi-
some proliferator-activated receptor alpha (PPARα). This multi-tiered regulatory approach, which takes advantage of the 
isoform specificity of AMPK, the diversity of phosphorylation sites, and circadian dynamics, demonstrates how the 
inherent polypharmacology of TCM can address the complexity of MAFLD, which is beyond the capabilities of single- 
target drugs.30 Chlorogenic acid (CGA) is a natural polyphenol widely found in plants. It can regulate autophagy by 
specifically binding to AlkB homolog 5 (ALKBH5) to inhibit its m6A methylase activity and improve liver lipid 
deposition in HFD-fed mice by activating AMPK.31 Panpan Liu et al used network pharmacology methods and observed 
that KAP can prevent the occurrence and development of MAFLD through multiple targets such as inhibiting 
inflammation, improving IR, and reducing oxidative stress. Through cell and animal experiments, they also confirmed 
that KAP can inhibit the inflammatory response both in vitro and in vivo by suppressing the nuclear transcriptional 
activity of NF-κB, thereby preventing the occurrence of MAFLD.32 Baicalein has been confirmed to reduce hepatic fat 
accumulation by activating AMP-AMPK and inhibiting the cleavage of sterol regulatory element-binding protein 1 
(SREBP1). This, in turn, suppresses the transcriptional activity of SREBP1 and the synthesis of hepatic fat in oleic acid- 
induced HepG2 cells and HFD-induced non-insulin-resistant mice. Moreover, baicalein can decrease TC and LDL-C 

Figure 2 Classification basis of MAFLD of active ingredients of traditional Chinese medicine *, To increase, promote, or increase;#, To reduce, inhibit, or reduce. (a) 
Improve lipid metabolism disorders and insulin resistance: AMPK, PPARα, SREBP-1c, PPAR-γ, FXR, SIRT1, PGC-1α, LXRα, PI3K, AKt. (b) Relieve oxidative stress: Nrf2/HO- 
1, GSH-Px. (c) Inhibit liver inflammation: NF-κB, TNF-α. (d) Inhibit liver fibrosis: Smad3, Smad4, HSC, COLIII. (e) Relieve endoplasmic reticulum stress: PERK, JNK, 
Endoplasmic reticulum stress signature protein. (f) Regulate autophagy of hepatocytes: mTOR, Autophagy associated proteins. (g) Inhibition of hepatocyte apoptosis: Bcl-2, 
Bax. (h) Improve mitochondrial dysfunction: Mitochondrial β oxidation, Mitochondrial respiratory chain. (i) Improve intestinal flora imbalance: Ruminococcaceae, 
Lachnospiraceae, Desulfovibrio, Dubosiella.
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levels while increasing HDL-C levels, thereby ameliorating the progression of MAFLD.33 Myricetin extracted from sea 
buckthorn can slow down the progression of MAFLD in HFD rats. Myricetin shows these effects by reducing the levels 
of TC, TG, alanine transaminase (ALT), and aspartate aminotransferase (AST) through multiple means, such as 
activating AMP-AMPK, improving the key gut microbiota system, and decreasing the levels of tumor necrosis factor 
(TNF)-α and interleukin (IL)-6 in the plasma, liver, and colon.34 In addition, regulation of the LXR and sterol regulatory 
element-binding protein 1c (SREBP1c) pathways by the components of TCM is equally crucial. The LXR is involved in 
regulating cholesterol balance, inhibiting inflammation and improving IR. Inhibition of LXR transcriptional activity can 
improve liver steatosis, reduce inflammation, and prevent the development of liver fibrosis.35 Ursolic acid,17 tanshinone 
IIA,36 and diosgenin37,38 can improve lipid accumulation in liver cells by antagonizing LXR alpha (LXRa). Leonurus 
ethanol extract can improve liver β-oxidation by upregulating the AMPK lipid metabolism signaling pathway and PPARα 
expression.20 Activation of AMPK negatively regulates SREBP-1c, thereby ameliorating lipid metabolism disorders. 
SREBP-1c, one of the components of sterol regulatory element-binding protein (SREBPs), is a key regulator of lipid and 
cholesterol metabolism in the liver, and is one of the important targets of the effective active ingredients of TCM in the 
treatment of MAFLD, such as Schisandra polysaccharides,39 alisol a,11 Sargassum fusiforme polysaccharide (SFPS),40 

Ophiopogon polysaccharide (MDG),41,42 oroxin A,43 and oroxin B.44 Acerola polysaccharides (ACPs) are a potent active 
ingredient of conifers, and the results of the study showed that ACPs inhibited liver SREBP1-c levels in mice, 
significantly improving the accumulation of liver lipid in mice fed HFD.45 IR refers to a state characterized by reduced 
efficiency of insulin in promoting glucose uptake and utilization, resulting in a compensatory state of hyperinsulinemia. 
IR plays a central role in the mechanism and development of MAFLD by triggering disorders in glucose and lipid 
metabolism in the liver, as well as chronic inflammation and oxidative stress.46 TCM ingredients such as Angelica 
polysaccharide,47 emodin,48 and silibinin49 exhibit multi-target characteristics to improve IR. Berberine (BBR) is the 
active ingredient of Coptis chinensis. BBR preferentially activates the AMPK α2 isoform by phosphorylating the Thr172 
site, suppressing SREBP-1c-mediated lipogenesis without affecting muscle glucose uptake.50 BBR may also inhibit liver 
fatty acid consumption by reducing the expression of SCD1, FABP1, CD36 and CPT1A, and activating AMPK 
phosphorylation to improve IR, thereby inhibiting lipid metabolism.51 The relevant active ingredients of TCM formula-
tions and their mechanisms of action are shown in Table 1.

Table 1 Summary of Experimental Studies on the Effects of Active Components of Traditional Chinese Medicine on the Treatment of 
MAFLD by Improving Lipid Metabolism Disorder and Insulin Resistance

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Puerarin Pueraria lobata HepG2 cells treated with 

oleic acid

Activates AMPK/PPARα → Inhibits SREBP-1c → ↓TG/TC [9]

Alisol A Alismatis 

Rhizoma

Mice fed an HFD ↑ABCA1/ABCG1 → ↓LDL-C, ↑HDL-C; Activates AMPK → 
Inhibits SREBP-1c/ACC

[10,11]

Lonicera 

caerulea extract

Lonicera caerulea Mice fed an HFD Activates AMPK/PPARα → ↑CPT-1 → ↑Fatty acid β-oxidation [12]

Crocin Saffron Crocus DB/DB mice fed an HFD Activates AMPK → ↑Fatty acid β-oxidation [13]

Dihydromyricetin Hairy grape Rats fed an HFD; 
HepG2 cells treated with 

palmitic acid

Activates AMPK/PPARα/PGC-1α → ↓IR [14]

Betaine Beet molasses Mice fed an HFD Activates AMPK → Inhibits ACC → ↓ER stress [15]

(Continued)
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Table 1 (Continued). 

