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Background: Inflammatory bowel disease (IBD) is a chronic, incurable gastrointestinal disease without a gold standard for diagnosis. 
This study aimed to develop predictive models for diagnosing IBD, Crohn’s disease (CD), and Ulcerative colitis (UC) by combining 
two approaches: machine learning (ML) and traditional nomogram models.
Methods:  Cohorts 1 and 2 comprised data from the UK Biobank (UKB), and the First Hospital of Jilin University, respectively, 
which represented the initial laboratory tests upon admission for 1135 and 237 CD patients, 2192 and 326 UC patients, and 1798 and 
298 non-IBD patients. Cohorts 1 and 2 were used to create predictive models. The parameters of the machine learning model 
established by Cohorts 1 and 2 were merged, and nomogram models were developed using Logistic regression. Cohort 3 collected 
initial laboratory tests from 117 CD patients, 197 UC patients, and 241 non IBD patients at a tertiary hospital in different regions of 
China for external testing of three nomogram models.
Results: For Cohort 1, ML-IBD-1, ML-CD-1 and ML-UC-1 models developed using the LightGBM algorithm demonstrated exceptional 
discrimination (ML-IBD-1: AUC = 0.788; ML-CD-1: AUC = 0.772; ML-UC-1: AUC = 0.841). For Cohort 2, ML-IBD-2, ML-CD-2, and 
ML-UC-2 models developed using XGBoost and Logistic Regression algorithms demonstrated exceptional discrimination (ML-IBD-2: 
AUC = 0.894; ML-CD-2: AUC = 0.932; ML-UC-2: AUC = 0.778). The nomogram model exhibits good diagnostic capability (nomogram- 
IBD: AUC=0.778, 95% CI (0.688–0.868); nomogram-CD: AUC=0.744, 95% CI (0.710–0.778); nomogram-UC, AUC=0.702, 95% CI 
(0.591–0.814)). The predictive ability of the three models was validated in cohort 3 (nomogram-IBD: AUC=0.758, 95% CI (0.683–0.832); 
nomogram-CD: AUC=0.791, 95% CI (0.717–0.865); nomogram-UC, AUC=0.817, 95% CI (0.702–0.932)).
Conclusion: This study utilized three cohorts and developed risk prediction models for IBD, CD, and UC with good diagnostic 
capability, based on conventional laboratory data using ML and nomogram.
Keywords: inflammatory bowel disease, Crohn’s disease, ulcerative colitis, machine learning, nomogram

Introduction
Inflammatory bowel disease (IBD) is a chronic, incurable gastrointestinal condition that primarily includes Crohn’s 
disease (CD) and ulcerative colitis (UC).1 UC primarily affects the colon, with common symptoms including rectal 
bleeding or mucus secretion, frequent bowel movements, and lower abdominal pain.2 CD may involve any part of the 
gastrointestinal tract and often manifests as abdominal pain, chronic diarrhea (which may be accompanied by significant 
bleeding), fatigue, weight loss, and fever.3 The pathogenesis of IBD remains unclear, with some studies suggesting it is 
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closely related to intestinal microbiota,4 immune responses,5 and genetic factors.6 IBD is now recognized as a global 
health concern. According to statistics, there were 6.8 million people with IBD worldwide in 2017, making it the fourth 
most common digestive disease.7 The incidence of IBD has continued to rise in recent years, causing numerous negative 
effects on people’s physical and mental health as well as their daily lives. This trend underscores the urgent need to 
address IBD as a significant public health issue.8 A six-year multicenter prospective study found that IBD is a risk factor 
for colon cancer, and its severity is positively associated with the risk of developing cancer.9 IBD increases the risk for 
various psychiatric disorders, primarily by increasing the incidence of substance misuse disorders, depression disorder, 
anxiety disorder, and PTSD.10 A study found that the mediating role played by blood-cell-based biomarkers in the 
relationship between IBD and the risk of psychiatric disorders. Among them, six mediating variables have the strongest 
mediating effect: RDW, neutrophil count, CRP, albumin, RBC, and SII.11 Therefore, early and accurate diagnosis of IBD 
is essential for effective treatment of the disease.

Currently, there is no gold standard for diagnosing IBD, which is primarily based on a comprehensive analysis of 
clinical symptoms, endoscopy, imaging, histopathological examination, and laboratory tests.12 Among these methods, 
endoscopy plays a crucial role in the assessment and diagnosis of IBD. However, its high cost and invasive nature limit 
patient acceptance, thereby hindering its widespread clinical application.13 Recently, positron emission tomography- 
computed tomography (PET-CT) and Positron emission tomography/magnetic resonance imaging (PET/MRI) have 
proven useful in assessing the disease activity of UC, offering diagnostic performance comparable to endoscopy.14 

However, their clinical application is limited by factors such as high cost and radiation exposure.15 Consequently, there is 
an urgent need to develop non-invasive, rapid, and straightforward diagnostic methods for IBD.

The range of diagnostic tools for IBD is expanding, with serological markers gaining attention due to their 
convenience, non-invasiveness, and cost-effectiveness compared to imaging and histopathological tests.16 Laboratory 
parameters, including high-sensitivity C-reactive protein (hsCRP), complete blood count, serum albumin, and bilirubin, 
have been associated with IBD and potentially reflect systemic inflammation.17,18 The most intensively evaluated marker 
is hsCRP. hsCRP is typically induced by acute inflammation and secreted by hepatocytes. Due to its simplicity and 
rapidity of detection, it has been consistently used for the assessment of IBD.19

Machine learning (ML) spans multiple disciplines, providing deep insights into data, enhancing data utilization, and 
supporting clinical decision-making.20 Numerous studies have historically employed ML algorithms to develop IBD 
prediction models focusing on diagnosis, severity, inflammation, treatment, and prognosis.21–24 These studies primarily 
relied on medical imaging or omics datasets, encountering limitations such as high costs and clinical implementation 
challenges.25–27 Explorations of the relationship between electronic health record data and IBD via ML have confirmed 
the feasibility of non-invasive diagnostic methods.17 ML can manage a broader array of variables, often yielding more 
accurate and precise results compared to traditional modeling approaches.28

The nomogram, a traditional calculation tool comprising variables and corresponding scoring lines, offers simplicity, 
applicability, and a graphical representation of logistic or Cox regression models. Currently, the nomogram is employed 
in gastrointestinal disease management for diagnosis,29 prognosis assessment,30 and recurrence prediction.31 While 
sophisticated ML methods provide more accurate results, the nomogram remains favored among clinicians for its 
simplicity and visual representation.32 Both traditional nomogram and ML models serve as valuable tools for clinicians 
in diagnosing diseases and assessing progression.

