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Background: China is undergoing a pronounced shift towards an aging society, wherein the elderly constitute a prominent 
demographic relying significantly on medications. The imperative of administering rational medication to the elderly has gained 
considerable importance and warrants focused attention. The availability of pharmacokinetic (PK) data specific to the elderly is 
paramount for supporting informed medication practices. Unfortunately, studies addressing PK in the elderly are both infrequent and 
intricate, contributing to a lack of crucial data essential for tailoring personalized and rational medication approaches.
Methods: This study aimed to address this deficiency by employing the Physiologically Based Pharmacokinetic (PBPK) model, with 
the goal of supplying critical data to support rational medication strategies for the elderly. Additionally, we extended the application of 
PBPK models to Therapeutic Drug Monitoring (TDM) through the examination of four neuropsychiatric drugs.
Results: The PBPK models for 50 drugs in young and middle-aged Chinese adults were validated using clinical trial data. Simulated 
concentration–time curves closely matched the observed data, with Cmax and AUC ratios within 0.5–2.0. For Chinese elderly, PBPK 
models for four drugs (ticagrelor, rivaroxaban, alprazolam, midazolam) showed strong agreement with observed data. Comparing PK 
profiles of 50 drugs, no significant differences were found between elderly and younger adults. Dosage recommendations for four 
neuropsychiatric drugs in the elderly were provided based on simulation results, ensuring therapeutic effectiveness and safety.
Conclusion: In conclusion, PBPK models for 50 commonly prescribed drugs within the Chinese elderly population were developed, tackling 
general data gaps associated with these specific medications. Medication plans were developed specifically tailored for the elderly population, 
presenting an alternative methodology and perspective for the implementation of individualized and rational medication practices.
Keywords: the elderly, pharmacokinetics, rational medication, individualized medicine, PBPK model

Introduction
In the past decades, there has been a remarkable increase in the elderly population (age >65 years), accounting for over 
60% of the total prescriptions dispensed.1 The aging process in the elderly often leads to the gradual decline of the 
function of multiple organs and systems, subsequently resulting in alterations in absorption, distribution, metabolism, and 
excretion (ADME) of drugs. These changes may ultimately translate into significant variations both in the efficacy and 
safety among the elderly population.2 Concurrently, the risk associated with medication use among the elderly has been 
steadily increasing, due to an upsurge in polypharmacy and adverse drug reactions. Notably, China has entered an era of 
an aging society, with the population aged 60 years and above numbering approximately 264 million, accounting for 
18.70% of the total population based on the data from the 7th China Population Census in 2021.3 Confronted with this 
huge shift in population demographics, the clinical management of medication for the elderly in China encounters great 
challenges predominantly marked by the absence of evidence-based practices.
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Rational drug use seeks to establish the most appropriate treatment and dosage regimen to achieve maximum efficacy with 
minimal side effects for patients.4 However, the challenge of rational drug use in the elderly population represents a significant 
hurdle worldwide. There are many factors contributing to this outcome, among which is the absence of pharmacokinetic data for 
drugs in the elderly population due to ethical and methodological challenges in clinical research, which could serve as a valuable 
reference for their medication management.5 The situation was particularly pronounced in China. Our research team conducted 
a preliminary analysis of 31,311 drug package inserts in the Chinese pharmaceutical domain. The investigation revealed that, 
among the drugs surveyed, only 22.4% provided explicit labeling of information relevant to the elderly population. Furthermore, 
the elderly demographic exhibited an astonishing 80% deficit in pertinent pharmacokinetic data. In contrast, comprehensive data 
were available for majority of drugs in the young and middle-aged population in China. As a matter of fact, dosing regimens for 
elderly patients are usually extrapolated from those used for adult patients or adjusted based on adult dosing.6 Additionally, in 
traditional clinical treatment, physicians typically formulate treatment plans following evidence-based medicine and clinical 
guidelines, subsequently modify the dosage and usage based on individual patient responses to treatment. However, this trial-and 
-error approach cannot predict efficacy and tolerability before administration, resulting in delayed dose adjustment and increasing 
the risks and costs associated with patient treatment. In light of this, applying innovative methods to elucidate the in vivo disposal 
and interaction patterns of frequently used drugs in the elderly, so as to develop more scientific medication plans, is the 
fundamental solution to rational clinical medication in the elderly population.

In recent years, physiologically based pharmacokinetic (PBPK) modeling7 has emerged as a promising approach for 
evaluating drug exposure and obtaining mechanistic insight into drug characteristics. This is accomplished by integrating 
drug and system parameters into a dynamically interconnected model. PBPK modeling has been widely used in drug 
development, including dose selection for first-in-human trials, investigation of drug–drug interaction, assessment of 
food effect, and extrapolation of pharmacokinetics in special populations.8

In the present study, we developed PBPK models for 50 frequently prescribed drugs in the Chinese elderly population 
and then addressed existing data deficiencies pertaining to these specific drugs. We designed and conducted the study 
aiming to identify potential disparities in the PK characteristics of these drugs between the elderly and young or middle- 
aged populations, to provide an alternative approach for therapeutic drug monitoring (TDM), and thus supply essential 
data support to facilitate the rational use of medications within the elderly population in China.

Materials and Methods
The experimental design and technical roadmap of this study are depicted in Figure 1.

Graphical Abstract
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Drug Selection, Data Collection, and Ethics
Drug Selection
In the present study, a total of 50 drugs that were frequently prescribed for the treatment of various prevalent diseases 
among elderly individuals in China were selected for PBPK modeling. The drug selection was guided by data provided 
by Beijing Institute of Geriatrics, National Health Commission, and Peking Union Medical College Hospital. 
Additionally, we consulted the “American Geriatrics Society Beers Criteria® for potentially inappropriate medication 

Figure 1 The technical roadmap.
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(PMI) use in older adults”,9 as well as the published “criteria of PMI for older adults in China”.10 Among the 50 drugs 
under investigation, there were 9 cardiovascular drugs, 24 psychiatric drugs, 3 drugs targeting gastrointestinal and 
digestive diseases, 5 anti-tumor drugs, 6 anti-infective drugs, and 6 other medications. The drug list is shown in Table 1.