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Lycium barbarum 
polysaccharide

Wolfberry Rats fed an HFD Activates AMPK/PPARα/PGC-1α → ↑Fatty acid β-oxidation [16]

Ursolic acid Ursolic Mice fed an HFD Activates AMPK → Inhibits SRC-1/Liver X 
receptor

17]

Radix Hedysari 
polysaccharide

Radix Hedysari Rats fed an HFD Activates AMPK/PPARα → Inhibits SREBP-1c → ↓LDL-C/ 
AST/ALT

[18]

Kaempferol Sand Ginger DB/DB mice Activates AMPK/SIRT1/PGC-1α → Inhibits SREBP1/ACC [19]

Kaempferol Tea, Broccoli, 

Propolis, 
Grapefruit

HepG2 cells treated with 

OA;Male SPF SD rats fed 
an HFD

↓NF-κB (in the nucleus); ↑NF-κB (in the cytoplasm); Inhibits 

NF-κB↓→TNFα/IL 6/→↓Fibrosis/Inflammation;↓ALT/AST/ 
TC/TG

[32]

Leonurus ethanol 
extract

Leonurus Mice fed an HFD Activates AMPK/PPARα [20]

Gardenin Gardenia Mice fed a Tetrabut Activates AMPK/Nrf2 → Inhibits mTOR [21]

Magnolia 
officinalis extract

Magnolia officinalis Mice fed an HFD Activates AMPK [22]

Ginsenoside Rb2 Ginseng DB/DB mice Activates AMPK/SIRT1 [23]

Atractylenolide 

III

Atractylodes 
rhizome

Mice fed an HFD Activates AMPK/SIRT1 [24]

Green tea 

extract

Green tea Mice fed an HFD Activates AMPK/SIRT1 → ↑Adiponectin 

receptor 2 → ↓FFA

[25]

Gastrodin Gastrodia elata Mice fed an HFD Activates AMPK [26]

Coix seed 

extract

Coix seed Rats fed an HFD Activates AMPK → ↓SePP1/apoER2 → ↓TC/TG [27]

Licorice extract Licorice Mice fed an HFD Activates AMPK/SIRT1 → ↑Fatty acid β-oxidation [28]

Scutellaria 
baicalensis

Skullcap MAFLD rats treated with 
OA

Activates AMPK → Inhibits SREBP-1c [29]

CGA Artemisia capillaris Mice fed an HFD Activates AMPK/ULK-1 → Inhibits AXL/ERK/LKB1 [31]

Tanshinone IIA Salvia miltiorrhiza HepG2 cells and Huh7 

cells treated with FFA

Inhibits liver X receptor α → ↓ACC1/FAS [36]

Diosgenin Dioscorea, 

legumes, ginger 
and other plants

Mice fed an HFD Activates AMPK/SIRT-1 → ↑CPT-1 → Inhibits SREBP-1c/ 

LXRa

[37,38]

Schisandra 
polysaccharides

Schisandra 
chinensis

Mice fed an HFD Inhibits SREBP-1c → ↓ACC/FAS [39]

Sargassum 
fusiforme 
polysaccharide

Sargassum 
fusiforme

Drosophila larvae treated 
with high sugar

Activates PPARα → Inhibits SREBP → 
↓TG/FAS

[40]

Ophiopogon 
polysaccharide

Liriope Mice fed an HFD Activates AMPK/PPARα → Inhibits SREBP-1c → ↓TG/TC [41,42]

(Continued)
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Table 1 (Continued). 

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Acerola 
polysaccharides

Coniferous tree Mice fed an HFD Inhibits SREBP-1c → ↓TG/TC; ↑PGC-1α  
→ ↓UCP2 →↑Mitochondrial β-oxidation

[45]

Angelica 
polysaccharide

Angelica Mice fed an HFD Activates PI3K/Akt → ↓IR [47]

Emodin Rhubarb Mice fed an HFD Activates FXR → ↓TG/IR [48]

Silbinin Silybum Rats fed an HFD Activates IRS/PI3K/Akt → ↓IR [49]

Berberine Coptis chinensis Mice fed an HFD Activates AMPK → ↓FABP1/SCD1/CD36  

→ ↑CPT1A →↓IR

[50]

Ginkgo biloba 
polysaccharide

Ginkgo biloba leaf Rats fed an HFD ↓IR [52]

Ginsenoside Rb1 Ginseng Mice fed an HFD Activates PPAR-γ → ↓Hepatocyte apoptosis [53]

MP-A Mussel Rats fed an HFD ↓TG/TC [54]

Curcumin Curcuma Rats fed an HFD; 
LSEC cells and L02 cells 

treated with FFA

Inhibits NF-κB/PI3K/Akt/HIF-1α [55]

Betulinic acid Silver birch Mice fed an HFD Inhibits YY1 → ↓FAS [56]

Acanthoic acid Acanthoderm Mice fed an HFD Activates AMPK/SIRT1 [57]

Triptolide Thunder God 

vine

DB /DB Mice fed with 

HFD

Activates AMPK → ↑Fatty acid β-oxidation → 
↓Fibrosis

[58]

Enteromorpha 
polysaccharides

Enteromorpha Rat fed with HFD ↑CBS/CSE/H2S → ↓TG/TC [59]

Alisma orientalis 
extract

Alisma orientalis Rat fed with HFD Activates AMPK/PPARα → ↑Fatty acid β-oxidation → 
↓Hepatocyte apoptosis/IR

[60]

Quercetin Raspberries, 

Ginkgo biloba
DB/DB Mice; 

HepG2 cells treated with 
FFA

Inhibits mTOR/YY1 → ↑CYP7A1 [61]

Catalpol Rehmannia root Mice fed an HFD Activates AMPK → ↑Fatty acid β-oxidation [62]

Baicalein Scutellaria 
baicalensis

Mice fed an HFD; HepG2 

cells treated with OA

Activates AMPK →Inhibits SREBP1→ ↓IR→↓TC/LDL-C/ 

↑HDL-C

[33]

Myricetin Sea buckthorn Rats fed an HFD [Activates AMPK →InhibitsACC/HMGCR;InhibitsLPS/TLR4/ 

NF-κB→↓TNF-α→↓IL-6;↑Dermabacteriaceae / 
Coriobacteriaceae / Allobaculum/ Brachybacterium]→↓TC/ 

TG/ALT/AST

[34]

Oroxin A Oroxylum indicum Rats fed an HFD; HepG2 

cells treated with OA

Inhibits SREBP1→Inhibits ACC/FASN→↓TG;Inhibits 

SREBP2→Inhibits HMGCR→↓TC 

Unites LDLR→Activates AMPK

[43]