Consequently, this study aimed to develop beneficial and non-invasive predictive models for IBD, CD, and UC based 
on routine laboratory data, combining nomogram and ML methods, to distinguish between IBD and non-IBD patients. 
Data from the UK Biobank (UKB) and two tertiary hospitals in China were utilized to evaluate the models’ generalized 
predictive capacity across diverse patient subgroups and regions.

Methods
Study Subjects
Cohort 1 and Cohort 2 (model building and internal validation): Cohort 1 included patients diagnosed with IBD and non- 
IBD (benign colon polyps) from the UKB, a population-based cohort of 500,000 volunteers in the United Kingdom, who 
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were selected to develop a diagnostic model.33 Diagnoses for IBD and non-IBD were identified using International 
Classification of Diseases-10 (ICD-10) codes (K50 for CD, K51 for UC, and K635 for benign colon polyps) from primary 
care records, death registers, inpatient diagnoses, and self-reports. Patients who were pregnant, had uncertain diagnoses, or 
had tumors were excluded.

Cohort 2: Retrospective data for patients with IBD at the time of admission were collected from the laboratory 
information systems of the First Hospital of Jilin University between June 2018 and August 2022. Simultaneously, data 
from non-IBD patients (patients with benign colon polyps) admitted during the same period served as controls. IBD 
diagnoses were based on clinical, biochemical, stool, endoscopic, cross-sectional imaging, and histological criteria, 
following European consensus guidelines.34

Cohort 3 (model for external validation): Retrospective data for patients with IBD at the time of admission were 
collected from the laboratory information systems of Meihekou Central Hospital between June 2018 and April 2024. 
Simultaneously, data from non-IBD patients admitted during the same period served as controls.

Data Collection
Clinical data collection encompassed: (1) General information: gender, age; (2) Clinical symptoms: abdominal pain, 
duration of abdominal pain, severity of abdominal pain, abdominal distension, severity of abdominal distension; (3) 
Laboratory test results upon admission: WBC, NE, NE1, LY, LY1, MO, MO1, EO, EO1, BA, BA1, RBC, HCT, HGB, 
MCV) MCH, MCHC, RDW, PLT, PCT, MPV, PDW, Glu, Cr, Ur, TP, ALB, AST, ALT, ALP, GGT, TBIL, DBIL, Ca. 
Data exclusion criteria and imputation strategies were applied: tests with missing rates exceeding 30% were excluded. 
Imputation techniques (median, mean, mode) were selected based on the distribution characteristics of each variable to 
best represent its central tendency.

Research Design
Figure 1 depicts the flowchart for constructing nomogram models for IBD, CD, and UC. Variables that were statistically 
significant in Cohorts 1 and 2 were analyzed for covariance to mitigate potential multicollinearity effects on model 
accuracy. Generally, a Variance Inflation Factor (VIF) greater than 5 suggested potential multicollinearity among 
independent variables, warranting their exclusion. The Least Absolute Shrinkage and Selection Operations (LASSO) 
method was employed to screen characteristics in Cohorts 1 and 2. A 5-fold cross-validation approach was used to train 
the model, with four folds for training and the remaining fold for internal validation. Nine machine learning algorithms— 
Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Light Gradient Boosting Machine (LightGBM), 
Random Forest (RF), Adaptive Boosting Algorithm (AdaBoost), Decision Tree, Gaussian Naive Bayes (GNB), Neural 
Networks (MLP), and Support Vector Machines (SVM)—were deployed to construct prediction models, with their 
performance compared using internal 5-fold cross-validation. The algorithm demonstrating superior performance was 
chosen for further machine learning model development and validation. The parameters from the machine learning 
models established by Cohorts 1 and 2 were merged, and nomogram models were developed using LR. The backward 
elimination method was applied to fit the multivariate model, subsequently generating a nomogram. Cohort 3, used as an 
external test set, facilitated the evaluation of the final optimal model’s diagnostic effectiveness.

Figure 1 The flow chart for constructing nomogram models for IBD, CD, and UC.
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Statistical Analysis
Non-normally distributed variables were expressed as median (Q25, Q75), and the Mann–Whitney U-test was used 
to compare their distributions between groups. Categorical variables were represented as composition ratios, and the 
Chi-square test was utilized to compare distributions between groups, with a two-sided P<0.05 considered indicative 
of a statistically significant difference. The receiver operating characteristic (ROC) curve was used to assess the 
classification effectiveness of the model. The calibration curve was used to evaluate the agreement between the 
model’s predicted probabilities and the observed probabilities.The decision curve analysis (DCA) was employed to 
determine the clinical benefit of the model. LR was employed to develop the nomogram. Data were stored and 
managed using Excel 2016, and statistical analysis was performed using SPSS 22.0. The model construction and 
online presentation were supported by the Deepwise & Beckman Coulter DxAI platform (http://dxonline.deep 
wise.com).

Results
Baseline Characterization
Cohorts 1 and 2 of the study included 3327 IBD patients (1135 CD patients and 2192 UC patients) and 1798 non-IBD 
patients, and 563 IBD patients (237 CD patients and 326 UC patients) and 298 non-IBD patients, respectively. The 
median age at diagnosis was 59 and 38 years for patients in Cohorts 1 and 2 IBD groups, respectively, and 60 and 61 
years for patients in the non-IBD groups, respectively. In Cohorts 1 and 2, 49.26% and 39.43% of IBD patients were 
female, and 49.28% and 22.15% of patients in the non-IBD groups were female. Tables 1 and 2 display the baseline and 
laboratory characteristics of patients in Cohorts 1 and 2, respectively.

