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Objective: This study aimed to identify DNA methylation patterns associated with Very Late-Onset Schizophrenia-like Psychosis 
(VLOSLP) and to develop methylation-based biomarkers that differentiate VLOSLP from Schizophrenia (SCZ) and Alzheimer’s 
Disease (AD).
Methods: We analyzed methylation microarray datasets (n = 1218) from SCZ and AD patients obtained from the GEO database. We 
then collected blood samples from VLOSLP patients and age-matched healthy controls (n = 80) at the Wuxi Mental Health Center for 
methylation microarray profiling and bisulfite sequencing validation. Differential methylation analysis and Gene Ontology (GO) 
enrichment analysis identified candidate loci. We prioritized key methylation sites through integrated analysis of methylation 
quantitative trait loci (meQTL), linkage disequilibrium (LD) patterns, and blood-brain methylation correlations. Machine learning 
algorithms generated diagnostic models, with classification performance evaluated using Area Under the Curve (AUC) metrics.
Results: Analysis revealed distinct DNA methylation signatures in VLOSLP patients compared to controls. The GNB5 gene exhibited 
shared epigenetic modifications across SCZ, AD, and VLOSLP, suggesting a common pathogenic mechanism. The diagnostic model 
discriminating AD from VLOSLP demonstrated high accuracy, achieving an AUC of 1.0 in the training set and 0.958 in the test set 
(95% CI: 0.875–1.000). The AD versus SCZ classification model showed similar robustness, with AUCs of 0.995 and 0.955 in training 
and test sets, respectively (95% CI: 0.926–0.983). The SCZ versus VLOSLP model achieved perfect discrimination (AUC = 1.0) in 
both training and test sets, with substantial clinical utility. Additional analyses suggested distinct molecular subtypes within VLOSLP.
Conclusion: Specific DNA methylation alterations in VLOSLP are identified as potential diagnostic biomarkers. These findings may 
contribute to the development of molecular diagnostic tools, though further validation in larger, independent cohorts is warranted.
Keywords: very late-onset schizophrenia-like psychosis, epigenetics schizophrenia, Alzheimer’s disease, biomarkers

Introduction
Very-late-onset schizophrenia-like psychosis (VLOSLP) represents a distinct psychiatric condition that manifests initially 
after age 60.1 This disorder constitutes approximately 15% of geriatric psychiatric presentations and associates with 
elevated mortality rates2 and increased dementia incidence.3,4 VLOSLP exhibits a phenomenological profile that 
differentiates it from early-onset schizophrenia, characterized predominantly by delusional positive symptoms while 
maintaining relative cognitive preservation.5 Despite these distinctive clinical features, the underlying biological 
mechanisms remain incompletely understood, creating substantial challenges for accurate diagnosis and therapeutic 
intervention.
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DNA methylation and other epigenetic modifications appear to mediate critical pathogenic processes in psychiatric 
disorders.6 Research has demonstrated characteristic epigenetic alterations in both schizophrenia (SCZ)7–9 and 
Alzheimer’s disease10–13 (AD). However, investigators have not yet systematically examined the epigenetic profile of 
VLOSLP. The distinctive clinical presentation and age-specific onset of VLOSLP suggest that understanding its 
epigenetic architecture may illuminate disease mechanisms and identify potential diagnostic biomarkers.

This investigation presents the first comprehensive analysis of genome-wide DNA methylation patterns in VLOSLP 
patients, incorporating comparative analyses with SCZ and AD cohorts. The research aims to elucidate VLOSLP-specific 
epigenetic signatures and their potential diagnostic and therapeutic implications. Figure 1 presents the methodological 
framework for this investigation.