Oroxin B Oroxylum indicum Rats fed an HFD ↓Lipin/LPS;Inhibits TLR4-IκB-NF-κB-IL-6/TNF-α;↑ZO-1/ZO- 

2;↓Tomitella/Bilophila/Acetanaerobacterium / Faecalibaculum
[44]

Note: ↑indicates upward, promotion, or increase; ↓indicates downward adjustment, suppression, or reduction.
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Relieving Oxidative Stress
The lipotoxic microenvironment caused by lipid metabolism disorders further exacerbates excessive production of 
reactive oxygen species (ROS). Oxidative stress refers to a state wherein excessive production of free radicals due to 
stimulation by mitochondrial ROS as a result of hyperglycemia, inflammatory signals, or exogenous toxins overwhelms 
the body’s ability to scavenge these free radicals, causing disorders of the body’s reduction-oxidation system. Oxidative 
stress is one of the important reasons for the occurrence and development of MAFLD, so alleviating oxidative stress- 
induced damage is a key objective of the treatment of MAFLD. Many active ingredients of TCM formulations have been 
shown to alleviate oxidative stress, including Codonopsis lanceolata polysaccharide (CLPS),63 salvianolic acid B,64 

2,3,4′,5-tetrahydroxystilbene-2-0-β-D-glycoside,65 and OISE.66 At the molecular regulation level, activation of the 
nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO-1) signaling pathway is a classic antioxidant 
strategy. For example, aucubin promotes the expression of antioxidant genes by enhancing the nuclear translocation of 
Nrf2.67 Sagittaria sagittifolia polysaccharide specifically upregulates the activity of HO-1, synergistically improving 
lipid metabolism disorders.68 Notably, Ganoderma lucidum polysaccharide alleviates hepatic steatosis through this 
pathway and significantly increases the levels of endogenous antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), forming a dual-defense mechanism.69 Jingda Li et al 
observed that hesperetin improves hepatic oxidative stress through the phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (AKT)-Nrf2 pathway, and this antioxidant effect further inhibits NF-κB-mediated inflammation during the 
progression of MAFLD.70 The components of TCM formulations have also shown the ability to intervene precisely in the 
pathological cascade reactions mediated by ROS. Polydatin is a combination of resveratrol and glucose. In comparison 
with resveratrol, polydatin has stronger antioxidant effect and stability. Polydatin has been shown to inhibit lipid 
peroxidation through antioxidants. It reduces Keap1 expression and enhances the Nrf2 antioxidant pathway, and it 
slows down the ROS-driven thioredoxin-interacting protein (TXNIP) activation of the NOD-, LRR-, and pyrin domain- 
containing protein 3 (NLRP3) inflammasome process, improves lipid metabolism, and reduces BRL-3A cell inflamma-
tion and lipid deposition.71 Moreover, recent studies have redefined the role of ROS as dynamic signaling mediators in 
the pathogenesis of MAFLD. Although excessive ROS can lead to hepatocyte damage, ROS at physiological levels in the 
liver and adipose tissue can activate adaptive responses. Mitochondria-derived ROS can enhance the antioxidant defense 
mechanism mediated by Nrf2, and work in concert with AMP-AMPK to optimize lipid metabolism.72 Crucially, tissue- 
specific regulation is involved in these mechanisms. Hepatocytes preferentially utilize SOD2 for ROS detoxification, 
while adipocytes rely on the interaction between catalase and AMP-AMPK. This duality highlights the therapeutic 
opportunities presented by multi-target components of TCM formulations, such as resveratrol. Their multi-target 
advantages hold the promise of selectively scavenging pathological ROS while preserving the ROS levels required for 
beneficial signaling—a balance that conventional antioxidants cannot achieve. The relevant active ingredients of TCM 
and their mechanisms of action are shown in Table 2.

Table 2 Summary of Experimental Studies on the Effects of Active Components of Traditional Chinese Medicine on MAFLD by 
Relieving Oxidative Stress

Active Ingredient Source Pharmacological 
Model

Pharmacological Mechanism Reference

Codonopsis lanceolata 
polysaccharide

Fir Mice fed a high-fat, 

high-sucrose diet

Activates Nrf2 → ↑HO-1/SOD → ↓ROS → ↓IR [63]

Salvianolic acid B Salvia 
miltiorrhiza

Rats fed an HFD Inhibits CYP2E1 → ↓ROS → ↓Hepatocyte apoptosis; 

Activates PPARγ → ↓TG/TC

[64]

(Continued)
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Inhibiting Liver Inflammation
Excessive accumulation of ROS directly damages liver cells and also triggers a persistent inflammatory response by 
activating inflammatory signaling pathways. Liver inflammation plays a crucial role in the progression of MAFLD. This 
inflammatory state drives exacerbation of the disease through a dual mechanism: on one hand, pro-inflammatory factors 
such as TNF-α and IL-6 exacerbate intrahepatic lipid deposition; on the other hand, these factors promote collagen 
secretion by activating hepatic stellate cells, leading to the transition of simple fatty liver through the stages of 
steatohepatitis and fibrosis.74 At the level of inflammation regulation, the active ingredients of TCM formulations 
block this vicious cycle by targeting key signaling nodes. For example, LBP block the nuclear translocation of NF-κB 
by inhibiting the formation of the TLR4-MyD88 complex.75,76 Tetramethylpyrazine (TMP), on the other hand, simulta-
neously improves mitochondrial dysfunction and apoptosis by downregulating the phosphorylated NF-κB (p-NF-κB)/ 
ROS signaling axis.77 Notably, andrographolide directly inhibits the phosphorylation cascade reaction of NF-κB by 
specifically binding to the kinase domain of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ), and its 
inhibitory effect exhibits a dose-dependent characteristic.78 More recent studies have revealed the central role of the 
metabolism-immunity interaction in the inflammation of MAFLD. Metabolites such as succinate and palmitic acid can 
directly activate the NLRP3 inflammasome in macrophages. However, berberine breaks this association through a dual 
effect: it inhibits the signal transduction of succinate and reprograms the metabolic pattern of macrophages to be 
dominated by oxidative phosphorylation via the AMPK-peroxisome proliferator-activated receptor-γ coactivator 1-α 
(PGC1α) pathway. This metabolic remodeling reduces the release of pro-inflammatory factors and improves the 
intrahepatic lipid microenvironment by enhancing fatty acid β-oxidation.79 In addition, the multi-target characteristics 
of TCM components, such as LBP, paeonin,80 Poria cocos extract,81 Perilla oil supplementation (ALA),82 Tremella 

Table 2 (Continued). 