Establishment of ML Model
Variables with a VIF greater than 5 were excluded from those with a P value < 0.05 in Tables 1 and 2. Following the 
LASSO feature selection method, 15 and 5 features for IBD, 10 and 8 features for CD, and 11 and 4 features for UC were 
finally selected for modeling in Cohorts 1 and 2, respectively: Cohort 1: IBD: WBC, MCHC, LY1, EO1, MO, DBIL, 
AST, ALB, RDW, severity of abdominal pain, severity of abdominal distension, ALP, hsCRP, age, abdominal pain day; 
CD: abdominal pain days, severity of abdominal pain, hsCRP, RDW, NE, MO, MPV, ALB, ALP, Ca; UC: severity of 
abdominal distension, TP, age, RDW, AST, NE, LY, MO, EO, DBIL, abdominal pain days; Cohort 2: IBD: severity of 
abdominal pain, severity of abdominal distension, age, PLT, MCH; CD: severity of abdominal distension, age, PLT, 
RDW, AST, LY, BA, Cr; UC: severity of abdominal pain, severity of abdominal distension, PLT, ALB (Supplementary 
Figure 1).

Internal 5-fold cross-validation across nine algorithms revealed that LightGBM achieved the highest Area Under the 
Curve (AUC) values for IBD, CD, and UC in Cohort 1, with AUC values of 0.788, 0.722, and 0.841, respectively. In Cohort 
2, XgBoost had the highest AUC value of 0.894 for IBD, while LR had the highest AUC values of 0.932 and 0.778 for CD 
and UC, respectively. The algorithms used in the subsequent modeling were LightGBM, XGBoost, and LR (Table 3). The 
ten variables with the highest importance in Cohort 1 according to the LightGBM algorithm (5-fold cross-validation) were 
selected for subsequent modeling: ML-IBD-1: DBIL, ALB, age, hsCRP, ALP, RDW, AST, EO1, abdominal pain days, 
severity of abdominal distension; ML-CD-1: abdominal pain days, ALB, RDW, NE, hsCRP, severity of abdominal pain, 
ALP, MPV, Ca, MO; and ML-UC-1: DBIL, TP, age, LY, RDW, NE, AST, MO, EO, abdominal pain days. Variables for 
subsequent modeling in Cohort 2 were selected based on the XGBoost and Logistic algorithms (5-fold cross-validation): 
ML-IBD-2: severity of abdominal distension, age, MCH, PLT, severity of abdominal pain; ML-CD-2: severity of 
abdominal distension, age, PLT, Cr, AST, RDW, LY, BA; and ML-UC-2: severity of abdominal distension, ALB, PLT, 
severity of abdominal pain (Figure 2). The performance of each model is shown in Supplementary Figure 2 and 
Supplementary Figure 3.
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Table 1 Baseline and Laboratory Characteristics of Patients in Cohort 1

IBD Group CD Group UC Group Control Group P1 Value P2 Value P3 Value
IBD 

vs Control
CD 

vs Control
UC 

vs Control

Sample size 3327 1135 2192 1798

Age, year 59.00[51.00,67.00] 58.00[50.00,66.00] 60.00[52.00,68.00] 60.00[55.00,67.00] <0.001 <0.001 <0.001

Sex, n(%) 0.319 <0.001 0.113
Female 1639(49.26) 663(58.41) 1025(46.76) 886(49.28)

Male 1688(50.74) 472(41.59) 1167(53.24) 912(50.72)

Clinical symptom, n(%)
Abdominal pain 568(17.07) 238(20.97) 330(15.06) 225(12.51) <0.001 <0.001 0.021

Abdominal pain days 0.00[0.00,0.00] 4.00[2.00,7.00] 4.00[2.00,6.00] 2.00[1.00,5.00] <0.001 <0.001 <0.001

Severity of abdominal pain <0.001 <0.001 0.052
≤3.0 220(38.73) 65(27.31) 118(35.76) 103(45.78)

3.0<x≤6.0 165(29.05) 91(38.24) 129(39.10) 78(34.67)

6.0<x≤10.0 183(32.22) 82(34.45) 83(25.15) 44(19.56)
Abdominal distension 439(13.20) 189(16.65) 250(11.41) 194(10.80) 0.013 <0.001 0.539

Severity of abdominal distension <0.001 0.002 0.002

≤3.0 126(28.70) 51(26.98) 71(28.40) 77(39.70)
3.0<x≤6.0 146(33.26) 75(39.68) 96(38.40) 80(41.24)

6.0<x≤10.0 167(38.04) 63(33.33) 83(33.20) 37(19.07)

Laboratory tests
WBC, ×109/L 6.93[5.97,8.18] 7.09[6.10,8.22] 6.90[5.90,8.16] 6.59[5.60,7.68] <0.001 <0.001 <0.001

NE, ×109/L 4.35[3.60,5.32] 4.57[3.80,5.50] 4.30[3.54,5.29] 4.00[3.28,4.80] <0.001 <0.001 <0.001

NE1, % 63.80[58.10,69.10] 65.10[59.60,70.60] 63.30[57.60,68.10] 61.10[56.20,65.70] <0.001 <0.001 <0.001
LY, ×109/L 1.80[1.42,2.18] 1.72[1.38,2.11] 1.80[1.47,2.20] 1.90[1.58,2.27] <0.001 <0.001 <0.001

LY1, % 26.01[21.00,30.70] 24.70[19.80,29.73] 26.50[21.79,31.10] 28.75[24.71,33.35] <0.001 <0.001 <0.001

MO, ×109/L 0.49[0.39,0.60] 0.47[0.38,0.59] 0.49[0.39,0.60] 0.44[0.36,0.54] <0.001 0.001 <0.001
MO1, % 6.89[5.60,8.20] 6.69[5.43,7.84] 6.98[5.70,8.39] 6.69[5.67,8.03] 0.143 0.09 0.002

EO, ×109/L 0.16[0.10,0.23] 0.14[0.10,0.22] 0.16[0.10,0.23] 0.13[0.10,0.20] <0.001 0.025 <0.001
EO1, % 2.20[1.40,3.40] 2.06[1.30,3.14] 2.28[1.45,3.48] 2.09[1.40,3.10] 0.012 0.661 <0.001