Data Collection
Considering that oral administration represented the most widely accepted and convenient dosing route, the majority of the 50 
drugs examined in this study were oral immediate-release formulations. There were only two exceptions, namely vancomycin, 
and imipenem, which were administered intravenously. Drug-related data including physicochemical properties, ADME para
meters, and clinical PK data were acquired by searching DrugBank and PubMed database. The sources of these data11–90, 91–145 

were listed in Table 2. The visualization of published plasma concentration data was accomplished using GetData Graph Digitizer 

Table 1 List of 50 Drugs Commonly Used in the Chinese Elderly to Establish PBPK Model

Drug Type Drugs

Anticoagulant drugs Warfarin, clopidogrel, ticagrelor, rivaroxaban

Antibiotics Voriconazole, fluconazole, clarithromycin, vancomycin, imipenem, linezolid
Antidepressant drugs Citalopram, venlafaxine, sertraline, paroxetine, amitriptyline, doxepin, desipramine, fluvoxamine, moclobemide, 

nortriptyline, fluoxetine

Antipsychotic drugs Aripiprazole, amisulpride, risperidone
Sedative hypnotics Alprazolam, midazolam, diazepam

Anti-Parkinson drugs Amantadine, pramipexole

Antiepileptic drugs Levetiracetam and lamotrigine
Antineoplastics Tamoxifen, imatinib, apatinib, gefitinib, dasatinib

Hypolipidemic drugs Atorvastatin, rosuvastatin, simvastatin, fluvastatin

Proton pump inhibitors Omeprazole, ilaprazole, lansoprazole
Analgesic drugs Tramadol, ketoprofen

Anti-arrhythmia agent Metoprolol

Immunosuppressive drugs Tramadol, ketoprofen
Antiemetic drugs Ondansetron

Smoking cessation drugs Varenicline

Table 2 Data Sources for 50 Drugs

Drugs Drug Physicochemical Properties 
and ADME Parameters

Clinical Data of Chinese 
Adult Population

Clinical PK Data of Chinese 
Elderly Population

Warfarin Drugbank; reference11 Reference12

Clopidogrel Internal data; reference13–20 Internal data

Ticagrelor Drugbank; reference21–23 Reference24 Reference25

Rivaroxaban Drugbank; reference26,27 Reference28 Reference29

Voriconazole Drugbank; reference30,31 Reference32

Fluconazole Drugbank; reference33,34 Reference35

Clarithromycin Drugbank; reference36,37 Reference38,39

Vancomycin Drugbank; reference40–42 Reference43

Imipenem Drugbank; reference44 Reference45,46

Linezolid Drugbank; reference47–49 Reference50

(Continued)
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Table 2 (Continued). 

Drugs Drug Physicochemical Properties 
and ADME Parameters

Clinical Data of Chinese 
Adult Population

Clinical PK Data of Chinese 
Elderly Population

Citalopram Drugbank; reference51,52 Reference53,54

Venlafaxine Drugbank Reference55

Sertraline Drugbank; reference56,57 Reference58,59

Paroxetine Drugbank; reference60 Reference61

Amitriptyline Drugbank; reference62 Reference63,64

Doxepin Drugbank Reference65

Desipramine Drugbank; reference66,67 Reference68

Fluvoxamine Drugbank; reference69,70 Reference71,72

Moclobemide Drugbank; reference70 Reference73,74

Nortriptyline Drugbank; reference75 Reference76

Fluoxetine Drugbank; reference77 Reference78,79

Amisulpride Drugbank; reference80,81 Reference82

Aripiprazole Drugbank; reference83,84 Reference85

Alprazolam Drugbank; reference86,87 Reference88 Reference89

Risperidone Drugbank; reference90 Reference91,92

Midazolam Drugbank Internal data Internal data

Diazepam Drugbank; reference93 Reference94

Amantadine Drugbank Reference95,96

Pramipexole Drugbank; reference97,98 Reference99

Levetiracetam Drugbank; reference100 Reference101,102

Lamotrigine Drugbank; reference103 Reference104

Tamoxifen Drugbank; reference105 Reference106

Imatinib Drugbank; reference107 Reference108,109

Apatinib Drugbank; reference110,111 Reference111,112

Gefitinib Drugbank; reference113 Reference114

Dasatinib Drugbank; reference115 Reference116

Atorvastatin Drugbank; reference117 Reference118

Rosuvastatin Drugbank; reference119 Reference120

Simvastatin Drugbank; reference121,122 Reference123

Fluvastatin Drugbank; reference121 Reference124

Omeprazole Drugbank; reference125,126 Reference127

Ilaprazole Drugbank; reference;128 internal data Internal data

(Continued)
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(version 2.22, S. Fedorov) software. Noncompartmental analysis (NCA) was applied to calculate PK parameters. In this study, 
clinical PK data for 50 drugs in Chinese young or middle-aged population (age 18–45 years) and elderly population (age 65–80 
years) were retrieved and analyzed. Nevertheless, due to the limited number of clinical trials conducted within the Chinese elderly, 
PK data were accessible only for ticagrelor, rivaroxaban, alprazolam, and midazolam in this demographic group.

Ethics
This study follows the Declaration of Helsinki and was approved by the Ethics Committee of Peking Union Medical 
College (Beijing, China) with an exemption from informed consent.

PBPK Model Development
PBPK models for 50 drugs in Chinese middle-aged and elderly populations were constructed using the Gastroplus 
software (version 9.8.2, Simulation Plus) in this study.

Virtual Population
The Population Estimates for Age-Related Physiology (PEAR) module in Gastroplus was used to generate virtual 
populations representing Chinese adult and the elderly. Briefly demographic data such as height, weight, and Body 
Mass Index (BMI) based on age were calculated using statistical formulas. Furthermore, systematic biology parameters 
of the population such as tissue blood flow, tissue volume, enzyme content, and glomerular filtration rate (GFR) were 
obtained from demographic data, with some variability being added. For the young or middle-aged population, in this 
current study it was defined as 18–45 years old, while for the elderly population, the age was set between 65 and 80 
years old.

Model Construction
For each drug, the PBPK model divided the body into distinct compartments based on physiological and anatomical 
characteristics, including heart, brain, liver, kidneys, lungs, adipose tissue, muscle, gastrointestinal tract, skin, spleen, 
reproductive system, yellow and red bone marrow, and the remainder of the body. The Advanced compartmental 
absorption and transit (ACAT) model, a component of the Gastroplus software suite, was employed to simulate oral 
absorption.146 The ACAT model was composed of nine compartments, including stomach, seven segments of small 
intestine and colon. Within each compartment, drugs could undergo various processes including disintegration, dissolu
tion, degradation, precipitation, penetration, and metabolism. Moreover, the drugs had the ability to move into the 
subsequent compartment to engage in the process mentioned above. Additionally, essential physiological parameters of 
the gastrointestinal tract, including luminal fluid volume, blood flow, gastric emptying-rate, pH value within each 
compartment, and dietary status, were accessed through an integrated database within the Gastroplus software platform.

Table 2 (Continued). 

Drugs Drug Physicochemical Properties 
and ADME Parameters

Clinical Data of Chinese 
Adult Population

Clinical PK Data of Chinese 
Elderly Population

Lansoprazole Drugbank; reference129–131 Reference132

Tramadol Drugbank; reference Reference133–135

Ketoprofen Drugbank Reference136

Metoprolol Drugbank Reference137

Tacrolimus Drugbank; reference138 Reference139

Ciclosporin Drugbank; reference140–142 Reference143

Ondansetron Drugbank; reference144 Reference145

Varenicline Drugbank Reference144
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In this study, all compartments in the PBPK model were considered well stirred, with each being defined by tissue 
blood flow, tissue volume, and tissue-plasma partition coefficient (Kp). The Kp calculation methods utilized in Gastroplus 
include Poulin&Theil,147 Berezhkovskiy,148 Rodgers and Rowland,105,107 Lukacova (Rodgers & Single) and Lukacova 
with Lysosomes. The Lukacova (Rodgers & Single) method was used for the majority of the drugs in this study. 
Nevertheless, when dealing with alkaline drugs with a logP greater than 2 and a pKa between 6.5 and 11, the Lukacova 
with Lysosomes method emerged as the preferred choice, given their tendency to undergo lysosomal capture. Systematic 
clearance (CL) was derived from literature or database. When a drug was metabolized through cytochrome 450 
(CYP450) enzyme, the relevant parameters (Vmax, Km) were incorporated into the elimination profile of the drug.