Active Ingredient Source Pharmacological 
Model

Pharmacological Mechanism Reference

2,3,4′,5-tetrahydroxystilbene- 
2-0-β-d glycoside

Polygonum 
multiflorum

Mice fed an HFD Inhibits SREBP-1c → Inhibits ACC/FASN; Activates 
PPARα → ↑CPT-1 → ↓Lipid accumulation; Inhibits 

CYP2E1 → ↓Oxidative stress → ↓Fibrosis

[65]

Aucubin Honeysuckle Male C57/BL6 Mice Activates AMPK → Activates PPARα → ↑Fatty acid β- 

oxidation; Activates Nrf2/HO-1 → ↓Oxidative stress → 
↓TC/TG

[67]

Sagittaria sagittifolia 
polysaccharide

Sagittaria 
sagittifolia

Mice fed an HFD Activates Nrf2 → ↑GSH/GST → ↓Oxidative stress [68]

Ganoderma lucidum 
polysaccharide

Ganoderma 
lucidum

DB/DB mice fed an 

HFD

Activates Nrf2/HO-1 → ↑SOD/CAT → ↓ROS; Inhibits 

NF-κB → ↓TNF-α
[69]

Polydatin Knotweed 

root, Polygonum 
multiflorum root

SD rats fed 

with levulose

Inhibits Keap1 → ↑Nrf2 nuclear translocation → ↑ARE 

genes → ↓ROS/Oxidative stress

[71]

Chicory polysaccharide Chicory Rats fed an HFD Activates AMPK → Activates PPARα → Inhibits SREBP- 
1c → ↓TC/TG; ↓Oxidative stress

[73]

Hesperetin Oranges, 

grapefruit, 

lemons

HepG2 cells 

treated with OA; 

Rats fed an HFD

Activates PI3K/AKT-Nrf2→↑SOD/GPx/GR/GCLC/HO-1; 

Inhibits NF-κB→↓TNF-α / IL-6

[70]

OISE O. indicum seed HepG2 cells 

treated with OA; 
Rats fed an HFD

Inhibits NF-κB→↑IκB→↓Inflammation/Oxidative stress [66]

Note: ↑indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S514498                                                                                                                                                                                                                                                                                                                                                                                                   2701

Song et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



polysaccharide,83 nucifoline,84 Cassia semen ethanol extract,85 and gypenosides,86 demonstrate unique advantages in the 
complex inflammatory network. This network-based regulation mode breaks through the limitations of single-target 
drugs and provides new ideas for improving the long-term prognosis of patients with MAFLD. The relevant active 
ingredients of TCM and their mechanisms of action are shown in Table 3.

Inhibiting Liver Fibrosis
A sustained inflammatory response promotes the activation of stellate cells, which is a key triggering factor for liver fibrosis. 
Liver fibrosis is a pathological process caused by various chronic liver injuries, and it is an important part of fatty liver disease. In 
this process, excessive deposition of collagen, mucin, and other extracellular matrix components in the liver and reduced 
degradation of these components result in abnormal liver structure and function. Liver fibrosis is considered to be a dynamic and 
reversible process. If the underlying cause is removed or controlled in time, liver fibrosis can be reversed to varying degrees. This 
finding provides a new direction for the treatment of MAFLD to slow or even reverse the progression of the disease by 
suppressing liver inflammation and improving liver fibrosis. The active ingredients of TCM formulations have shown obvious 
advantages in the treatment of liver fibrosis, including oxymatrine,88 andrographolide,78 and gypenoside LXXV.89 Precise 
interventions targeting the key nodes of fibrosis has achieved breakthroughs in recent studies. For example, the total glucosides of 
peony (TGP) can specifically bind to the promoter region of NLRP3 and inhibit its transcriptional activity by inducing the 
expression of the transcription factor FLI1. This epigenetic regulatory mechanism can alleviate hepatocyte apoptosis and block 
the progression of fibrosis by remodeling the immune microenvironment.90 In addition, glycyrrhizic acid (GA) shows unique 

Table 3 Summary of Experimental Studies on the Effects of Active Components of Traditional Chinese Medicine on MAFLD by 
Inhibiting Liver Inflammation

Active Ingredient Source Pharmacological 
Model

Pharmacological Mechanism Reference

Lycium barbarum 
polysaccharides

Lycium barbarum Mice fed an HFD Inhibits NLRP3/NF-κB → ↓Inflammation/Oxidative stress [75]

Lycium barbarum 
polysaccharide

Lycium barbarum Rats fed an HFD ↓FFA/IR; ↓Oxidative stress/Inflammation [76]

Paeonin Peony Mice fed an HFD Activates PPARα → ↓Inflammation/IR [80]

Poria cocos extract Poria cocos Mice fed an HFD Activates PPARα/FXR; Inhibits SREBP-1c/CYP7A1 → ↓TC/TG/ 
Inflammation

[81]

ALA Perilla Rats fed an HFD ↓Fibrosis/Inflammation [82]

Tremella 
polysaccharide

Tremella Mice fed an HFD Inhibits TLR4 → ↓IL-1β/TNF-α/IL-6; Activates HNF4α → 
↓Inflammation/Oxidative stress

[83]

Andrographolide Andrographis 
paniculata

Mice fed CDAA Inhibits NF-κB → ↓Oxidative stress/Inflammation [78]

Nucifoline Lotus Rats fed an HFD ↓Oxidative stress/Inflammation [84]

Cassia semen ethanol 

extract

Cassia semen Rats fed an HFD Inhibits TNF-α/IL-6/IL-8 → ↓Inflammation; ↓AST/ALT/TG/TC [85]

Gypenosides Gynostemma 
pentaphyllum

Rats fed an HFD Inhibits SREBP-1c; Activates CPT-1 → ↓TG/FFA/Oxidative 

stress/Inflammation

[86]

TMP Ligusticum 
wallichii

Mice fed an HFD Inhibits p-NF-κB → ↓NF-κB activity/ROS → ↓Inflammation [77]

Salidroside Rhodiola rosea Mice fed an HFD Activates AMPK → ↓IR/Oxidative stress; Inhibits NLRP3 → 
↓Inflammation

[87]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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multi-target effects: while inhibiting collagen deposition, it reduces de novo lipogenesis by downregulating the SREBP-1c/FAS 
pathway and activates PPARα to enhance fatty acid oxidation, achieving a triple synergy of anti-fibrosis, lipid metabolism- 
regulating, and anti-inflammatory effects.91 Notably, the spatiotemporal dynamic regulatory characteristics of TCM components 
represent an advantage in the management of complex pathological networks. For example, eugenol selectively inhibits the 
cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) inflammatory pathway through a phase-separated mechanism,92 while 
schisandrin B enhances the antioxidant reserve of hepatocytes through the Nrf2-GSH axis.93 This hierarchical defense system 
can target the driving factors of fibrosis and create microenvironmental conditions facilitating hepatocyte repair. The relevant 
active ingredients of TCM and their mechanisms of action are shown in Table 4.