BA, ×109/L 0.02[0.00,0.05] 0.02[0.00,0.04] 0.02[0.00,0.05] 0.02[0.01,0.04] 0.217 0.539 0.178

BA1, % 0.41[0.30,0.67] 0.41[0.30,0.65] 0.41[0.30,0.69] 0.42[0.30,0.62] 0.863 0.489 0.852
RBC, ×1012/L 4.48[4.20,4.75] 4.44[4.16,4.72] 4.50[4.22,4.77] 4.55[4.30,4.82] <0.001 <0.001 <0.001

HCT, L/L 40.80[38.40,43.17] 40.10[37.78,42.69] 41.010[38.770,43.490] 41.550[39.390,43.800] <0.001 <0.001 <0.001

HGB, g/L 14.04[13.20,14.90] 13.80[12.97,14.64] 14.15[13.30,14.97] 14.31[13.54,15.10] <0.001 <0.001 <0.001
MCV, fL 91.20[88.30,94.10] 90.61[87.85,93.70] 91.40[88.53,94.30] 91.28[89.10,93.96] 0.092 <0.001 0.852

MCH, pg 31.42[30.30,32.50] 31.17[30.12,32.30] 31.51[30.43,32.60] 31.50[30.62,32.42] 0.027 <0.001 0.887

(Continued)
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Table 1 (Continued). 

IBD Group CD Group UC Group Control Group P1 Value P2 Value P3 Value
IBD 

vs Control
CD 

vs Control
UC 

vs Control

MCHC, g/L 34.37[33.80,34.99] 34.30[33.72,34.87] 34.40[33.80,35.00] 34.39[33.90,35.00] 0.038 <0.001 0.66
RDW, % 13.53[13.09,14.19] 13.70[13.16,14.36] 13.49[13.04,14.10] 13.23[12.90,13.71] <0.001 <0.001 <0.001

PLT, ×109/L 260.80[226.70,303.00] 266.30[232.00,308.00] 258.40[224.00,300.00] 245.00[214.00,280.90] <0.001 <0.001 <0.001

PCT, % 0.24[0.21,0.27] 0.24[0.21,0.28] 0.24[0.21,0.27] 0.23[0.20,0.25] <0.001 <0.001 <0.001
MPV, fL 9.10[8.49,9.77] 9.00[8.40,9.68] 9.10[8.50,9.84] 9.19[8.60,9.87] <0.001 <0.001 0.03

PDW, % 16.41[16.14,16.76] 16.45[16.14,16.79] 16.41[16.14,16.76] 16.40[16.12,16.75] 0.354 0.154 0.679

Glu, mmol/L 4.93[4.63,5.25] 4.89[4.65,5.22] 4.93[4.62,5.26] 4.91[4.65,5.22] 0.425 0.171 0.05
Cr, μmol/L 71.10[62.10,80.80] 69.70[61.40,80.50] 71.40[62.40,81.00] 71.50[62.70,81.50] 0.116 0.01 0.554

Ur, mmol/L 5.18[4.40,5.96] 5.06[4.31,5.90] 5.20[4.45,5.99] 5.13[4.46,5.92] 0.766 0.075 0.13

TP, g/L 72.73[70.40,74.91] 72.22[69.93,74.56] 72.73[70.66,75.03] 72.07[70.19,74.48] <0.001 0.264 <0.001
ALB, g/L 44.80[43.07,46.11] 43.96[42.44,45.65] 44.87[43.47,46.26] 45.33[43.79,46.80] <0.001 <0.001 <0.001

AST, U/L 24.60[21.10,28.90] 24.30[20.70,28.80] 24.60[21.30,29.00] 24.00[20.00,28.30] 0.006 0.353 0.001

ALT, U/L 20.05[15.43,26.93] 19.24[15.12,26.61] 20.26[15.68,27.06] 20.63[15.83,27.22] 0.01 <0.001 0.153
ALP, U/L 85.40[71.10,100.60] 88.70[73.70,104.00] 84.20[70.10,99.30] 78.20[65.60,91.80] <0.001 <0.001 <0.001

GGT, U/L 27.80[19.30,42.30] 26.40[18.70,39.70] 28.10[19.70,43.60] 26.60[19.00,41.30] 0.057 0.48 0.002

TBIL, μmol/L 7.83[6.26,9.97] 7.35[5.97,9.77] 7.93[6.40,10.06] 8.29[6.81,10.29] <0.001 <0.001 <0.001
DBIL, μmol/L 1.61[1.38,1.94] 1.61[1.39,1.88] 1.61[1.37,1.96] 1.62[1.41,1.93] <0.001 0.002 0.003

Ca, mmol/L 2.37[2.32,2.42] 2.35[2.30,2.41] 2.37[2.32,2.42] 2.37[2.33,2.42] 0.003 <0.001 0.446

hsCRP, mg/L 1.97[1.01,3.93] 2.41[1.22,4.72] 1.82[0.94,3.63] 1.28[0.67,2.51] <0.001 <0.001 <0.001
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Table 2 Baseline and Laboratory Characteristics of Patients in Cohort 2

IBD Group CD Group UC Group Control Group P1 value P2 value P3 value

IBD 
vs Control

CD 
vs Control

UC 
vs Control

Sample size 563 237 326 298

Age, year 38.00[28.00,52.00] 30.00[23.00,38.00] 48.00[34.00,58.00] 61.00[55.00,68.00] <0.001 <0.001 <0.001

Sex, n(%) <0.001 0.193 <0.001

Female 222(39.43) 64(27.00) 158(48.47) 66(22.15)

Male 341(60.57) 173(72.10) 168(51.53) 232(77.85)

Clinical symptom, n(%)

Abdominal pain 288(51.16) 149(62.87) 139(42.64) 288(51.16) <0.001 <0.001 <0.001

Abdominal pain days 365.00[60.00,1460.00] 730.00[300.00,2190.00] 120.00[30.00,1095.00] 365.00[60.00,1460.00] <0.001 <0.001 <0.001