For the 2 intravenous infusion drug models, there was no need to consider the processes of drug dissolution and 
absorption in the gastrointestinal tract. As for the elimination process of the drug in the body, the model construction 
methods for intravenous and oral formulations were consistent.

Model Validation
For each drug, the PBPK model was validated by comparing the simulated PK profiles with the observed profiles from 
the same clinical trial design, including route of administration, dose regimen, and study duration. The ratios of simulated 
to observed PK parameters (Cmax and AUC) were calculated, and a range of 0.5–2 times149 was considered accepted. For 
some drugs, more than one set of observed clinical data was collected. The Cmax and AUC of each set of observed 
clinical data were compared separately with the predicted values. It was noted that comprehensive PK data were available 
only for four drugs (ticagrelor, rivaroxaban, alprazolam, midazolam) in the elderly, due to the scarcity of clinical trials 
conducted within this population in China. Consequently, the PBPK models for the remaining 46 drugs were solely 
validated using data from Chinese young or middle-aged population.

Model Application
Comparison of Pharmacokinetics of 50 Drugs Between Chinese Elderly and Young or Middle-Aged 
Populations
For each drug, the model simulations were carried out for Chinese elderly and young or middle-aged populations, 
following the clinical recommendations for usage and dosage, sourced from “UpToDate”150 and the information provided 
in the package inserts. Each simulation involved 50 virtual subjects with a female proportion of 50%. The potential 
differences between the two populations were assessed by comparing the simulated data, including drug exposure (AUC 
and Cmax), as well as the plasma concentration–time profiles.

Application to Support Clinical Rational Dosage for Neuropsychiatric Drugs
Neuropsychiatric drugs often exhibit a narrow therapeutic range, substantial individual variability, suboptimal efficacy,151 

and a propensity to induce adverse central nervous system reactions, including sleep disturbances, hallucinations, and 
even life-threatening outcomes.152–155 Therapeutic drug monitoring (TDM) is frequently applied to inform clinical 
rational administration of these drugs, thereby optimizing both efficacy and tolerance. In accordance with clinical 
guidelines presented in UpToDate, the application of TDM was recommended for neuropsychiatric medications, 
including sertraline, moclobemide, alprazolam, and amantadine, primarily due to their high-risk profiles in clinical 
medication management. The therapeutic reference and alert concentrations of these drugs are shown in Table 3. Of note, 
the usage and dosage for the elderly was not clearly demonstrated in the package inserts, or it was just mentioned that the 
drugs should be administered with caution or reduced as appropriate. In order to optimize the rational dosage for 

Table 3 Therapy Reference Range and Laboratory Alert Level of 4 Drugs

Drug Therapeutic Reference Range Laboratory Alert Level

Sertraline 10~150 ng/mL 300 ng/mL

Alprazolam 5~50 ng/mL 100 ng/mL
Moclobemide 300~1000 ng/mL 2000 ng/mL

Amantadine 300~600 ng/mL 1200 ng/mL
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neuropsychiatric drugs, the established PBPK models for these 4 drugs were applied to simulate different drug 
administration scenarios in virtual 300 elderly subjects with female proportion of 50%. The recommended usage and 
dosage are depicted in Table 4.152–155

Results
Model Construction and Validation
Model Construction
The parameters for PBPK modeling were mainly obtained from the literature. For the missing information, the values 
were predicted using Gastroplus software. The input parameters are shown in Table 5.

Table 4 Administration Regimes of 4 Drugs for Simulation

Drug Time Regimen (a) Regimen (b) Regimen (c) Regimen (d) Regimen (e)

Sertraline Day 1–10 25 mg qd 50 mg qd 100 mg qd 150 mg qd 200 mg qd
Alprazolam Day 1–2 0.2 mg tid 0.2 mg tid 0.2 mg tid 0.2 mg tid 0.2 mg tid

Day 3–4 0.2 mg tid 0.4 mg tid 0.4 mg tid 0.4 mg tid

Day 5–6 0.2 mg tid 0.4 mg tid 0.6 mg tid 0.6 mg tid
Day 7 0.2 mg tid 0.4 mg tid 0.6 mg tid 0.8 mg tid

Moclobemide Day 1–3 50 mg tid 100 mg bid 100 mg tid 150 mg tid 300 mg bid

Amantadine Day 1–14 50 mg qd 50 mg bid 100 mg qd 50 mg bid 200 mg bid
Day 14–28 100 mg qd 50 mg bid 100 mg bid 100 mg bid 200 mg bid

Notes: (1) For sertraline, the recommended dosage for the treatment of depression with this medication was as follows: patients were 
advised to administrate 50 mg once a day, with a maximum allowable daily dose of up to 200 mg; (2) For alprazolam, an anti-anxiety 
medication, the typical dosage was 0.4 mg taken three times a day, with the option to dose escalation as needed, up to a maximum daily 
limit of 4 mg. Since the elderly individuals were more sensitive to this medication and should start with a lower dose of 0.2 mg (half 
a tablet) three times a day, gradually increasing the dose through titration to the maximum tolerated level; (3) For moclobemide, the 
therapeutic dosage for depression was 300–450 mg each day. This medication was advised to administer orally after meals, usually divided 
into 2 to 3 separate doses. In certain cases, it may be considered appropriate to titrate the dosage upwards to a maximum of 600 mg daily 
during the second week of treatment. It is essential to reduce dose appropriately when prescribing this medication to elderly patients; (4) 
For Amantadine, the general dosage for the treatment of both Parkinson’s disease and Parkinson’s syndrome was 100 mg administered 
once daily, with the option of 1–2 times daily dosing, and a maximum daily dosage not exceeding 400 mg. It was imperative to individualize 
the dosage according to medical guidance and the patient’s specific clinical circumstances. In accordance with the medication data 
mentioned above, the simulated dose regimens were devised for these four drugs. 
Abbreviations: qd, once daily; bid, twice daily; tid, three times a day.

