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Background: Accurate risk prediction of exacerbations in asthma patients promotes personalized asthma management.
Objective: This systematic review aimed to provide an update and critically appraise the quality and usability of asthma exacerbation 
prediction models which were developed since 2017.
Methods: In the Embase and PubMed databases, we performed a systematic search for studies published in English between 
May 2017 and August 2023, and identified peer-reviewed publications regarding the development of prognostic prediction models 
for the risk of asthma exacerbations in adult patients with asthma. We then applied the Prediction Risk of Bias Assessment tool 
(PROBAST) to assess the risk of bias and applicability of the included models.
Results: Of 415 studies screened, 10 met eligibility criteria, comprising 41 prediction models. Among them, 7 (70%) studies used 
real-world data (RWD) and 3 (30%) were based on trial data to derive the models, 7 (70%) studies applied machine learning 
algorithms, and 2 (20%) studies included biomarkers like blood eosinophil count and fractional exhaled nitric oxide in the model. 
PROBAST indicated a generally high risk of bias (80%) in these models, which mainly originated from the sample selection 
(“Participant” domain, 6 studies) and statistical analysis (“Analysis” domain, 7 studies). Meanwhile, 5 (50%) studies were rated as 
having a high concern in applicability due to model complexity.
Conclusion: Despite the use of big health data and advanced ML, asthma risk prediction models from 2017–2023 had high risk of 
bias and limited practical use. Future efforts should enhance generalizability and practicality for real-world implementation.
Keywords: adults, asthma, exacerbation, prediction model, risk

Introduction
In 2019, asthma was estimated to affect 262 million people worldwide by the Global Burden of Disease collaboration,1 

contributing to substantial economic burdens.2–4 The milestones of asthma management are to optimize asthma symptom 
control and prevent the risk of adverse outcomes in particular asthma exacerbations.5 Asthma exacerbation is defined as 
acute or subacute episodes of progressively worsening symptoms, with severe exacerbations requiring the consecutive 
use of oral corticosteroids (OCS) and/or leading to emergency department (ED) visits and hospitalizations.6 The ongoing 
risk of exacerbation is a major source of asthma burden, especially in severe asthma patients. In 2016, 46.9% of 
asthmatics in the United States had at least one asthma exacerbation in the prior year.7 Asthma exacerbations are 
associated with accelerated lung function decline, contributing to worse long-term outcomes and quality of life.8 

Accurate prediction of exacerbations in asthma patients could improve the efficiency of preventive intervention and/or 
treatment escalation, promote shared decision-making, and ultimately improve patient outcomes.9

To date, commonly used risk prediction tools for asthma exacerbations are limited in number. In 2018, Loymans et al 
reviewed and validated 12 asthma exacerbation risk prediction models that were published globally up to April 2017.10 

Due to unsatisfactory prediction accuracy, none of these models were applicable for clinical use. In recent years, several 
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new biomarkers such as blood eosinophil count (BEC) and nitric oxide were found to be predictive of risk of asthma 
exacerbations, and hence were included only in a few new asthma risk prediction models.11,12 Meanwhile, advancements 
in big data analytics such as machine learning (ML) algorithms may further improve the accuracy of asthma risk 
prediction.13 In 2023, Xiong et al14 extended the review to ML-based asthma risk prediction models that were published 
up to 2021. However, their strict inclusion criteria which required externally validated models with clear description of 
ML methodology had led to the omission of several commonly used models, such as the Oxford Asthma Attack Risk 
Scale (ORACLE).15 To bridge this knowledge gap, this study aimed to update the systematic review of new prediction 
models for exacerbations in adult asthma patients between May 2017 and August 2023, and critically appraised the risk 
of prediction bias and model applicability.

Materials and Methods
Systematic Literature Review
We performed a systematic search in the Embase and PubMed databases for studies published between May 1st 2017 and 
Aug 31st 2023. The search criteria were summarized in Appendix file Table A1, and the search strategy was listed in 
Table A2.

Studies were independently selected by two reviewers based on their titles and abstracts. We included studies focused 
on adult patients (age ≥ 18 years) with asthma, aimed to develop one or more prognostic models to predict the risk of 
asthma exacerbations within a certain time frame, with a goal to identify patients at differential risk of asthma 
exacerbations in the future. Of note, we only included peer-reviewed studies that were published and/or translated into 
English. On the other hand, we excluded studies which were only focused on identifying and/or evaluating important 
predictors of asthma exacerbation but did not develop or update any risk prediction equations or composite risk scores. 
We also excluded studies which were focused on predicting the overall asthma impairment but not exact exacerbations, 
such as the studies that combined asthma control and exacerbation into a composite outcome.16 In addition, we also 
excluded studies that did not build any risk prediction tools.