Severity of abdominal pain 0.014 0.091 0.011

2.0<x≤10.0 98(34.15) 1.0<x≤2.0 43(29.05) 2.0<x≤10.0 50(35.97) 2.0<x≤10.0 11(18.03)

≤2.0 189(65.85) 2.0<x≤10.0 48(32.43) ≤2.0 89(64.03) ≤2.0 50(81.97)

≤1.0 57(38.51)

Abdominal distension 63(11.19) 25(10.55) 38(11.66) 34(11.41) 0.923 0.742 0.923

Severity of abdominal distension <0.001 <0.001 0.001

5.0<x≤8.0 29(46.03) 5.0<x≤6.0 1(4.00) 5.0<x≤8.0 14(37.84) 5.0<x≤8.0 6(17.65)

8.0<x≤10.0 18(28.57) 6.0<x≤10.0 17(68.00) 8.0<x≤10.0 12(32.43) 8.0<x≤10.0 2(5.88)

≤5.0 16(25.40) ≤5.0 7(28.00) ≤5.0 11(29.73) ≤5.0 26(76.47)

Laboratory tests

WBC, ×109/L 6.80[5.36,8.76] 6.44[5.22,7.96] 7.11[5.62,9.46] 6.70[5.32,8.78] 0.765 0.103 0.078

NE, ×109/L 4.40[3.23,6.13] 4.19[3.13,5.60] 4.49[3.29,6.68] 4.00[3.28,4.80] 0.434 0.727 0.154

NE1, % 66.00[58.00,73.00] 67.00±11.90 66.00[56.00,73.00] 65.00[56.00,74.00] 0.261 0.108 0.818

LY, ×109/L 1.56[1.20,2.05] 1.42[1.12,1.83] 1.65[1.28,2.22] 1.61[1.22,2.07] 0.626 0.008 0.194

LY1, % 24.00[17.00,31.00] 23.00[17.00,30.00] 24.00[17.00,32.00] 25.00[17.00,33.00] 0.110 0.041 0.401

MO, ×109/L 0.48[0.34,0.64] 0.46[0.32,0.59] 0.50[0.34,0.67] 0.45[0.34,0.60] 0.255 0.601 0.035

MO1, % 7.00[6.00,9.00] 7.00[6.00,8.00] 7.00[6.00,9.00] 7.00[5.00,8.00] 0.295 0.408 0.362

EO, ×109/L 0.10[0.04,0.19] 0.08[0.04,0.15] 0.12[0.05,0.23] 0.11[0.05,0.19] 0.705 0.006 0.122

EO1, % 1.60[0.70,3.00] 1.30[0.60,2.30] 1.80[0.70,3.30] 1.70[0.70,3.00] 0.462 0.017 0.446

BA, ×109/L 0.02[0.01,0.04] 0.02[0.01,0.03] 0.03[0.01,0.04] 0.02[0.01,0.04] 0.040 <0.001 0.721

BA1, % 0.00[0.00,0.01] 0.0000[0.0000,1.00] 0.00[0.00,1.00] 0.00[0.00,1.00] 0.050 0.004 0.524

RBC, ×1012/L 4.39[3.92,4.82] 4.63[4.06,4.92] 4.27[3.86,4.69] 4.38[3.94,4.80] 0.648 0.003 0.095

HCT, L/L 0.38[0.33,0.41] 0.39[0.34,0.42] 0.37[0.32,0.41] 0.40[0.35,0.44] <0.001 0.005 <0.001

HGB, g/L 124.00[105.00,140.00] 126.00[109.00,140.00] 124.00[100.00,139.00] 138.00[120.00,149.00] <0.001 <0.001 <0.001

MCV, fL 86.00[81.70,89.50] 84.90[80.20,88.40] 86.80[82.20,90.40] 90.90[88.10,93.80] <0.001 <0.001 <0.001

MCH, pg 28.90[26.20,30.30] 28.10[25.90,29.80] 29.20[26.70,30.60] 30.90[29.90,32.10] <0.001 <0.001 <0.001

MCHC, g/L 331.00[317.00,341.00] 329.00[316.00,338.00] 333.00[318.00,342.00] 340.00[332.00,347.00] <0.001 <0.001 <0.001

RDW, % 13.30[12.50,14.90] 13.70[12.70,15.30] 13.10[12.50,14.30] 12.70[12.30,13.70] <0.001 <0.001 0.002

PLT, ×109/L 282.00[221.00,368.00] 281.00[218.00,360.00] 284.00[222.00,383.00] 245.00[214.00,280.90] <0.001 <0.001 <0.001

PCT, % 0.28[0.23,0.35] 0.28[0.23,0.35] 0.28[0.23,0.36] 220.00[186.00,263.00] <0.001 <0.001 <0.001

MPV, fL 10.00[9.20,10.80] 10.00[9.30,10.80] 10.00[9.20,10.70] 10.40[9.80,11.00] <0.001 <0.001 <0.001
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Table 2 (Continued). 

IBD Group CD Group UC Group Control Group P1 value P2 value P3 value

IBD 
vs Control

CD 
vs Control

UC 
vs Control

PDW, % 11.00[9.60,12.50] 11.00[9.80,12.60] 10.90[9.50,12.50] 11.90[10.50,13.30] <0.001 <0.001 <0.001

Glu, mmol/L 5.04[4.60,5.84] 4.91[4.50,5.79] 5.10[4.64,5.94] 5.74[5.10,6.95] <0.001 <0.001 <0.001

Cr, μmol/L 63.50[52.70,75.00] 66.70[54.50,77.60] 61.70[51.50,73.90] 69.80[60.30,80.90] <0.001 0.003 <0.001

Ur, mmol/L 4.30[3.38,5.49] 4.50[3.45,5.39] 4.19[3.34,5.68] 5.47[4.61,6.47] <0.001 <0.001 <0.001

TP, g/L 66.90[60.90,71.10] 68.10[62.70,72.60] 65.80[58.70,70.10] 64.10[59.60,68.80] <0.001 <0.001 0.247