Table 5 The Input Parameters for Modeling of 50 Drugs

Drug mW (g/mol) logPo:w pKa Peff (10−4 cm/s) fup B:P ratio Kp* Vss(L) CL (L/h)

Warfarin 308.33 2.7 5.1 4 0.009 0.07 A 13.98 0.15

Clopidogrel 321.83 3.89 4.55 2.71 0.02 0.72 B 243.30 95.34

Ticagrelor 522.58 3.52 12.94; 2.28 1.79 1 0.65 B 100.39 13.06

Rivaroxaban 435.88 1.5 2.28; 12.94 2.5 0.05 0.71 C 36.08 8.22

Voriconazole 349.32 1.8 2.27; 12.71 2.71 0.42 0.78 A 72.70 13.06

Fluconazole 306.28 0.5 2.56 3 0.9 0.83 C 40.44 0.99

Clarithromycin 747.97 3.16 8.99 39.7 0.3 1.23 C 171.87 27.89

Vancomycin 1449.3 2.45 2.18; 7.75 0.07 0.15 0.55 C 36.96 8.46

Imipenem 299.35 −3.9 8.99 0.45 0.8 1.8 C 29.29 26.27

Linezolid 337.35 0.232 1.7 3.22 0.69 2.5 C 29.28 6.48

(Continued)

https://doi.org/10.2147/DDDT.S501143                                                                                                                                                                                                                                                                                                                                                                                                                                       Drug Design, Development and Therapy 2025:19 3084

Wu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Table 5 (Continued). 

Drug mW (g/mol) logPo:w pKa Peff (10−4 cm/s) fup B:P ratio Kp* Vss(L) CL (L/h)

Citalopram 324.4 3.76 9.78 0.6 0.2 1.6 A 893.97 6.77

Venlafaxine 277.41 2.69 14.42; 8.91 0.6 0.7 1.2 A 271.92 34.25

Sertraline 306.24 5.51 8.99 1.61 0.016 1.5 A 884.69 25.00

Paroxetine 329.37 3.55 9.66 0.9 0.5 1.26 B 535.71 16.50

Amitriptyline 277.41 4.92 9.4 0.2305 0.05 1.04 A 633.15 25.05

Doxepin 279.38 4.29 8.96 0.45 0.35 1.08 A 1341.80 64.27

Desipramine 266.39 4.45 10.32 0.454 0.15 1.2 B 500.56 8.60

Fluvoxamine 318.34 4 9.16 0.27 0.25 3.5 B 1025.02 62.92

Moclobemide 268.74 1.79 10.6; 6.2 2.5 0.5 3.5 B 69.45 20.94

Nortriptyline 263.38 4.39 10.1 0.8298 0.07 1.71 B 1199.48 40.15

Fluoxetine 309.33 5.5 9.82 0.38 0.06 2.38 B 1204.77 15.72

Amisulpride 369.49 0.16 9.37 0.4 0.84 0.5 B 146.56 17.00

Aripiprazole 448.4 3.9 7.6 3.12 0.02 0.65 A 173.15 2.05

Alprazolam 308.77 2.12 2.4 2 0.29 0.78 B 48.78 4.62

Risperidone 410.49 3.04 3.11; 8.24 2 0.135 0.74 A 122.26 3.15

Midazolam 325.77 2.7 5.95;0.84 4.33 0.04 0.55 A 61.06 19.65

Diazepam 284.74 2.82 3.4 12.434 0.03 0.5 C 125.68 1.11

Amantadine 151.25 2.44 10.71 1.5 0.37 1.6 A 403.44 12.99

Pramipexole 211.3 1.42 10.31; 17.66 1 0.85 1.7 A 477.14 24

Levetiracetam 170.21 −0.64 16.09; −1.6 2.5 0.996 1.1 B 146.56 3.84

Lamotrigine 256.1 1.93 5.5 2.2 0.45 1 B 72.98 1.14

Tamoxifen 371.53 5 8.76 0.45 0.001 0.6 B 165.02 0.05

Imatinib 493.62 4.38 12.69; 7.84 0.5 0.5 0.73 A 174.47 10.00

Apatinib 397.48 3.14 15.23; 5.41 0.8 0.076 0.995 B 206.61 43.07

Gefitinib 446.91 4.1 5.4; 7.2 0.77 0.089 1.8 B 1063.55 32

Dasatinib 488.01 3.2 10.99; 7.2 1.3 0.05 1.8 C 388.652 72.15

Atorvastatin 558.65 5.7 4.46 1.47 0.05 0.61 C 359.98 43.87

Rosuvastatin 481.55 −0.33 4.76 0.08 0.115 0.67 C 19.66 17.50

Simvastatin 418.58 4.68 −2.8;14.91 4.28 0.012 0.56 C 475.94 40.00

Fluvastatin 411.48 4.5 −2.8;4.54 1.65 0.015 0.57 A 9.73 26.00

Omeprazole 345.42 2.23 8.7; 4.4 0.67 0.04 0.59 C 7.33 62.92

Ilaprazole 366.44 4 10.1; 4.27 4.25 0.045 0.5 A 19.61 5.50

(Continued)

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S501143                                                                                                                                                                                                                                                                                                                                                                                                   3085

Wu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Model Validation
For the young or middle-aged Chinese adults (age 18–40 years of old), the models of 50 drugs were validated using the 
observed data from clinical trials, including PK profiles and parameters (AUC and Cmax). Among most of the 50 drugs, the 
simulated concentration–time curves closely matched the observed, whether in the absorption or elimination phase, with 
clinical observations evenly distributed along the mean simulated curves or within 90% confidence intervals (Figure 2). 
Furthermore, the simulated PK parameters (AUC0-t and Cmax) demonstrated close alignment with the observed data, with Cmax 

ratios ranging from 0.76 to 1.44 and AUC ratios ranging from 0.61 to 1.41 (Supplementary Table 1), falling within the 
predefined range of 0.5–2.0.

For the Chinese elderly, PBPK models were solely validated for 4 drugs (ticagrelor, rivaroxaban, alprazolam, and 
midazolam), because comprehensive PK data were available only for these 4 drugs in the elderly. The results revealed 
a strong agreement between the simulated and the observed data, with ratios of AUC and Cmax falling within the range of 
0.89 to 1.09 (Supplementary Figure 1 and Supplementary Table 2).

Comparing of PK Profiles of 50 Drugs in Chinese Elderly and Young or Middle-Aged 
Populations
Scaling the age-dependent parameters according to the software’s built-in algorithm, we constructed a cohort of elderly people 
(50% women) aged 65–80 years. The mean PK characteristics of the elderly are shown in Figure 3. The mean pharmaco
kinetics of the elderly and adult are compared in Table 6. The results showed that there was no significant difference in PK 
parameters between the elderly population, with ratios consistently falling within the range of 0.81 to 1.29.

Application to Support Clinical Rational Dosage for Neuropsychiatric Drugs
The pharmacokinetic characteristics of four neuropsychoactive drugs (sertraline, alprazolam, moclobemide, and amanta
dine) in the elderly Chinese population were simulated using different dose regimens, and the results are shown in 
Figure 4.

Recommendation for Sertraline
The simulation results for sertraline (as depicted in Figure 4A) revealed that the mean steady-state plasma concentration 
(Css) in virtual elderly subjects did not entirely fall within the therapeutic reference range. Specifically, the trough 
concentrations were observed to fall below the lower limit of 10 ng/mL at the daily dose of 25 mg (Figure 4A-a). When 
the dose was increased to 50 mg (Figure 4A-b), the mean sertraline concentration was increased and managed to fall 
within the therapeutic reference range, but the trough concentration remained close to 10 ng/mL. In contrast, with dosing 
regimens of 100 mg (Figure 4A-c), 150 mg (Figure 4A-d), and 200 mg (Figure 4A-e), the Css in virtual elderly subjects 

Table 5 (Continued). 