Relieving ERS
In addition to disrupting the structure of the liver, abnormal deposition of the extracellular matrix during the process of 
fibrosis also exacerbates metabolic imbalance by interfering with the functions of lipid synthesis and protein folding in the 
endoplasmic reticulum (ER). The “multiple-hit” theory proposed in recent years emphasizes that ERS is the core mechanism 
for the progression of MAFLD to NASH. By activating unfolded protein response (UPR) signals (such as the inositol- 
requiring enzyme 1α [IRE1α]–X-box binding protein 1 [XBP1] pathway), ERS induces the expression of inflammatory 
factors and inhibits the secretion of apolipoproteins, thus forming a vicious cycle of lipotoxicity and inflammation.95 At the 
level of ERS regulation, the active ingredients of TCM formulations restore ER homeostasis by targeting key nodes. 
Betulinic acid (BA) blocks the apoptosis signal-regulating kinase 1 (ASK1)- c-Jun N-terminal kinase (JNK) apoptotic 
signaling cascade by inhibiting the kinase activity of IRE1α.96 Resveratrol, on the other hand, alleviates the translational 
inhibition caused by the excessive activation of the protein kinase R-like ER kinase (PERK) pathway by enhancing the 
SIRT1-dependent deacetylation of eIF2α.97 Notably, catalpol can simultaneously down-regulate the expression levels of 
binding immunoglobulin protein (BiP) and IRE1α. Its dual inhibitory effect reduces the ERS markers in hepatocytes by more 
than 65% and significantly decreases the levels of serum TG/TC in HFD mice, demonstrating synergistic beneficial effects 

Table 4 Summary of Experimental Studies on the Effects of Active Components of Chinese Medicine on MAFLD by Inhibiting Liver 
Fibrosis

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Oxymatrine Sophora flavescens Rats fed an HFD Activates PPARα; Inhibits SREBF1/SREBP1 → 
Inhibits ACC/FAS → ↓Fibrosis

[88]

Eugenol Clove, cinnamon Mice fed an HFD Activates AMPK → Inhibits SREBP1/mTOR → 
↓TG/Fibrosis

[92]

Andrographolide Andrographis paniculata Mice fed CDAA Inhibits NF-κB → ↓Inflammation/Fibrosis [78]

Gypenoside 
LXXV

Gynostemma pentaphyllum Mice fed an HFD Inhibits α-SMA/TNF-α/GRP78 → ↓Fibrosis [89]

Schisandrin B Schisandra chinensis Mice fed an HFD Activates Nrf2; Inhibits SREBP-1 → 
Inhibits FAS → ↓Oxidative stress/Fibrosis

[93]

TGP Radix paeoniae alba Fibrotic mice 
treated with CCl4

Activates FLI1; Inhibits NLRP3 → ↓COLIII/ 
COLIV → ↓Fibrosis

[90]

GA Licorice Mice fed an HFD Activates PPARα; Inhibits SREBP-1c → Inhibits 
ACC1/SCD1/FAS; Inhibits MCP-1/VCAM-1 → 
↓Inflammation/HSC activation → ↓Fibrosis

[91]

Fuzheng huayu 

recipe

Salvia miltiorrhiza, Peach kernel, Pine 

pollen, Fermented cordyceps powder, 

Schisandra chinensis, Gynostaphylla

Mice fed an MCD 

diet

Inhibits IKK-β/NF-κB → ↓MCP-1/ 

Inflammation; Inhibits Smad3/Smad4; Activates 

Smad7 → ↓Fibrosis; ↓Oxidative stress

[94]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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on ERS regulation and lipid metabolism. Catalpol is an active ingredient extracted from Rehmannia root. It shows many 
biological activities such as anti-inflammation and anti-apoptosis activities. Catalpol can significantly reduce the expression 
of key proteins involved ERS, such as BiP and IRE1α. By alleviating ERS, catalpol can reduce the expression of proteins 
associated with apoptosis, thereby inhibiting the apoptosis process of hepatocytes. In addition, catalpol can significantly 
reduce serum TG and TC levels in mice fed HFD, thereby improving the symptoms of MAFLD.98 The relevant active 
ingredients of TCM and their mechanisms of action are shown in Table 5.

Regulating Autophagy of Hepatocytes
The alleviation of ERS creates the necessary microenvironmental conditions for the dynamic regulation of the autophagy 
system. MAFLD is characterized by hepatic lipid accumulation that exceeds the metabolic capacity of the liver, resulting 
in lipid overload within liver cells. In addition to affecting the normal functioning of the liver, this lipid overload also 
reduces fat autophagy, which, in turn, slows the self-degradation of lipids to create a vicious cycle. Therefore, regulation 
of hepatocyte autophagy is of great importance in the treatment of MAFLD. At the level of autophagy regulation, the 
active ingredients of TCM formulations restore the autophagic flux by targeting different links. Resveratrol promotes the 
formation of autophagosomes by activating the AMPK-Unc-51-like kinase 1 (ULK1) phosphorylation cascade.99 

Puerarin, on the other hand, increases the biosynthesis of lysosomes by enhancing the nuclear translocation of 
transcription factor EB (TFEB), which improves the autophagic degradation efficiency by 2.3-fold.100 Notably, bergamot 
polyphenols (BPF) significantly accelerate the clearance of lipid droplets and damaged organelles by synergistically 
upregulating the levels of the LC3-II/Beclin1 complex and reducing the expression of p62. The effect of BPF in 
promoting the autophagic flux has been verified through liver ultrasound imaging and liver histological 
examinations.101 Considering the complexity of the autophagy regulation network, the components of TCM formulations 
exhibit the advantages of multi-dimensional intervention. Ginsenoside Rb2 enhances the assembly of the Atg12-Atg5 
conjugate through a mammalian target of rapamycin (mTOR)-independent pathway,23 while capsaicin activates the 
CaMKKβ-AMPK signaling axis via the TRPV1 calcium ion channel.102 This multi-target characteristic enables the 
components of TCM formulations to simultaneously regulate the initiation, elongation, and termination stages of 
autophagy. In addition, certain components such as resveratrol can also selectively remove dysfunctional mitochondria 
through SIRT1-mediated mitophagy, blocking the excessive production of ROS at the source. The relevant active 
ingredients of TCM and their mechanisms of action are shown in Table 6.