ALB, g/L 36.70[31.60,40.60] 38.10[32.50,42.00] 35.80[30.50,39.90] 38.20[33.90,41.40] 0.002 0.453 <0.001

AST, U/L 16.60[13.20,20.70] 16.20[12.80,20.50] 16.60[13.70,21.00] 20.20[16.60,25.70] <0.001 <0.001 <0.001

ALT, U/L 12.40[8.10,18.90] 12.20[7.90,19.70] 12.10[8.40,18.70] 17.30[12.30,26.50] <0.001 <0.001 <0.001

ALP, U/L 66.10[53.90,82.80] 66.00[55.50,84.40] 66.00[51.80,81.80] 68.40[56.41,83.40] 0.156 0.583 0.067

GGT, U/L 18.20[12.40,27.30] 17.00[13.00,25.10] 18.40[11.60,28.00] 24.30[18.20,38.00] <0.001 <0.001 <0.001

TBIL, μmol/L 9.90[7.00,13.80] 10.00[7.00,14.80] 9.80[7.00,13.60] 12.50[9.80,16.40] <0.001 <0.001 <0.001

DBIL, μmol/L 2.70[2.00,3.70] 2.90[2.00,4.00] 2.60[1.90,3.60] 3.00[2.20,3.80] 0.021 0.635 0.003

Ca, mmol/L 2.20[2.07,2.28] 2.23[2.09,2.31] 2.17[2.05,2.27] 2.19[2.10,2.28] 0.531 0.215 0.042

hsCRP, mg/L 13.04[3.25,47.36] 9.33[3.02,30.00] 17.40[3.23,67.00] 8.69[4.98,25.64] 0.183 0.530 0.005
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Table 3 Diagnostic Efficacy of Nine Classifiers in the Validation 
Set for 5-Fold Cross-Validation

Classifier AUC Accuracy Sensitivity Specificity

Cohort 1

IBD

XGBoost 0.781 0.660 0.873 0.622
logistic 0.772 0.705 0.713 0.764

LightGBM 0.785 0.680 0.846 0.638

RandomForest 0.709 0.669 0.550 0.802
DecisionTree 0.537 0.273 0.587 0.490

AdaBoost 0.754 0.708 0.745 0.708
SVM 0.747 0.656 0.669 0.772

MLP 0.639 0.589 0.642 0.670

GNB 0.741 0.708 0.728 0.700
CD

XGBoost 0.794 0.682 0.761 0.747

logistic 0.784 0.726 0.697 0.831
LightGBM 0.796 0.693 0.774 0.720

RandomForest 0.790 0.704 0.643 0.818

DecisionTree 0.646 0.486 0.630 0.662
AdaBoost 0.759 0.670 0.697 0.769

SVM 0.708 0.646 0.702 0.689

MLP 0.591 0.592 0.449 0.804
GNB 0.756 0.698 0.698 0.751

UC

XGBoost 0.790 0.633 0.808 0.721
logistic 0.716 0.646 0.632 0.748

LightGBM 0.812 0.698 0.800 0.726

RandomForest 0.754 0.662 0.700 0.732
DecisionTree 0.641 0.437 0.684 0.598

AdaBoost 0.756 0.707 0.748 0.716

GNB 0.703 0.639 0.664 0.696
MLP 0.635 0.588 0.480 0.805

SVM 0.685 0.631 0.668 0.691

Cohort 2
IBD

XGBoost 0.930 0.786 0.911 0.927

logistic 0.878 0.743 0.911 0.847
LightGBM 0.913 0.814 0.864 0.927

RandomForest 0.899 0.814 0.886 0.887

DecisionTree 0.740 0.371 0.753 0.727
GNB 0.904 0.814 0.886 0.887

AdaBoost 0.864 0.714 0.775 0.927

SVM 0.784 0.729 0.753 0.853
MLP 0.180 0.371 0.022 1.000

CD

XGBoost 0.940 0.891 1.000 0.871
logistic 0.973 0.927 0.960 0.938

LightGBM 0.879 0.802 0.960 0.810

RandomForest 0.953 0.856 0.880 0.971
AdaBoost 0.973 0.802 1.000 0.938

DecisionTree 0.870 0.571 0.830 0.910

GNB 0.913 0.855 0.920 0.905

(Continued)
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Establishment of Nomogram Models
The parameters of ML-IBD-1 and ML-IBD-2, ML-CD-1 and ML-CD-2, and ML-UC-1 and ML-UC-2 were merged, 
respectively. Using multifactorial LR with the backward elimination method, the nomogram model for IBD included age, 
DBIL, ALP, RDW, abdominal pain days, and hsCRP. For CD, the nomogram model comprised abdominal pain days, RDW, 
NE, hsCRP, Ca, age, and AST. For UC, the nomogram model comprised ALB, TP, DBIL, age, RDW, NE, AST, EO, and 
abdominal pain days (Figure 3). Internally validated ROC curve results showed that the nomogram-IBD, nomogram-CD, and 
nomogram-UC models had excellent classification ability in the diagnosis of IBD, CD, and UC, respectively (nomogram-IBD 
AUC = 0.778, 95% CI (0.688–0.868); nomogram-CD AUC = 0.744, 95% CI (0.710–0.778); nomogram-UC AUC = 0.702, 
95% CI (0.591–0.814)). The calibration curves showed that the sample probabilities of the nomogram-IBD, nomogram-CD, 

Table 3 (Continued). 

Classifier AUC Accuracy Sensitivity Specificity

MLP 0.777 0.800 0.790 0.900

SVM 0.850 0.712 0.920 0.805
UC

XGBoost 0.824 0.749 0.790 0.880

logistic 0.864 0.769 0.830 0.960
LightGBM 0.500 0.522 0.000 1.000

RandomForest 0.858 0.769 0.790 0.920

AdaBoost 0.760 0.724 0.710 0.920
DecisionTree 0.715 0.522 0.630 0.800

GNB 0.852 0.771 0.870 0.920

MLP 0.232 0.502 0.050 1.000
SVM 0.776 0.724 0.780 0.840

Figure 2 Importance of the top ten features of two Cohort ML models. The top ten features of Cohort 1 and Cohort 2 ML models. (a) ML-IBD-1 model. (b) ML-CD-1 
model. (c) ML-UC-1 model. (d) ML-IBD-2 model. (e) ML-CD-2 model. (f) ML-UC-2 model.
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and nomogram-UC models were in good agreement with the predicted probabilities. DCA results indicated that the above 
models had high clinical benefits (Figure 4).