Drug mW (g/mol) logPo:w pKa Peff (10−4 cm/s) fup B:P ratio Kp* Vss(L) CL (L/h)

Lansoprazole 369.37 1.9 4.15 0.4 0.029 0.59 C 27.34 13.09

Tramadol 263.38 2.71 9.41 5 0.80 1.07 A 170.99 62.92

Ketoprofen 254.29 3.12 9.16 1.3 1 0.59 B 4.96 3.84

Metoprolol 267.37 −1.72 9.39 1.34 0.11 0.86 A 152.13 36.30

Tacrolimus 804.04 3.3 9.95; 2.94 2.16 1 2 C 80.2 13.69

Ciclosporin 1202.6 3.25 13.23 19.75 0.1 0.73 C 262.88 15.03

Ondansetron 293.37 2.4 7.34; 16.13 0.72 0.02 0.65 A 35.62 35.62

Varenicline 211.27 0.8 9.73; 1.82; −2.88 1.25 0.8 1 A 121.27 7.36

Notes: *Kp calculated method: A: Lukacova (Rodgers & Single); B: Lukacova with Lysosomes; C: Poulin & Theil.
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Figure 2 The simulated concentration–time curves of 50 drugs.
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Figure 3 The mean PK characteristics of 50 drugs for the elderly.
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Table 6 The Comparison of Mean Pharmacokinetics in the Elderly and the Young or Middle-Aged Population

Drug Dose Parameter Adult  
Mean (90% CI)

Elderly  
Mean (90% CI)

Ratio  
(Elderly/Adult)

Warfarin 2.5mg qd Cmax (ng/mL) 899.43(798.40–1000.40) 846.39(797.40–895.40) 0.94
AUC0-t (ug*h/mL) 165.90(158.00–174.00) 169.50(161.00–178.00) 1.02

Clopidogrel 75mg qd Cmax (ng/mL) 0.80(0.70–0.89) 0.79(0.69–0.87) 0.99
AUC0-t (ng*h/mL) 6.57(5.96–7.17) 6.03(5.44–6.61) 0.92

Ticagrelor 90mg bid Cmax (ng/mL) 1071.10(997.70–1144.50) 996.71(937.20–1056.20) 0.93
AUC0-t (ug*h/mL) 35.55(32.70–38.40) 35.90(33.40–38.40) 1.01

Rivaroxaban 15mg bid Cmax (ng/mL) 140.22(134.50–146.00) 132.60(126.80–138.40) 0.95
AUC0-t (ng*h/mL) 4281.50(3990.10–4573.00) 3971.20(3691.60–4250.90) 0.93

Voriconazole 200mg bid Cmax (ng/mL) 1888.20(1751.90–2024.60) 2008.00(1850.60–2165.50) 1.06
AUC0-t (ug*h/mL) 95.98(88.70–103.00) 99.60(91.00–108.00) 1.04

Fluconazole 200mg qd Cmax (ug/mL) 10.09(9.64–10.54) 10.25(9.82–10.67) 1.02
AUC0-t (ug*h/mL) 2470.8(2317.80–2623.80) 2493.30(2352.80–2633.90) 1.01

Clarithromycin 250mg bid Cmax (ug/mL) 1.45(1.37–1.52) 1.47 (1.40–1.55) 1.02
AUC0-t (ug*h/mL) 75.13(70.37–79.89) 76.57(71.73–81.41) 1.02

Vancomycin 1000mg Cmax (ug/mL) 27.26(26.42–28.10) 29.13(28.28–29.98) 1.07
AUC0-t (ug*h/mL) 118.43(110.9–126.0) 119.92(113.20–126.70) 1.01

Imipenem 500mg Cmax (ng/mL) 24.03(23.17–24.88) 25.92(24.88–26.96) 1.08
AUC0-t (ng*h/mL) 15.77(15.05–16.49) 17.73(16.97–18.49) 1.12

Linezolid 600mg Cmax (ug/mL) 11.96(11.49–12.43) 14.64(14.05–15.25) 1.22
AUC0-t (ug*h/mL) 553.42(518.40–588.50) 633.94(594.10–673.80) 1.15

Citalopram 20mg qd Cmax (ng/mL) 46.44(41.15–51.72) 51.86(45.58–58.14) 1.12
AUC0-t (ug*h/mL) 10.73(9.49–12.00) 12.07(10.60–13.50) 1.12

Venlafaxine 150mg qd Cmax (ng/mL) 138.00(128.00–148.00) 163.00(151.00–174.00) 1.18
AUC0-t (ug*h/mL) 9.07 (8.45–9.69) 10.90 (10.00–12.00) 1.20

Sertraline 50mg qd Cmax (ng/mL) 23.84(21.00–26.00) 23.50(21.00–26.00) 0.99
AUC0-t (ng*h/mL) 5.60(4.99–6.21) 5.51(4.81–6.21) 0.98

Paroxetine 20mg qd Cmax (ng/mL) 53.92(49.53–58.31) 53.50(49.44–57.55) 0.99
AUC0-t (ug*h/mL) 11.87(10.80–13.00) 11.66(10.70–12.60) 0.98

Amitriptyline 25mg bid Cmax (ng/mL) 40.20(34.00–47.00) 44.45(37.00–51.00) 1.11
AUC0-t (ug*h/mL) 4.35(3.63–5.07) 4.65(3.89–5.41) 1.07

Doxepin 25mg tid Cmax (ng/mL) 5.13(4.60–5.66) 4.15(3.91–5.10) 0.81
AUC0-t (ng*h/mL) 540.75(485.00–597.00) 479.18(416.00–543.00) 0.89

Desipramine 50mg qd Cmax (ng/mL) 134.00(117.5–150.6) 115.78(103.80–127.70) 0.86
AUC0-t (ug*h/mL) 31.18(27.31–35.40) 27.13(24.30–30.00) 0.87

Fluvoxamine 50mg qd Cmax (ng/mL) 20.80(18.00–24.00) 18.64(16.00–21.00) 0.90
AUC0-t (ng*h/mL) 2002.40(1729.00–2276.00) 1702.80(1452.00–1954.00) 0.85

Moclobemide 200mg bid Cmax (ug/mL) 1.87 (1.78–1.97) 1.90(1.80–2.01) 1.02
AUC0-t (ug*h/mL) 67.49(62.12–72.87) 76.88(70.44–83.32) 1.14

Nortriptyline 25mg qd Cmax (ng/mL) 36.69(31.00–42.00) 36.94(33.00–41.00) 1.01
AUC0-t (ug*h/mL) 12.76(10.85–14.66) 13.00(11.62–14.38) 1.02

(Continued)
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Table 6 (Continued). 