Inhibiting Hepatocyte Apoptosis
Precise regulation of autophagy activity directly affects the fate of hepatocytes, ie, whether they survive or undergo 
programmed cell death. It has been found that apoptosis is the most clearly defined and widely studied form of hepatocyte 
death in the MAFLD process.103 Apoptosis is a form of programmed cell death which occurs through the regulation of 
genes and their products in the cell. Hepatocyte apoptosis is usually induced by lipotoxic substances and causes hepatocyte 
injury through sublethal and lethal stress effects, inducing secondary liver injuries such as liver IR, inflammatory responses, 

Table 5 Summary of Experimental Studies on the Effects of Active Components of Chinese Medicines on MAFLD by Alleviating 
Endoplasmic Reticulum Stress

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Betulinic acid Betula 
pubescens

Mice fed an HFD and 

MCD diet

Activates FXR; Inhibits PERK → ↓EIF2α/ATF4/CHOP → ↓ER stress [96]

Resveratrol Knotweed, 

grapes

Rats fed an HFD Activates SIRT1 → ↓ER stress [97]

Catalpol Rehmannia 
root

Mice fed an HFD Inhibits ER stress signature proteins → ↓ER stress; ↓Hepatocyte 

apoptosis; ↓ALT/AST/TG/TC

[98]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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and fibrosis and promoting the development of MAFLD.104 The active ingredients of Tuckahoe,105 Atractylodes 
rhizome,106 and Cordyceps flower107 have been confirmed to be involved in inhibiting the hepatocyte apoptosis pathway 
and thereby slowing down the progression of MAFLD. Considering the complexity of the apoptosis signaling network, the 
components of TCM formulations exhibit the advantages of spatiotemporal-specific regulation. LBP are the main active 
components of Lycium barbarum. LBP alleviate oxidative stress in MCD diet-fed mice by downregulating NF-κB 
expression, blocking inflammation, and inhibiting liver fibrosis, thereby inhibiting hepatocyte apoptosis.75 Gastrodia 
ethanol extract can significantly reduce TG and TC levels in serum, upregulate AMPK levels in liver and muscle, improve 
dyslipidemia, hypertension, IR, and vascular endothelial function impairment in rats fed HFD, upregulate the expression of 
anti-apoptotic factors, inhibit the expression of Bax protein, and thereby inhibit hepatocyte apoptosis.108 The relevant active 
ingredients of TCM and their mechanisms of action are shown in Table 7.

Table 6 Summary of Experimental Studies on the Effects of Active Components of Traditional Chinese Medicine on MAFLD by 
Regulating Hepatocyte Autophagy

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

Resveratrol Knotweed, 

grapes

HepG2 cells Activates AMPK/SIRT1 → ↑Fatty acid β-oxidation → 
↑Autophagy

[99]

Puerarin Pueraria lobata Mice fed an HFD Activates AMPK → Inhibits mTOR → Activates ULK1; Activates 

PI3K/AKT

[100]

Ginsenoside Rb2 Ginseng DB/DB mice Activates AMPK/SIRT1; Inhibits mTOR → ↑Autophagy → 
↓Inflammation

[23]

Capsaicin Pepper HepG2 cells Activates TRPV1 → ↑Autophagy-associated proteins → 
↓Inflammation

[102]

Bergamot 
polyphenols

Bergamot Rat fed a cafeteria diet 
(CAF)

↑LC3/Beclin1; ↓SQSTM1/p62 → ↑Autophagy [101]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.

Table 7 Summary of Experimental Studies on the Effect of Active Components of Chinese Medicine on MAFLD by Inhibiting 
Hepatocyte Apoptosis

Active Ingredient Source Pharmacological 
Model

Pharmacological Mechanism Reference

Pachymaran Tuckahoe Mice fed an HFD Activates PARP-1 → ↑Intestinal barrier [105]

Atractylosin Atractylodes 
rhizome

Mice fed an HFD ↓MDA/ROS; ↓GSH depletion → ↓Apoptosis [106]

Cordyceps flower 

polysaccharide

Cordyceps 
flower

Fibrotic mice treated 

with CCl4

Inhibits TNF-α → ↓Inflammation/Apoptosis; ↓ALT/AST [107]

LBP Wolfberry Mice fed an MCD Inhibits NF-κB/NLRP3 → ↓Inflammation/Oxidative stress/ 

Fibrosis/Apoptosis; ↓ALT/AST

[75]

Gastrodia ethanol 

extract

Gastrodia 
elata

Rats fed a cafeteria 

diet (CAF)

Activates AMPK → ↑Bcl-2→↓Bax → ↓Apoptosis; ↓TG/TC [108]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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Improving Mitochondrial Dysfunction
The inhibition of apoptosis signals is closely related to stabilization of the mitochondrial membrane potential, and the 
two work together to maintain homeostasis of cellular energy metabolism. At present, the “multiple shock” theory is 
widely used to explain the pathogenesis of MAFLD, wherein dysfunction of liver mitochondria plays an important 
role.109 Elevated serum retinol-binding protein 4 levels can cause mitochondrial dysfunction and steatosis in the liver. 
Abnormal mitochondrial fatty acid oxidation, oxidative stress, or abnormal autophagy can induce liver inflammation and 
liver cell death, leading to the occurrence of MAFLD.110 Therefore, improving mitochondrial dysfunction is an effective 
approach to slow down the occurrence and development of MAFLD. TCM active ingredients as ACPs,45 quercetin,111 

icariin,107 and puerarin100 have been shown to play roles in the treatment of MAFLD by improving mitochondrial 
dysfunction. Sagittaria sagittifolia polysaccharide can improve lipid metabolism disorder and oxidative stress in MAFLD 
mice, and can also significantly improve mitochondrial damage and restore mitochondrial adenosine triphosphate (ATP) 
content.68 The relevant active ingredients of TCM and their mechanisms of action are shown in Table 8.

Improving Intestinal Flora Imbalance
In addition to its regulatory effects within the liver, the restoration of mitochondrial function also indirectly affects the 
ecological balance of the gut microbiota through the gut-liver axis. The gut microbiota has been recognized as a key 
factor in the development of MAFLD. Imbalance of the intestinal flora affects the integrity of the intestinal mucosal 
barrier, triggers inflammation, produces bacterial metabolites, affects liver lipid metabolism and accelerates the occur-
rence and development of MAFLD.112 Therefore, intestinal microbiome-targeting therapeutic strategies for MAFLD hold 
much value.113 For repair of the intestinal barrier function, the synergistic effects of multiple components is particularly 
remarkable. Luteolin enhances tight junctions by upregulating the expression of zonula occludens 1 (ZO-1).114 BBR 
reduces bacterial translocation by activating the AMPK-occludin (OCLN) signaling axis, and its effect of inhibiting the 
entry of endotoxins into the liver leads to a 58% decrease in the serum LPS level.115 Artemisia polysaccharide, on the 
other hand, promotes the secretion of mucin by goblet cells through the IL-22/signal transducer and activator of 
transcription 3 (STAT3) pathway, forming a dual physical and chemical barrier.116 In the context of metabolism- 
immunity regulation, components of TCM break the association between inflammation and gut microbiota imbalance 
through multi-target intervention. Jade bamboo polysaccharides regulates the GPR43 receptor to balance the proportion 
of Th17/Treg cells.117 Oleanolic acid (OA) improves the enterohepatic circulation of bile acids through the FXR-FGF15 
axis.118 This multi-level mode of action enables compound preparations such as Qingrequzhuo capsule to simultaneously 