External Validation of Nomogram Models
In Cohort 3, the study recruited 314 patients with IBD (117 with CD and 197 with UC) alongside 241 non-IBD patients. 
External validation (5-fold cross-validation) results for nomogram-IBD, nomogram-CD, and nomogram-UC models, as 
indicated by ROC curve analyses, demonstrated their stable and superior diagnostic ability for Cohort 3: nomogram-IBD 
AUC = 0.758, 95% CI (0.683–0.832); nomogram-CD AUC = 0.791, 95% CI (0.717–0.865); nomogram-UC AUC = 
0.817, 95% CI (0.702–0.932). DCA for all three models demonstrated favorable clinical performance. ROC curves and 
DCA are presented in Figure 5.

Figure 3 Nomogram models. (a) nomogram-IBD model. (b) nomogram-CD model. (c) nomogram-UC model. Each variable was assigned a point, and the total points of 
each variable together corresponded to the risk probability of disease.

Figure 4 Performance nomogram models in 5-fold cross-validation. The calibration curve of nomogram models: (a) nomogram-IBD model. (b) nomogram-CD model. (c) 
nomogram-UC model. Decision curve analysis of nomogram models: (d) nomogram-IBD model. (e) nomogram-CD model. (f) nomogram-UC model.
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Discussion
This study had the following innovative findings: (1) Predictive models for IBD and its subtypes were developed using 
clinical symptoms, including age, and routine laboratory parameters to enable rapid, noninvasive diagnosis of patients 
with IBD. (2) The model’s discrimination, calibration, and clinical utility were assessed across diverse racial populations, 
using the UKB database for modeling and data from a tertiary care hospital in China for external validation, thus 
providing a comprehensive evaluation of the model’s predictive capabilities.

Selecting Features and Optimal Algorithms for ML Models
In ML modeling, data and features set the upper limit of model performance, with the algorithm striving to approach this 
limit as closely as possible. To optimize model predictive performance, the study implemented rigorous data preproces-
sing and employed two feature selection methods. During data preprocessing, missing and outlier values were addressed, 
and the data were standardized. The LASSO method selected the most predictive features, eliminating redundancy and 
multicollinearity. Among the nine machine learning algorithms—XgBoost, LR, RF, LightGBM, AdaBoost, GNB, MLP, 
SVM, and Decision Tree—XGBoost, LR, and LightGBM emerged as the optimal choices. XGBoost, LR, and LightGBM 
were distinguished for their ability to prevent overfitting and to be finely tuned for unbalanced datasets compared to other 
algorithms.

Nomogram Modeling and Variable Analysis
The study merged the parameters of the ML models in Cohorts 1 and 2 and generated nomograms using LR and 
backward elimination. Both developed models, ML and nomogram, demonstrated good diagnostic efficiency. The ML 
model performed well in discrimination and further validation tests, albeit with less clarity. Conversely, the nomogram 
model was characterized by its simplicity, transparency, and ease of understanding. This study combined the strengths of 
both models—the ML model’s accuracy and the nomogram model’s transparency—to significantly enhance the clinical 
diagnosis of IBD.

Figure 5 Performance of external validation of ML models. The ROC curve of nomogram models: (a) nomogram-IBD model. (b) nomogram-CD model. (c) nomogram-UC 
model. DCA of nomogram models: (d) nomogram-IBD model. (e) nomogram-CD model. (f) nomogram-UC model.
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Age, abdominal pain days, and RDW associated with IBD pathogenicity were incorporated into the nomogram-IBD, 
nomogram-CD, and nomogram-UC models simultaneously. IBD predominantly affects young adults, with peak ages for 
UC and CD being 20–49 and 18–35 years, respectively.35 Research indicates that age is a pivotal factor in models 
predicting IBD, with its characteristic importance value reaching as high as 1.75 in prior studies.17 In the ML model 
established in this study, age was also an important factor in distinguishing between IBD, including its subtypes, and non- 
IBD patients.Some studies have shown that the activity of inflammatory bowel disease is closely related to the 
occurrence and duration of abdominal pain.36,37 The pathogenesis of pain in IBD patients is not yet clear, but there 
are several potential pathological mechanisms, including inflammation, intestinal obstruction, psychological, socio-
psychological, neurobiological, and genetic factors.38 Therefore, effective disease management and treatment can help 
reduce the number of days of abdominal pain and improve the quality of life of patients.39 Anemia is the most common 
extraintestinal manifestation of IBD, with the main types being iron deficiency anemia (IDA), inflammatory anemia, and 
anemia of chronic disease (ACD). IDA is most commonly a result of chronic inflammation of the small and large 
intestinal epithelium, reduced absorption by intestinal cells, and chronic gastrointestinal bleeding.40 Among red blood 
cell parameters, RDW is a classic and strong biomarker for diagnosing IDA, with good sensitivity and specificity. 
However, it is not very useful in differential diagnosis and remains a quite common abnormal biomarker.41

In addition, studies have shown that about 30% of IBD patients exhibit elevated liver enzymes (GGT, ALT, AST, 
ALP) and significant symptoms of liver injury.42 Primary sclerosing cholangitis (PSC) is the most common hepatic and 
biliary manifestation of IBD and is more common in UC.43 A large-scale population study conducted by Bernstein et al 
in Canada on the extraintestinal manifestations of IBD included 4454 patients and found that the incidence of PSC in UC 
patients was 2%, while the incidence in CD patients was 0.4%.44 This study included DBIL, ALB, and TP, which are 
related to liver injury symptoms, in the nomogram UC model.