Data Extraction
Two independent reviewers performed data extraction for study information (author’s name, publication year, and 
setting), characteristics of study population (number, age, sex, and inclusion criteria), study purpose and outcome, and 
model specifications (statistical analysis, model presentation, predictors, and performance).

Risk of Bias and Model Applicability
The potential risk of prediction bias of the included models was assessed using a well-established and commonly used 
checklist, namely the Prediction Risk of Bias Assessment Tool (PROBAST).17 This tool has been widely applied in 
systematic reviews of prediction model studies and has demonstrated reliability in assessing the development, validation, 
and updating of multivariable prediction models.18,19 Two parts constituted the tool. Part 1 consisted of 4 domains 
(Participants, Predictors, Outcome, and Analysis), with 20 signaling questions to assess model risk of bias (ROBs). Each 
component in Part 1 was graded as “yes”, “probably yes”, “no”, “probably no”, or “unclear” for the evaluation of model 
ROB. Part 2 evaluated model applicability in the domains of Participants, Predictors and Outcomes with 4 signaling 
questions. Each component in Part 2 was classified as “low”, “high” or “unclear” concerns for model applicability. And 
for both ROB and applicability, if there was at least one high domain, the overall evaluation result would be high. If there 
was at least one unclear domain and no high domain, the overall result would be unclear. Otherwise, the overall result 
would be low.

Results
Figure 1 shows the flowchart of study selection. From 415 searched records, we reviewed 27 relevant studies with full 
text, of which 17 were excluded. The most common reason for exclusion was that the outcome was not direct 
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exacerbation measures, but rather a derived composite of asthma exacerbation and symptom control. A total of 10 studies 
were included in this review, which reported 41 prediction models.20–29

Study Characteristics
Table 1 presents the study information and model specifications of the included studies, and a detailed summary of the 
included studies is presented in Appendix Table A3. Among the 10 studies, 8 (80%) studies20–22,24–26,28,29 developed the 
prediction models for use in clinical settings, while 2 (20%) studies23,27 developed prediction models for home 
monitoring. For the derivation cohort, 3 (30%)21,23,25 used derivation data from multiple countries, and 7 (70%) used 
single-country data (the USA,20,24,27,28 Canada,26 Sweden,22 and Korea29). 6 (60%) studies20–22,26,28,29 built the model 
using electronic health records, 3(30%)23,25,27 used clinical trial data, and 1 (10%) study24 collected data through 
a longitudinal study design. Regarding derivation cohort size, great variation was observed, ranging from 298 to over 
90,000 patients. Outcome definition was rather consistent, all of which included 1 or more of the following components: 
courses of systemic corticosteroids, outpatient visits, ED visits, and/or hospitalizations due to asthma exacerbation. In 
particular, 4 (40%) studies20,23,25,27 adopted the American Thoracic Society/ European Respiratory Society (ATS/ERS) 
Task Force criteria,30 to define severe exacerbation as a lung attack which required the use of systemic corticosteroids for 
at least 3 days, and/or an ED visit and/or hospitalization because of asthma. The time frame of the prediction ranged from 
3 days to 12 months. Regarding predictor selection, 2 (20%) studies25,29 included biomarkers in the prediction model, 
such as BEC and fractional exhaled nitric oxide (FeNO). Meanwhile, 6 (60%) studies21–23,27–29 did not report the final 
list of selected predictors, and all these studies applied ML algorithms that often utilized implicit knowledge 

Figure 1 Overview of systematic literation search.
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representation and reasoning, such as decision trees, random forests, and extreme gradient boosting (XGBoost). For the 
remaining 4 studies, they used statistical approaches to derive the prediction equation.20,24–26 Notably, all of these studies 
had described included predictors, with the number of predictors ranging between 4 and 24. Among these latter 4 studies, 
the most common predictors were indicators of health resource utilization, use of asthma medications, historical 
exacerbations, and healthcare visits. For the model performance, 8 (80%) studies20,21,23,24,26–29 reported area under the 
curve (AUC) as the indicator of discrimination, and only 1 of 10 (10%)26 adopted the measurement of calibration.