Table 8 Summary of Experimental Studies on the Effect of Active Ingredients of Chinese Medicine on MAFLD by Improving 
Mitochondrial Dysfunction

Active Ingredient Source Pharmacological 
Model

Pharmacological Mechanism Reference

ACPs Coniferous 
tree

Mice fed an HFD Inhibits UCP2 → ↑Mitochondrial coupling efficiency → ↑Fatty acid 
β-oxidation → ↓Lipid accumulation

[45]

Quercetin Raspberry, 
ginkgo

Mice fed an HFD Activates Nrf2 → ↓ROS → ↑Mitochondrial membrane potential → 
↑ATP synthesis

[111]

Icariin Epimedium Mice fed an HFD Activates Nrf2 → ↑xCT/GPX4 → 
↓Lipid peroxidation → ↓Ferroptosis; 

Inhibits Caspase-3 → ↓Apoptosis

[107]

Puerarin Pueraria 
lobata

Mice fed an HFD Inhibits NF-κB → ↓TNF-α → ↓ROS → ↑Mitochondrial biogenesis [100]

Sagittaria sagittifolia 

polysaccharide

Sagittaria 
sagittifolia

Mice fed an HFD Activates Nrf2/HO-1 → ↓ROS → ↑Mitochondrial respiration → 
↓Oxidative stress

[68]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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correct gut microbiota dysbiosis, alleviate gut-derived inflammation, and improve lipid metabolism disorders. In addition, 
relevant studies have shown that the bioactive components of TCM drugs such as Walnut green husk polysaccharides 
(WGHP),119 Ganoderma lucidum mycelium polysaccharides,120 ferulic acid (FA),106 MP-A,54 Qingrequzhuo capsule,121 

can improve the imbalance of the gut microbiota by improving the composition ratio of the gut microbiota. For instance, 
resveratrol alleviates the ecological imbalance of gut microbes, increases the abundance of Ruminococcaceae and 
Lachnospiraceae, reduces the abundance of Desulfovibrio (a class of anaerobic bacteria that reduce sulfate to produce 
H2S), reduces bacterial invasion and translocates, and thereby regulates the endocannabinoid system. It can maintains 
intestinal barrier integrity, inhibit intestinal inflammation, and improve intestinal flora disorders.122 The relevant active 
ingredients of TCM and their mechanisms of action are shown in Table 9.

Table 9 Summary of Experimental Studies on the Effects of Active Ingredients of Chinese Medicine on MAFLD by Improving Intestinal 
Flora Imbalance

Active 
Ingredient

Source Pharmacological 
Model

Pharmacological Mechanism Reference

WGHP Walnut Rats fed an HFD ↑SCFAs → ↓Dysbacteria [119]

Ganoderma 
lucidum 
mycelium 
polysaccharide

Reishi Rats fed an HFD Inhibits Firmicutes/Bacteroidota → ↑Cecal 

flora richness → ↓Dysbacteria

[120]

Luteolin Mignonette Rats fed an HFD ↑Bacterial species → ↓Intestinal 
permeability → ↓Dysbacteria; Inhibits 

TLR4/NF-κB → ↓Inflammation

[114]

BBR Coptis chinensis Mice fed an HFD Inhibits Bifidobacterium/Bacteroidota/ 

Firmicutes → ↓Dysbacteria → ↓IR

[115]

Artemisia 
polysaccharide

Artemisia seed Mice fed an HFD Inhibits Proteus/AF12/Helicobacter 

pylori → ↓Dysbacteria

[116]

Jade bamboo 

polysaccharide

Jade bamboo Rats fed an HFD Inhibits SREBP1/FABP4/FAS → 
↓Lipogenesis; Inhibits Fusobacterium/ 

Enterococcus/Lactococcus/Sutterella → 
↓Dysbacteria

[117]

MP-A Mussel Rats fed an HFD Inhibits LPS-TLR4-NF-κB → 
↓Inflammation; Inhibits PPARγ/SREBP-1c → 
↓Lipogenesis → ↓Dysbacteria

[54]

FA Cinnamon Mice fed with HFD ↑SCFAs → ↓Inflammation/Dysbacteria [106]

OA Privet fruit Rats fed an HFD Inhibits Bacteroidota/Firmicutes → 
↓Dysbacteria

[118]

Qingrequzhuo 
capsule

Mulberry bark, Coptis Fructus, Poncirus 
aurantii, Cicada, Alisma, safflower, Poria, 

Rhubarb, Achyranthes achyranthes, yam

Rats fed an HFD Inhibits TLR4/NF-κB → ↓IL-6/IL-8/ 
Inflammation; 

↑Dubosiella/Lachnospiaceae → ↓LPS/ 

Dysbacteria

[121]

Resveratrol Knotweed, grapes Rats fed an HFD ↑Ruminococcaceae/ 

Lachnospiraceae; ↓Desulfovibrio → 
↓Dysbacteria

[122]

Si miao 
formula

Atractylodes, Achyranthes, Yellow cedar, 
Coix seed

Mice fed a high-fat, 
high-sucrose diet

Inhibits IL-1β/NLRP3 → 
↓Inflammation; ↑Akkermansia 

muciniphila → ↓Dysbacteria

[123]

Note: ↑ indicates upward, promotion, or increase; ↓ indicates downward adjustment, suppression, or reduction.
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Discussion
MAFLD has become an important cause of chronic liver disease worldwide. However, unless patients undergo specific 
tests to identify MAFLD, they remain unaware of the disease until the condition becomes severe or irreversible liver 
damage occurs.124 This study elucidates how the active ingredients of TCM formulations combat MAFLD through 
a multi-dimensional regulatory network encompassing lipid metabolism, oxidative stress, inflammation, and gut-liver 
crosstalk. Specifically, we attempted to identify the pharmacological models and mechanisms of action provided in the 
existing literature, and thereby reveal the common bioactive components in numerous TCM ingredients that show 
therapeutic effects on MAFLD. The specific pathways and targets are shown in Figure 3. An inductive summary based on 
the chemical structures and related targets is shown in Table 10.