Drug Dose Parameter Adult  
Mean (90% CI)

Elderly  
Mean (90% CI)

Ratio  
(Elderly/Adult)

Fluoxetine 20mg qd Cmax (ng/mL) 25.46(23.00–28.00) 24.43(22.00–27.00) 0.96
AUC0-t (ng*h/mL) 4062.40(3702.00–4423.00) 3837.00(3484.00–4190.00) 0.94

Amisulpride 400mg qd Cmax (ng/mL) 731.69(659.00–804.40) 709.47(604.00–815.00) 0.97
AUC0-t (ug*h/mL) 23.71(21.60–25.80) 21.59(18.60–24.60) 0.91

Aripiprazole 10mg qd Cmax (ng/mL) 238.00(223.00–253.10) 249.63(231.10–268.20) 1.05
AUC0-t (ug*h/mL) 110.60(103.00–118.10) 114.40(106.00–123.00) 1.03

Alprazolam 0.4mg tid Cmax (ng/mL) 12.74(12.00–14.00) 14.21(13.00–15.00) 0.90
AUC0-t (ng*h/mL) 1513.00 (1407.00–1620.00) 1650.50(1538.00–1763.00) 0.92

Risperidone 1mg bid Cmax (ng/mL) 10.70(10.00–11.00) 10.49(9.66–11.00) 0.98
AUC0-t (ng*h/mL) 939.66(852.00–1028.00) 1017.50(917.00–1118.00) 1.08

Midazolam 7.5mg qd Cmax (ng/mL) 35.50(30.00–41.00) 37.67(33.10–42.20) 1.06
AUC0-t (ng*h/mL) 178.50(144.26–212.74) 230.74(190.93–270.56) 1.29

Diazepam 5mg tid Cmax (ng/mL) 555.18(530.00–580.00) 520.45(494.00–546.00) 0.94
AUC0-t (ug*h/mL) 147.70(141.80–153.60) 139.00(132.90–145.10) 0.94

Amantadine 100mg bid Cmax (ng/mL) 421.81(393.30–450.30) 468.59(437.70–499.50) 1.11
AUC0-t (ug*h/mL) 77.47(71.70–83.30) 89.95(82.90–97.00) 1.16

Pramipexole 125mg tid Cmax (ng/mL) 398.80(364.00–433.60) 393.54(367.40–419.60) 0.99
AUC0-t (ug*h/mL) 38.94(35.51–42.38) 38.79(36.10–41.50) 1.00

Levetiracetam 500mg bid Cmax (ug/mL) 14.31(13.66–14.95) 15.42(14.57–16.27) 1.08
AUC0-t (ug*h/mL) 832.13(787.00–877.20) 862.52(807.60–917.50) 1.04

Lamotrigine 25mg qd Cmax (ng/mL) 815.70(771.50–859.80) 835.03(776.00–894.00) 1.02
AUC0-t (ug*h/mL) 202.90(192.10–213.60) 208.44(194.10–222.80) 1.03

Tamoxifen 10mg bid Cmax (ng/mL) 87.37(81.00–94.00) 100.80(92.10–109.50) 1.15
AUC0-t (ug*h/mL) 10.35(9.57–11.13) 11.50(10.51–12.48) 1.11

Imatinib 400mg qd Cmax (ng/mL) 2460.50(2295.80–2625.10) 2130.30(1939.90–2320.60) 0.87
AUC0-t (ug*h/mL) 212.40(197.30–227.50) 199.00(181.60–216.50) 0.89

Apatinib 750mg qd Cmax (ng/mL) 931.29(766.80–1095.80) 1112.50(892.80–1332.20) 1.19
AUC0-t (ug*h/mL) 58.11(46.40–69.90) 74.48(56.80–92.10) 1.28

Gefitinib 250mg qd Cmax (ng/mL) 324.10(298.60–349.60) 356.13(328.30–384.00) 1.10
AUC0-t (ug*h/mL) 72.21(65.99–78.43) 76.81(70.30–83.30) 1.06

Dasatinib 100mg qd Cmax (ng/mL) 140.59(128.50–152.70) 143.14(131.70–154.60) 1.02
AUC0-t (ng*h/mL) 2912.50(2695.30–3129.70) 2825.20(2559.40–3091.00) 0.97

Atorvastatin 10mg qd Cmax (ng/mL) 5.14(4.59–5.69) 4.91(4.50–5.32) 0.96
AUC0-t (ng*h/mL) 91.70(85.00–99.00) 90.85(86.00–96.00) 0.99

Rosuvastatin 5mg qd Cmax (ng/mL) 7.26(6.14–8.38) 7.91(6.73–9.09) 1.09
AUC0-t (ng*h/mL) 308.22(265.20–351.20) 324.04(273.10–375.00) 1.05

Simvastatin 20mg qd Cmax (ng/mL) 7.79(7.10–8.49) 8.21(7.36–9.05) 1.05
AUC0-t (ng*h/mL) 293.43(268.20–318.60) 307.81(279.30–336.30) 1.05

Fluvastatin 20mg qd Cmax (ng/mL) 181.34(163.70–198.90) 181.34(164.20–198.50) 1.00
AUC0-t (ng*h/mL) 2416.70(2216.80–2616.60) 2351.90(2159.20–2544.50) 0.97

(Continued)
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consistently remains within the therapeutic reference range. It was worth noting that the laboratory alert concentration for 
sertraline was set at 300 ng/mL. Remarkably, the steady-state peak concentration remained well below this cautionary 
threshold, even when administering the maximum daily dosage of 200 mg. Hence, according to the simulation results, it 
was deduced that elderly individuals might adhere to the recommended dosing regimen as outlined in the package insert, 
which prescribed a daily administration of 50 mg. In cases of suboptimal clinical efficacy, an escalation of the maximum 
dosage to 200 mg per day was permissible. Within this defined dosage range, the Css of sertraline in elderly patients 
consistently remained within the therapeutic reference range, thus ensuring the treatment effectiveness and reducing 
potential safety-related concerns.

Recommendation for Alprazolam
In the case of alprazolam, after administration of 0.2 mg three times a day for 7 days (regimen a), the Css in virtual 
elderly subjects did not achieve the therapeutic reference range (Figure 4B-a). When the dosage was increased to 0.4 mg 
three times a day (regimen b) starting on the third day (Figure 4B-b), the mean concentration largely fell within the 
therapeutic reference range. However, the lower limit of the 90% confidence interval for trough concentration remained 
below the therapeutic reference range. Following the transition to regimen c, where the dosage was increased to 0.6 mg 
three times a day starting from the fifth day (as indicated in Figure 4B-c), the mean concentration completely fell within 
the therapeutic reference range. Furthermore, when the dosage was further elevated from 0.6 mg to 0.8 mg three times 
a day on day 7 (as shown in Figure 4B-d), the mean concentration was still well within the therapeutic reference range. 
Even with the total daily dose escalated to 2.4 mg (0.8 mg three times a day), twice the common clinical dose of 1.2 mg 
(0.4 mg three times a day), the steady-state peak concentration of alprazolam remained below 20 ng/mL. This 
concentration was significantly lower than the laboratory alert concentration for alprazolam, which was 100 ng/mL. 

Table 6 (Continued). 