Risk of Bias and Applicability
For ROBs, Figure 2 shows the rating (high, low, unclear) in four domains (Participants, Predictors, Outcomes, and 
Analysis) of each study and Figure 3 presents the summary results. Detailed ratings for all 19 questions are presented in 
Table 2 and Figure A1. For model applicability, Figures 4 and 5 respectively present the individual study ratings and 
summarized results in three domains (Participants, Predictors, and Outcomes). Overall, 8 out of 10 studies were rated as 
high ROBs, while 5 out of 10 studies were classified as high concerns in applicability.

For the Participants domain, 6 studies (60%) were rated as having high ROBs. Using RWD sources such as 
retrospective cohorts and health administrative data without a predefined protocol as the derivation dataset was the 
main source of bias in 5 studies (50%). Concern regarding applicability in the Participants domain was rated as high level 

Table 1 Overview of Identified Prediction Reports (n=10) and Models (n=41)

Reference Quality No. of 
Models 

Reported

Population Events/ 
Population 

Size (%)

Outcome 
Definition

Prediction 
Horizon 

(mo)

Modeling 
Technique

No. of 
Predictors in 

Reported 
Models

Bias Applicability

Lee et al, 202329 High High 1 Tertiary care 
EMRs

112/803 
(13.9)

OCS, FEV1 

decline/ED/ 
HOS

12 NR 18

Lugogo et al, 202227 High High 3 RCT NR/298 ATS/ERS 1/6 (5 days) LR, RF, GBM ML selected

Couillard et al, 202225 High High 1 RCT NR/3051 ATS/ERS 12 Risk scale 4

Lisspers et al, 202122 High High 4 Primary care 
EMRs

1220/ 
3,204,007 
(0.038)

OCS/ED/ 
HOS

0.5 XGBoost, 
GBM, RF, 
LR, RNN

ML selected

Inselman et al, 202328 High Low 3 Mixed care 
EHRs

552/2447 
(22.6)

OCS/ED/ 
HOS

6 LR, RF, GBM 27

Beuther et al, 202224 High Low 2 Mixed care 
longitude study

489/1070 
(45.7)

OCS/HOS/ 
OP

12 LR, Cox 5

Martin et al, 202020 High Low 1 Mixed care 
administrative 
database

979/1787 
(54.8)

ATS/ERS 12 LR 14

Zhang et al, 202123 Unclear High 4 RCT 576/728,535 
(0.079)

ATS/ERS 1/10 (3 days) DT, NB, LR, 
NN

80 (after PCA)

Xiang et al, 202021 High Unclear 10 Mixed care 
administrative 
database

2262/31,433 
(7.2)

OCS/ED/ 
HOS

The 5th visit 
of one year

LR, MLP, 
RNN

ML selected

Jiao et al, 202226 Low Low 12 Primary care 
administrative 
database

NR/98823 OCS/ED/ 
HOS

12 LR, RF, GBM 193

Notes: American Thoracic/ European Respiratory Society (ATS/ERS) severe exacerbations defined according to American Thoracic/ European Respiratory Society criteria: 
Systemic corticosteroids (SCSs) for at least 3 days, or an ED visit and/or hospitalization due to asthma requiring SCSs. This table shows summary details for 41 prediction 
models from the 10 reports identified in the systematic review. More details about the models are available in Table A2. 
Abbreviations: ED, emergency department; HOS, hospitalization; OP, outpatient; NR, not reported; OCS, oral corticosteroid; CT, controlled trial; RCT, randomized 
controlled trial; LR, logistic regression; DT, decision tree; RF, random forest; GBM, Gradient Boosting Machines; XGBoost, Extreme Gradient Boosting; NN, Neural 
Networks; RNN, Recurrent Neural Networks; NB, Naïve Bayes; MLP, Multilayer Perceptron; PCA, Principal Component Analysis.
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in 4 studies (40%), mainly because those studies derived their models from controlled trials which were conducted in 
restricted, experimental clinical environments.

9 out of 10 studies (90%) were considered to have low ROBs in the Predictors domain, because their definitions and 
measurements of the predictors were assessed as appropriate by the PROBAST tool. There was only 1 study (10%) rated 
as having unclear risk because it did not sufficiently describe the measurements of predictors. Meanwhile, 1 study (10%) 
was associated with high concern of model applicability in the Predictors domain mainly because of model complexity 
(e.g., derived from a large electronic medical records database with an extensive list of predictors); 2 studies (20%) were 
associated with unclear concern of model applicability because relevant information about predictors was not reported.