This study systematically constructed the first cross-scale regulatory network of the active ingredients of TCM 
formulations for the treatment of MAFLD. Based on the screening of the dynamic target population, a new “mechanism- 
oriented and spatiotemporal optimized” paradigm of TCM compound design has been proposed. However, the preclinical 
studies cited in this review had the following common limitations: (1) Male animals were used in 89% of the studies, and 

Figure 3 Mechanism of action of Chinese medicine active ingredients in treatment of MAFLD. Core early intervention targets: (a) SREBP-1c/ACC/FAS/SCD-1, reduce lipid 
accumulation at the source, and block the subsequent triggering of oxidative stress and fibrosis. (b) AMPK, activating AMPK can achieve dual regulation:1.Inhibit lipid 
synthesis (by phosphorylating ACC and SREBP-1c).2.Promote autophagy (the LC3 marker increases → clear lipids and damaged proteins). (c) LSECs-HSC, if the inactivation 
of liver sinusoidal endothelial cells (LSECs) is the initial trigger for the activation of hepatic stellate cells (HSCs), restoring the function of LSECs can fundamentally prevent 
the initiation of fibrosis. (d) IRE1α/PERK/Nrf2, alleviate the mitochondrial dysfunction and oxidative damage caused by lipid accumulation. Priority ranking: SREBP-1c/ACC/ 
FAS>AMPK>LSECs-HSC>IRE1α/PERK/Nrf2>Bcl-2.
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sex-related differences were not evaluated. (2) The methods of random grouping were not specified in 62% of the studies. 
(3) Only 12% of the studies conducted a blinded assessment of pathological endpoints, potentially affecting the 
generalizability of the conclusions. (4) Extrapolations of the findings of animal experimental results to humans are 
limited by the physiological and pathological differences between animals and humans, the variations in drug metabolism 
and response, as well as the inability of animal models to fully mimic the complex environmental and lifestyle factors 
involved in human diseases. Nevertheless, to maintain the integrity of the evidence, we have retained all the studies that 
met the inclusion criteria.

While the multi-target therapeutic effects of TCM ingredients offer advantages in MAFLD management, their 
potential hepatotoxicity and herb-drug interactions require rigorous evaluation. For instance, long-term administration 
of berberine (>500 mg/day) may alter CYP450 enzyme activity, and high-dose resveratrol supplementation (≥1 g/day) 
has been associated with mitochondrial membrane destabilization in hepatocytes. However, some of the compounds 
described in this paper have been successfully tested or evaluated in humans. For example, recent clinical evidence from 
a meta-analysis of 26 randomized trials (n = 2375) demonstrated that silymarin, a hepatoprotective botanical extract, 
significantly improved hepatic steatosis (OR = 3.25), reduced serum ALT/AST levels (SMD = −12.39/-10.97), and 
ameliorated lipid profiles in MAFLD patients, aligning with the multi-target therapeutic strategy proposed in this 
review.125 The crux of the matter is that the nonlinear progression of MAFLD, ie, the mutual amplification of metabolic 
dysfunction (AMPK suppression), oxidative damage (excessive production of ROS), and inflammation (activation of 
NLRP3/NF-κB), is driven by the interactions among these signaling pathways. The compound classification framework 
(Table 10) shows that flavonoids, alkaloids, and polysaccharides achieve synergistic effects by simultaneously targeting 
AMPK-mediated lipid oxidation, NLRP3-driven inflammation, and insulin sensitivity enhanced by PPARγ. This ther-
apeutic breadth is unparalleled by single-target drugs such as vitamin E or pioglitazone. Therefore, in the future, 
multicenter trials can be designed to validate the synergistic effects of different classes of components. For example, 
combining quercetin with LBP can simultaneously improve hepatic steatosis and gut barrier function, which are key 
indicators for reversing MAFLD. Such combinations can also address the nonlinear characteristics of MAFLD by 
simultaneously inhibiting oxidative stress and interrupting the crosstalk between metabolism and inflammation. In 
addition, compound classes that have been proven to modulate the gut-liver axis (eg, polysaccharides such as 

Table 10 Synergistic Targeting Analysis of Compound Classification in the Nonlinear Pathogenesis of MAFLD

Compound 
Class

Representative 
Components

Core Target 
Groups

Synergistic Mechanisms Corresponding Nonlinear 
Pathogenesis of MAFLD

Flavonoids Quercetin, baicalein AMPKα2 

Thr172, Nrf2, 

NLRP3

Causes activation of lipid oxidation (AMPK) and 

suppression of inflammation (NLRP3), blocks the 

vicious cycle of lipid toxicity-inflammation

Metabolic dysregulation 

amplifies inflammatory 

responses

Alkaloids Berberine, matrine PCSK9, LXRα, 

SIRT1

Inhibits hepatic lipid synthesis (LXRα) while 

activating the gut FXR pathway for gut-liver axis 
metabolic synergy

Bidirectional interactions 

between gut microbiota 
disorders and liver lipid 

deposition

Polysaccharides Ganoderma lucidum 
polysaccharides, Lycium 
barbarum 
polysaccharides

TLR4/MyD88, 

PPARγ
Reshapes butyrate rhythm (TLR4) and enhances 

insulin sensitivity (PPARγ) through cross-organ 
coordination

Gut leakage and insulin 

resistance jointly promote 
liver damage

Terpenoids Ursolic acid, 

tanshinone IIA

LXRα, CPT1A, 

GPX4

Enhances mitochondrial β-oxidation (CPT1A) and 

inhibits ferroptosis (GPX4), balances metabolic 

flux and cytoprotection

Dynamic imbalance between 

energy overload and 

oxidative damage

Phenolic Acids Chlorogenic acid, 

resveratrol

ALKBH5 m6A, 

SIRT1/PPARα
Modulates the RNA epitranscriptome (ALKBH5) 

and circadian metabolic rhythms (SIRT1), 
synchronizes gene–environment interactions

Synergistic roles of epigenetic 

modifications and metabolic 
oscillations
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Ganoderma lucidum polysaccharides and alkaloids like berberine) can be preferentially selected to prepare stable oral 
formulations for the development of standardized formulations. By jointly targeting NLRP3, PPARγ, etc., the linear 
progression of the AMPK-oxidative stress-inflammation axis can be broken, and the transition from various stages to an 
uncontrollable stage can be basically prevented.

Under the current trend of combination therapy, clarifying the mechanisms of action of different active ingredients 
can help address the challenges of patient compliance through sustained-release technologies, providing a practical 
alternative to lifestyle interventions, since 80% of patients are unable to adhere to lifestyle interventions for more than six 
months. Although lifestyle modification remains the cornerstone of MAFLD management, the multi-target adaptability 
and formulation flexibility of TCM make it a viable option for patients who experience difficulty in adhering to dietary 
control. By focusing on reproducible formulation engineering and clinically relevant endpoints, this field can transition 
from empirical practice to evidence-based precision therapy, ultimately achieving the integration of traditional wisdom 
and modern medicine.
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