Drug Dose Parameter Adult  
Mean (90% CI)

Elderly  
Mean (90% CI)

Ratio  
(Elderly/Adult)

Omeprazole 20mg bid Cmax (ng/mL) 385.87(348.00–424.00) 380.94(350.00–412.00) 0.99
AUC0-t (ug*h/mL) 10.04(9.20–10.88) 10.53(9.69–11.38) 1.05

Ilaprazole 10mg qd Cmax (ng/mL) 208.60(197.80–219.50) 194.52(181.30–207.70) 0.93
AUC0-t (ng*h/mL) 6228.20(5728.20–6728.10) 5612.20(5026.90–6197.40) 0.90

Lansoprazole 30mg qd Cmax (ng/mL) 226.38(207.00–245.00) 236.04(209.00–263.00) 1.04
AUC0-t (ng*h/mL) 6937.40(6367.00–7508.00) 6541.50(5933.00–7150.00) 0.94

Tramadol 100mg bid Cmax (ng/mL) 393.07(358.00–428.00) 433.11(382.00–484.00) 1.10
AUC0-t (ug*h/mL) 38.88(34.41–43.35) 44.53(38.14–50.91) 1.15

Ketoprofen 50mg tid Cmax (ug/mL) 3969.60(3694.00–4245.00) 4354.20(4024.00–4684.00) 1.10
AUC0-t (ug*h/mL) 110.41(102.80–118.00) 117.24(107.60–126.90) 1.06

Metoprolol 50mg bid Cmax (ng/mL) 451.55(419.00–484.00) 452.17(420.00–485.00) 1.00
AUC0-t (ug*h/mL) 16.86(15.76–17.96) 17.29(16.20–18.38) 1.03

Tacrolimus 5mg bid Cmax (ng/mL) 123.82(112.90–134.70) 119.47(107.00–132.00) 0.96
AUC0-t (ug*h/mL) 11.91(10.20–13.60) 11.87(10.00–13.70) 1.00

Ciclosporin 300mg qd Cmax (ng/mL) 17.90(16.50–19.40) 18.81(17.53–20.88) 1.05
AUC0-t (ng*h/mL) 2211.90(1949.30–2474.60) 2309.8(2102.00–2517.50) 1.04

Ondansetron 8mg tid Cmax (ng/mL) 76.01(68.84–83.19) 82.76(74.03–91.48) 1.09
AUC0-t (ng*h/mL) 4594.60(4149.20–5040.00) 4877.60(4321.70–5433.60) 1.06

Varenicline 1mg bid Cmax (ng/mL) 13.90(12.30–15.40) 14.10(13.30–14.80) 1.01
AUC0-t (ng*h/mL) 1695.30(1617.00–1773.50) 1987.00(1882.60–2091.40) 1.17

Abbreviations: qd, once daily; bid, twice daily; tid, three times a day;
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Figure 4 Prediction of pharmacokinetics of four drugs in Chinese elderly population. (A) sertraline; (B) alprazolam; (C) moclobemide; (D) amantadine; the black curve 
represents the predicted mean blood concentration curve, the shaded blue part represents the 90% confidence interval for blood concentration, the shaded yellow part 
represents the therapeutic reference concentration range, and the dashed Orange line represents the laboratory alert concentration.
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Therefore, when prescribed for elderly patients, it was concluded that alprazolam should be administered following the 
dosage instructions specified in the product package insert.

Recommendation for Moclobemide
The study evaluated five dose regimens for moclobemide using model simulations. None of these regimens resulted in 
Css being entirely within the therapeutic reference range (Figure 4C-a~e). Specifically, the 100 mg twice a day 
(Figure 4C-b) and the 100 mg three times a day (Figure 4C-c) maintained Css mostly within the therapeutic reference 
range. However, the 150 mg three times a day (Figure 4C-d) resulted in peak concentrations approaching the laboratory 
cautionary level (2000 ng/mL). When the daily dose was increased to 600 mg (Figure 4C-e), the Css exceeded the 
acceptable limit. In summary, the dosage of moclobemide for elderly patients should be reduced appropriately. It was 
recommended to administer either 100 mg twice or three times daily, ensuring that the Css remained within the 
therapeutic reference range for most of the dosing interval.

Recommendation for Amantadine
For amantadine, the simulation results (Figure 4D-a~e) indicated that two specific dose regimens consistently maintained 
Css within the therapeutic reference range. These regimens involved either an initial two-week administration of 50 mg 
twice daily, followed by an increase to 100 mg twice daily (Figure 4D-d), or an initial 100 mg once daily for 2 weeks, 
followed by a continuous 100 mg twice daily (Figure 4D-c). Hence, these dose regimens were recommended for the 
elderly patients.

Discussion
Due to the unique characteristics of the elderly population, there is a significant lack of comprehensive pharmacokinetic 
data for numerous drugs relevant to this group. As a result, evidence-based guidance is notably absent in multiple 
domains, including medication utilization and TDM for the elderly. In our study, we selected 50 commonly prescribed 
drugs for elderly patients in China, encompassing 15 distinct disease areas. Using PBPK modeling, we successfully 
simulated the pharmacokinetic profiles of these drugs within the elderly population of China. This research addressed the 
pharmacokinetic data gap in elderly patients and evaluated recommended dosing regimens for this demographic. 
Additionally, it provided robust support for TDM studies related to four neuropharmacological drugs. The results may 
also highlight the potential application of integrating the PBPK model with therapeutic drug monitoring for personalized 
medicine.

PBPK Modeling for 50 Representative Drugs in Chinese Elderly
The results indicated that among the PBPK models for 50 different drugs, there were relatively good matches between 
clinical observations and simulated drug–time curves in both the absorption and elimination phases. In the comparison of 
simulated and observed PK parameters, the ratios of Cmax fell within the range of 0.76 to 1.44, and the ratios of AUC 
ranged from 0.61 to 1.41, suggesting the models in Chinese young and middle-aged population were well validated. Each 
model demonstrated a good predictive capability for the PK characteristics of drugs in the elderly population.

Due to the limited number of clinical trials conducted in the elderly population in China, this study lacked clinically 
observed data for the elderly cohort. The PEAR physiology database in Gastroplus is constructed based on an extensive 
foundation of literature and statistics, and it has undergone validation through multiple published studies. For example, 
the PBPK model for the hydrobromide salt of danirixin in the elderly population was established using Gastroplus.156

Furthermore, we retrieved major organ weights of Chinese elderly individuals from the literature, which involved the 
statistical analysis of tens of thousands of autopsy cases in China.157,158 The physiological parameters of the elderly 
population generated by PEAR with those provided in the literature are compared in Supplementary Table 3. The results 
showed that there were no significant differences. Therefore, considering the maturity of the physiological database in 
Gastroplus, the PBPK models established for the elderly population in this study demonstrated reliable predictive 
capabilities.
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Comparing Pharmacokinetics Between Elderly and Young or Middle-Aged Populations 
in China
In this study, PBPK models were utilized to predict the PK characteristics of 50 drugs under the same dosing regimen in both 
the elderly and young and middle-aged populations in China. A comparison was then conducted. Among these 50 drugs, the 
ratios of PK parameters between the elderly and young and middle-aged populations ranged from 0.81 to 1.29, all of which 
were close to 1. Thus, the PK features of the two populations exhibited negligible differences. However, this did not 
conclusively determine whether dose adjustments or optimizations were ultimately needed for the 50 drugs. For example, 
midazolam. Previous studies demonstrated that the pharmacokinetics of midazolam were unaffected by age.159–161 

Nevertheless, the label for midazolam still recommended the lower doses for elderly individuals.162

Therefore, when adjusting the dosage, a thorough evaluation of the patient’s physiological condition is necessary. For 
certain sensitive drugs, monitoring drug concentrations or responses of patients is essential to ensure the safe and 
effective medication use. The PK characteristics predicted and described by the PBPK models offer the most direct data 
support for dose adjustments and personalized drug administration.