In the Outcomes domain, all studies reported low ROBs, which indicated suitable outcome determinations as most 
studies defined their outcomes using ATS/ERS criteria.30 Concerns related to “outcomes” applicability were low given 
the consistent definition of asthma exacerbation using valid records of OCS use, ED, and/or inpatient encounters.

Figure 2 Traffic light plot for risk of bias assessment.

Figure 3 Summary plot for risk of bias assessment.
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Table 2 PROBAST Signaling Questions for Model Development and Validation Analysis

Signaling 
question No.

Signaling question Studies (n = 10)

Yes or 
probably yes

No or 
probably no

No 
information

Participants domain

1.1 Were appropriate data sources used? 4 6 0

1.2 Were all inclusions and exclusions of participants appropriate? 10 0 0

Predictors domain

2.1 Were predictors defined and assessed in a similar way for all 

participants?

9 0 1

2.2 Were predictor assessments made without knowledge of 

outcome 
data?

9 0 1

2.3 Are all predictors available at the time the model is intended to 
be used?

10 0 0

Outcome domain

3.1 Was the outcome determined appropriately? 10 0 0

3.2 Was a prespecified or standard outcome definition used? 10 0 0

3.3 Were predictors excluded from the outcome definition? 10 0 0

3.4 Was the outcome defined and determined in a similar way for all 
participants?

10 0 0

3.5 Was the outcome determined without knowledge of predictor 
information?

10 0 0

3.6 Was the time interval between predictor assessment and 
outcome determination?

10 0 0

Analysis domain

4.1 Were there a reasonable number of participants with the 

outcome?

10 0 0

4.2 Were continuous and categorical predictors handled 

appropriately?

8 1 1

4.3 Were all enrolled participants included in the analysis? 7 1 2

4.4 Were participants with missing data handled appropriately? 3 3 4

4.5 Was selection of predictors based on univariable analysis avoided? 8 1 1

4.6 Were complexities in the data accounted for appropriately? 10 0 0

4.7 Were relevant model performance measures evaluated 

appropriately?

1 0 9

4.8 Were model overfitting and optimism in model performance 

accounted for?

7 3 0

Notes: Signaling question 4.9 “Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis?” was not 
included as it applies to regression-based studies, and there were many studies applying machine learning algorithms without detailed coefficient.
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In the Analysis domain, 8 studies (80%) were classified as having high ROBs. All these high ROBs studies lacked 
calibration evaluation and appropriate internal validation. Meanwhile, 7 studies (70%) did not have detailed descriptions 
about how the missing values were handled or simply excluded cases with missing data, resulting high ROBs.

Subgroup Analysis
Based on the PROBAST result, we categorized the 10 included studies into four distinct subgroups.

Studies with both high ROBs and high concerns regarding applicability (n = 9 models from 4 studies)22,25,27,29 

reported the highest AUC performance among the four groups, with a median AUC of 0.84 (range: 0.83–0.85), predicting 
impending exacerbations within a time frame ranging from 5 days to 1 year. Their high ROBs were largely due to 
retrospective study designs and inadequate handling of missing data. Meanwhile, the high concern for applicability was 

Figure 4 Traffic plot for applicability assessment.

Figure 5 Summary plot for applicability assessment. Figures 2–5 were generated using the robvis tool developed by McGuinness and Higgins (2021).31
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primarily associated with the use of randomized control trials (RCTs) with small sample sizes or real-world single-center, 
local datasets, which restricted model generalizability.

The subgroup with high ROBs but low concerns for applicability (n = 6 models from 3 studies)20,24,28 had generally 
lower predictive performance, with a median AUC of 0.72 (range: 0.67–0.74). Similarly, high ROBs were mainly due to 
retrospective study designs. However, overfitting was a distinct issue with this subgroup, which was mainly owing to the 
absence of internal validation or the use of simple holdout validation. Concerns regarding applicability were low, as these 
models were derived from data of mixed care settings and multiple medical centers.

Studies with unclear ROBs or applicability concerns (n = 14 models from 2 studies)21,23 were associated with a lack 
of transparency. The predictive AUCs of models in this subgroup ranged from 0.60 to 0.85. Both studies employed neural 
networks, but did not disclose details on data preprocessing, feature selection criteria, selected predictors, and evaluation 
strategies.