Meanwhile, this study incorporated hsCRP and Ca into the nomogram CD model. hsCRP, an acute-phase protein 
produced by liver cells in response to inflammation (eg, microbial invasion, tissue damage), rises within a few hours of 
the onset of inflammation and reaches its peak value within 48 hours.45 In seeking non-invasive diagnostic solutions for 
IBD, hsCRP has been employed as a marker.46 The correlation between disease activity and CRP is stronger in Crohn’s 
disease than in UC; however, this depends on the severity and location of the disease.47 A study of 435 patients in South 
Korea found that, compared to patients with isolated ileal disease, patients with ileal or colonic Crohn’s disease are more 
likely to experience elevated CRP.48 Vitamin D is a fat-soluble vitamin with the active form of calcitriol or 1.25- 
dihydroxyvitamin D3 (1,25(OH)2D3), which regulates bone, calcium, and phosphorus metabolism. Vitamin D can 
promote the absorption of calcium in the intestine and regulate the absorption and release of calcium in the bones, 
thereby maintaining normal serum calcium balance. A study has shown that 27% of CD patients and 15% of UC patients 
have vitamin D deficiency (25-hydroxyvitamin D3 < 30 nmol/L). In addition, compared to UC patients, the average 
concentration of 25-hydroxyvitamin D3 in CD patients was significantly reduced.49

IBD patients often exhibit abnormal whole blood cell count parameters at the onset of the disease.50 The etiology and 
pathogenesis of IBD include intestinal barrier dysfunction and dysregulation of the intestinal mucosal immune system, 
both of which can be influenced by eosinophils. The abundance of eosinophils is related to the severity of the disease.51 

In addition, Manousou et al described an increase in the expression of the eotaxin receptor CCR3 in colon biopsy 
samples from UC patients, rather than CD patients.52 Given the different activation patterns of colon eosinophils 
described by Lampinen et al, the comparison between UC and CD becomes more pronounced, indicating that activated 
eosinophils persist in the lamina propria of UC patients during disease remission, but not in CD patients.53 Meanwhile, 
this study showed that EO was only included in the nomogram UC model. Patients with IBD have been found to exhibit 
significantly higher peripheral blood Neutrophil-to-Lymphocyte Ratio (NLR) values than controls.54 The NLR consists of 
two critical immune system components: lymphocytes, key to the inflammatory response, and neutrophils, central to the 
innate immune mechanism. Thus, an imbalance in the inflammatory phase may lead to a higher NLR.55

This study demonstrates that a machine learning predictive model based on simple, accessible, and widely applied 
blood biomarkers, along with clinical manifestations of patients, can support the diagnosis of IBD. Pei et al included 414 
IBD patients and employed four machine learning models to evaluate the diagnostic and predictive value of peripheral 
blood routine parameters in distinguishing UC from CD. The multilayer perceptron artificial neural network model based 

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S378069                                                                                                                                                                                                                                                                                                                                                                                                   5127

Dong et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



on peripheral blood routine parameters exhibited good performance. However, a larger sample size and additional models 
are needed for further investigation.56 Reddy and colleagues compared traditional regression models with GBM learning 
models. They constructed a decision support tool using ML methods with a large electronic medical records system, 
Cerner EMR, for the real-time diagnosis of CD patients. However, due to missing data, only 82 patients were available 
for analysis and model development. This study is also considered to have a high risk of bias and concerns regarding its 
applicability.57

Validation of ML Models
In this study, models were constructed using a large dataset from the UKB and a tertiary hospital in China. The models 
demonstrated robust performance and reliability in internal validation regarding differentiation, calibration, and utility. 
Reliable external validation was conducted at another tertiary hospital in different regions of China, and the models 
demonstrated strong diagnostic performance across different ethnic groups, thereby enhancing the generalizability of the 
research results. The limited sample sizes of Cohorts 2 and 3, offering fewer data points, could potentially affect the 
fitting accuracy and stability of the calibration curves. Compared to traditional diagnostic methods, the research models 
can be integrated into computerized decision-aid tools, offering rapid diagnostic predictions through the automated 
analysis of clinical features, potentially reducing the time from initial presentation to confirmed diagnosis. In conclusion, 
the models’ applicability across various countries could significantly aid clinicians in diagnosing IBD and implementing 
effective therapeutic interventions.

This study had several limitations: it was limited to clinical presentations and laboratory data, excluding imaging 
findings. Furthermore, genetic analysis data were not included in the clinical data analysis. As gene sequencing 
technology advances in clinical applications, integrating clinical and genetic data will become increasingly valuable 
for disease risk prediction, diagnosis, and prognosis.

Conclusion
This study involved constructing IBD, CD, and UC models using the UKB database and data from IBD and non-IBD 
patients at a tertiary hospital in China, with external validation using data from another tertiary hospital in 
a different region. This study used machine learning algorithms to select the optimal one from nine machine 
learning algorithms. Cohort 1 used LightGBM, while Cohort 2 used XGBoost and LR algorithms to develop an ML- 
IBD risk prediction model based on conventional laboratory parameters. Machine learning features from the two 
cohorts were merged to construct a nomogram model. Internal and external validation showed that the nomogram 
IBD, nomogram CD, and nomogram UC models have good accuracy in distinguishing between IBD and non-IBD 
patients. These models can be integrated into computer-aided decision-making tools to provide rapid diagnostic 
predictions.
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MCHC, Mean corpuscular hemoglobin concentration; RDW, Red blood cell distribution width; PLT, Platelet count; PCT, 
Plateletcrit; MPV, Mean platelet volume; PDW, Platelet distribution width; Glu, Glucose; Cr, Creatinine; Ur, Urea; TP, 
Total protein; ALB, Albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phos-
phatase; GGT, γ-glutamyl transpeptidase; TBIL, Total bilirubin; DBIL, Direct bilirubin; Ca, Calcium; VIF, Variance 
Inflation Factor; LASSO, Least Absolute Shrinkage and Selection Operations; XgBoost, Extreme Gradient Boosting; RF, 
Decision Tree, Random Forest; LightGBM, Lightweight Gradient Boosting Machine Learning; AdaBoost, Adaptive 
Boosting Algorithm; GNB, Gaussian Plain Bayes; MLP, Neural Networks; SVM, Support Vector Machines; KNN, 
K Nearest Neighbor; ROC, receiver operating characteristic; DCA, decision curve analysis.
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