Application to Support Clinical Rational Dosage for Neuropsychiatric Drugs
The individual differences in the pharmacokinetics of neuropsychiatric drugs are considerable, and elderly individuals 
exhibit heightened sensitivity to their adverse reactions. Therefore, TDM can effectively enhance the rational use of 
neuropsychiatric drugs.163 Using the PBPK models enabled the accurate prediction of plasma drug concentrations in the 
elderly. By assessing whether Css falls within the therapeutic reference range, it assisted in providing rational drug dosing 
regimens in TDM, thereby reducing the risks and costs caused by the approach of trial-and-error.

For sertraline, the drug label recommends a daily dosage of 50 mg. Patients with poor therapeutic response but good 
tolerability can increase the dosage, with a maximum daily dose of 200 mg for sertraline. Results from the PBPK model 
simulating dosing regimens in the elderly population indicated that there was little difference in PK parameters between 
elderly and young and middle-aged adults. Elderly individuals could follow the recommended dosage of 50 mg/day as 
per the label, and if the therapeutic response was inadequate, the dose could be escalated to 200 mg/day based on 
individual patient response while maintaining plasma concentrations within the therapeutic reference range.

For alprazolam, the drug label recommends initiating therapy in adults with a dose of 0.4 mg three times a day (tid). 
However, due to increased sensitivity in the elderly population, it is advised to start with a lower dose of 0.2 mg tid. The 
simulated results from the PBPK model revealed that, under the same dosing regimen, the value of AUC for elderly 
population was 1.2 times that of young and middle-aged adults, representing a 20% increase in the value of AUC for the 
elderly. This difference likely attributed to a decline in metabolic capacity in the elderly, leading to a reduction in the 
clearance of alprazolam. This also indicated that caution should be exercised when selecting the initial dosage for the 
elderly. The simulated results indicated that at a dosage of 0.2 mg tid, the virtual patient’s drug concentration did not 
reach the effective therapeutic level. However, upon escalation to 0.6 mg tid and 0.8 mg tid, Css reached the effective 
therapeutic range and was significantly lower than the laboratory alert concentration. Therefore, it is advisable to 
recommend a relatively rapid escalation for elderly patients from 0.2 mg to 0.8 mg tid to achieve therapeutic effects 
promptly. Subsequent dose adjustments could then be considered based on the individual patient’s response.

The PK characteristics of moclobemide in elderly population were simulated, indicating that there was no significant 
difference in PK parameters between the elderly and the young and middle-aged populations. The value of Cmax in the 
elderly population was nearly identical to that in the young and middle-aged population, but the AUC was slightly higher 
in the elderly, by 14%, compared to the young and middle-aged population. Since moclobemide is metabolized primarily 
by the liver, age-induced decline in renal clearance contributed less to changes in the PK characteristics. The recom
mended therapeutic dosage in the label for moclobemide in the antidepressant indication is 300–450 mg/day, with 
a maximum dose of 600 mg/day. The dosage should be appropriately reduced for elderly patients. We predicted the drug 
concentrations in elderly individuals under various dosing regimens. The Css for most of the time after dosing with 
100 mg bid (200 mg/day) and 100 mg tid (300 mg/day) were within the therapeutic reference range. However, unlike the 
information provided in the drug label, dosing with 150 mg tid (450 mg/day) resulted in drug concentrations exceeding 
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the therapeutic reference range frequently. If there is a need to increase the dosage to this level, close attention should be 
paid to the response in elderly individuals. After the administration of 300 mg bid (600 mg/day), the peak concentration 
exceeded the laboratory alert concentration (2000 ng/mL). Consequently, it is not recommended to increase the dose to 
this dosing regimen in the elderly population.

Amantadine has a high bioavailability and is primarily eliminated through the kidney. Due to the decrease in kidney 
clearance in the elderly, both Cmax and AUC in the elderly increased by 11% and 16%, respectively. The recommended 
dose of amantadine for adults in the instructions is 100 mg qd or bid, and the maximum daily dose is 400 mg. For the 
elderly population, the instructions do not give a specific dose regimen, only points out that the elderly should use with 
caution. The PBPK model predicted that an increase of 50 mg bid to 100 mg bid after two weeks or an increase of 
100 mg qd dose to 100 mg bid after two weeks would eventually achieve a Css that could be maintained within the 
therapeutic reference range. For 200mg bid (400mg/day), the lowest drug concentration exceeded the therapeutic 
reference range, and the highest concentration reached laboratory alert levels. Therefore, it is recommended for the 
elderly to be administered at a 100mg bid dose, and higher doses are not recommended unless the patient exhibits good 
tolerance and the therapeutic effects are not evident.

In summary, rational drug use is very important for the elderly population. However, due to the lack of pharmaco
kinetic data in the elderly population, the realization of rational drug use is difficult. In the present study, we constructed 
PBPK models for 50 commonly used drugs of the elderly, aiming to explore the application of PBPK modeling in 
rational drug use and to optimize the drug administration scheme for the elderly with new technology, as well as to meet 
the needs of individualized drug use needs in the elderly population.

Although the PBPK models we constructed have stable structures and accurate predictions, they may have some 
limitations. Due to the lack of data, external validations of the models were not performed using clinical observational 
data from the elderly population, and pharmacodynamic characteristics were not considered in predicting dosing regi
mens. No explicit analysis was conducted by categorizing the 50 drugs based on their mechanisms of action to obtain 
more precise predictive results. Moreover, a factor that the relationship between exposure and safety in the elderly may 
differ from that in adults was not taken into account in this study. Additionally, hypothesis testing was not performed due 
to study design constraints, which limits the formal validation of our model predictions. The impact of genetic 
polymorphism, concurrent medication use, disease influence, and drug metabolites was also not fully considered. 
Further studies will be conducted to elucidate these issues by incorporating more real-world elderly data and performing 
sensitivity analyses.

Conclusion
In conclusion, we have developed PBPK models for 50 commonly prescribed drugs within the Chinese elderly 
population. Subsequently, we tackled prevailing data gaps associated with these specific medications. This study offered 
an alternative approach for therapeutic drug monitoring, thereby providing crucial data support to enhance the rational 
administration of medications among the elderly population in China.
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