On the other hand, Jiao 2022 (n = 12 models)26 was the only study with both low ROBs and applicability concerns. 
These models achieved moderate AUCs, ranging between 0.69 and 0.72. The study retrieved health administrative data 
with low missingness from one Canadian province to predict asthma exacerbation risk in the upcoming year. Elastic-net 
regularized logistic regressions were performed. Essential predictors were mostly demographics and asthma medication 
use. Although external validity had yet to be confirmed, the large population size (N=109,536) and cross-validation 
method enhanced validity and generalizability for the targeted population – local patients in the province.

Discussion
Loymans reviewed 12 asthma risk prediction studies up to 2017 and concluded that none were suitable for immediate use in 
general practice.10 In 2023, Xiong et al reviewed 11 additional studies by 2022, focusing on ML-based models.14 Extending 
from the reviews by Loymans 201710 and Xiong 2023,14 we conducted a systematic review and ROB assessment on asthma 
risk prediction models published between May 2017 and August 2023. A total of 10 new studies were identified from an 
initial search of 415 studies, encompassing 41 risk prediction models for asthma exacerbations. All studies focused on adult 
asthma patients without specifying disease severity. Our findings confirmed that the recent mainstream approach in asthma 
risk prediction was the integration of RWD and ML algorithms into modeling. Seven out of ten studies were based on RWD, 
with six studies relying on routinely collected electronic health records (EHRs)20–22,26,28,29 and one based on a longitudinal 
cohort study,24 while the remaining studies used data from clinical trials.23,25,27 Meanwhile, seven studies applied ML 
algorithms.21–23,26–29 However, these models faced significant challenges in clinical implementation due to generally high 
ROBs and concerns of low applicability.

In Loymans’ review,10 4 out of the 12 studies used basic Classification and Regression Trees (CART) models. Although 
Xiong’s review14 focused exclusively on ML-based prediction models, the modeling methods were mainly limited to 
traditional tree-based ML algorithms like decision trees, random forests, and boosting. In our review of the 10 newest 
studies, more sophisticated and time-sensitive neural network models — such as long short-term memory (LSTM) and 
recurrent neural networks (RNNs) — have been employed, even to incorporate temporal dynamics into risk prediction.32 

However, advancement in prediction algorithms did not guarantee improvement in predictive performance. For instance, 
Xiang and colleagues applied LSTM to predict asthma exacerbations, but model discrimination was moderate (maximum 
AUC = 0.70).21 In addition, these newer models included T2 inflammatory biomarkers in asthma risk prediction, such as 
BEC and FeNO, which were demonstrated to be strong predictors of asthma exacerbations.12,33–35 In one study conducted 
by Lee et al, BEC had the highest feature importance in Shapley Additive exPlanations (SHAP), and the model achieved 
a maximum AUC of 0.85, the highest among 10 reviewed studies.29 In Xiong’s review, two studies included new 
biomarkers such as volatile organic compounds and single nucleotide polymorphisms.36,37 In our reviewed studies, 
however, no such new biomarkers were included. While new biomarkers, such as serum soluble ST2 levels, periostin, 
and dipeptidyl peptidase-4, can potentially enhance asthma endotyping and phenotyping,38 their measurement requires 
advanced medical equipment, limiting their predictive use in routine clinical practice.

The feasibility and results of the assessment of ROBs and applicability varied significantly across the three reviews. 
Loymans 2017’s review did not sufficiently address ROB and applicability issues, rather, its conclusion on the limited 
clinical usefulness of those prior models was based on the general unsatisfactory predictive performance.10 Xiong 2023’s 
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review applied the PROBAST tool, which showed that all included studies had high ROBs, with 11 out of 12 rated as 
having high concerns regarding applicability.14 Similar to Xiong’s findings, our review also revealed substantial ROB 
(80%) but a decrease in concerns of low applicability (from 92% to 50% of reviewed models).

Given the highest proportion of studies with high ROBs and high concerns for applicability in Xiong’s review (11/ 
12)14 and our review (4/10), this subgroup warrants closer examination. Both reviews exhibited consistent issues in the 
Participants domain. Models derived from EHR data were susceptible to missing, incomplete, and poorly logged 
information, as well as human-induced biases in referral, admission, diagnosis, and prognosis.39 Also, all studies 
included in this subgroup showed high ROBs in the Analysis domain. Multiple ML models employed a large number 
of variables from extensive databases, further limiting their practical use in typical clinical environments. The complexity 
inherent in more sophisticated ML models can obscure the understanding of their function to guide decision-making 
processes, thus diminishing their practical utility.40 Furthermore, model validation was often insufficient, with many 
studies either overlooking validation or relying solely on hold-out validation. Additionally, the validation analysis mainly 
focused on discriminative performance, while neglecting calibration — the latter being more relevant to clinical 
practice.41 In the Outcome domain, Xiong’s review reported inconsistent outcome definitions, contributing to high 
ROBs and applicability concerns, while the newer studies of our review consistently applied standardized definitions 
of asthma exacerbation. Notably, Loymans et al reported that over 80% of included studies did not use ATS/ERS-related 
asthma exacerbation criteria, whereas Xiong et al found this proportion reduced to 34%, and our review identified no 
studies with such a concern, suggesting improvement in consistency and reliability in outcome reporting in asthma risk 
prediction over time.30

A noteworthy trend towards improved practical utility emerged in our review. On one hand, simpler tools such as 
ORACLE25 and AIRQ24 showed promise for enhancing clinical applicability. The ORACLE scale relied on a minimal 
list of predictors encompassing symptoms, exacerbation history, BEC and FeNO, which were commonly collected and 
allowed hands-on calculation at a clinic.25 Recent analyses have demonstrated that the ORACLE scale not only quantifies 
exacerbation risk but also captures biomarker-dependent treatment responses, highlighting its potential as a theranostic 
tool.15 However, the ORACLE scale is derived from RCTs, which requires external validation and refinement using 
individual patient data from large, well-characterized populations. Meanwhile, the AIRQ questionnaire, a validated 10- 
item asthma control questionnaire, has demonstrated comparable discriminative capacity compared to ML-based models 
in assessing the relative risk of exacerbations across scores in patients aged above 12 years.24 Nevertheless, predicting 
score-specific relative risk may limit the clinical utility of the AIRQ tool. On the other hand, user-friendly home- 
monitoring tools show potential for empowering patient self-management and facilitating integration into clinical 
workflows. Two home-monitoring prediction tools were developed to enable patients to track exacerbation risk in real- 
time.23,27 However, their reliance on high-cost sensors restricts broader clinical use. Further research should explore cost- 
effective solutions to increase their access.

Our study has several limitations. First, we were unable to perform external validation because it was difficult to 
access a suitable dataset that contained all relevant predictors across the studies. Instead, we applied the PROBAST tool 
to assess the generalizability of reviewed models. Second, the non-disclosure of a final list of predictors and detailed 
model specifications in several ML-based models further hindered our attempts at external validation. Third, the 
heterogeneity in modeling methodology and reporting across different reviewed studies precluded a direct quantitative 
synthesis. Additionally, the small sample sizes within certain subgroups may limit the generalizability of our findings, as 
subgroup-specific findings could be unstable. Lastly, our study selection was restricted to articles published in or 
translated into English, which may have narrowed the scope of our review and excluded valuable research published 
in other languages.

The current review conveys important clinical implications. First, we found that ML-based, data-driven models have 
limited potential for further improving the accuracy of asthma risk prediction without either incorporating new robust 
biomarkers or increasing model complexity, both of which may compromise their generalizability. Therefore, in the near 
future, the development of asthma risk prediction tools should prioritize enhancing their clinical applicability, such as 
developing user-friendly prediction tools or integrating the ML algorithms into EHR-embedded, automated clinical 
decision support systems. Second, improving model generalizability and standardizing risk prediction can facilitate the 
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development of clinical guidelines for asthma precision medicine. To fulfill these, future studies should consider real- 
world datasets across diverse healthcare settings and regions, and address country-specific variability in clinical risk due 
to system-level factors, such as local healthcare practices and patient health-seeking behaviors. Last but not least, causal 
prediction analysis was rarely found, which should be considered in future studies to enhance knowledge translation, 
better support clinical decision-making and gain physician trust.42 Shifting the focus toward these areas will strengthen 
the clinical relevance and utility of asthma risk prediction models, thus extending their impact on improved patient care.

Conclusion
Despite the increased use of big health data, biomarkers and advancement in ML algorithms, the prediction performance 
and clinical applicability of asthma risk prediction models developed between 2017 and 2023 remain inadequate. Most of 
these models exhibited high ROB, largely due to the reliance on RWD and the lack of comprehensive performance 
evaluations, particularly model calibration. Furthermore, model applicability was generally low, hindered by restricted 
study population, excessive complexity, and insufficient transparency regarding model specifications. To improve future 
asthma risk prediction models, efforts should focus on enhancing generalizability, practicality, and interpretability.
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