Materials and Methods
Subjects
We retrieved datasets from the National Center for Biotechnology Information (NCBI) GEO database (https://www.ncbi. 
nlm.nih.gov/geo; accessed December 2023) using the keywords Schizophrenia and Alzheimer’s Disease. The inclusion 
criteria for dataset selection were as follows: (1) Study design: Methylation profiling by array, with a minimum coverage 

Figure 1 Research flow diagram. The flow diagrams illustrate the research design.
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of 450,000 probes; (2) Specimen type: Post-mortem brain tissue or peripheral blood samples from Homo sapiens; and (3) 
Sample size: Each dataset must include at least 10 samples from either schizophrenia (SCZ) or Alzheimer’s disease (AD) 
patients, along with a comparable number of control samples.14

Based on these criteria, six datasets were included in the final analysis: three derived from peripheral blood samples 
(GSE41169:15 n SCZ = 62, n HC = 33; GSE153712:16 n AD = 255, n HC = 471; GSE157252:17 n SCZ = 41, n HC = 50) and 
three from post-mortem brain tissue samples (GSE61107:18 n SCZ = 23, n HC = 25; GSE66351:19 n AD = 106, n HC = 84; 
GSE112179:20 n SCZ = 35, n HC = 33). In total, the study encompassed 161 SCZ patients, 361 AD patients, and 
696 healthy controls. Detailed inclusion and exclusion criteria for each dataset are described in the respective 
publications.

A total of 80 (44 VLOSLP patients and 36 matched health controls) participants from the Wuxi Mental Health Center, 
affiliated with Jiangnan University, were included in the final analysis. Six individuals were excluded from the study: 
four declined to participate, and two did not meet the inclusion criteria, which are detailed below. All participants 
provided complete medical histories, underwent physical examinations, and completed laboratory testing. Informed 
consent was obtained from each participant following a thorough explanation of the study’s purpose and procedures. The 
research was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki and received 
approval from the Ethics Committee of the Wuxi Mental Health Center (Ethics No. WXMHCIRB2023LLky001). The 
specific inclusion and exclusion criteria are: The inclusion criteria were: 1) Age 60–85 years, Han ethnicity, right- 
handed; 2) VLOSLP diagnosis according to international expert consensus criteria,21 with initial psychiatric symptoms 
(delusions and hallucinations) onset after 60 year-old, confirmed by two senior psychiatrists. 3) No serious physical 
illness as well as normal laboratory results for past three months. 4) Cognitive screening criteria: Initial phase (first two 
participants): Mini-Mental State Examination (MMSE) score ≥24 points; Formal study phase (all participants): Montreal 
Cognitive Assessment (MoCA) score ≥ 26 points; 5) Capable of providing informed consent. The exclusion criteria: 1) 
DSM-5 Axis I disorders: organic mental disorders, primary emotional disorders, dementia, consciousness disturbances, 
delirium, memory impairments, or substance-induced mental disorders; 2) Unstable medical conditions in acute phase 
(diabetes, thyroid disorders, hypertension, cardiovascular diseases); 3) were treated with electroconvulsive therapy during 
the last month; 4) had abnormal liver or renal function; 5) had QTc prolongation, a history of congenital QTc 
prolongation, or recent (ie, within the past 6 months) myocardial infarction; 6) Has a history of previous treatment 
with antipsychotic medications, antidepressant agents, and mood stabilizing drugs; 7) The patient or their legally 
designated guardian is unable to provide signed consent on the informed consent form.

Genome-Wide DNA Methylation Profiling
Our study examined whole-genome DNA methylation patterns of peripheral blood using the methylation EPIC v2.0 
BeadChip platform in a cohort comprising 5 VLOSLP patients and 3 matched healthy controls. Blood collection occurred 
at 0600 hours on enrollment day following informed consent protocols. We obtained 5 mL fasting blood samples from 
the antecubital vein and stored them in EDTA-coated tubes at −80°C.

DNA extraction from peripheral blood samples utilized the DNeasy Blood and Tissue Kit (Qiagen Cat. No. 69504). 
Nanodrop 2000 spectrophotometry (Thermo, Beijing, China) enabled DNA purity and concentration assessments. We 
processed 500 ng of DNA from each sample through bisulfite conversion using EZ DNA Methylation Kits (Zymo 
Research, Tustin, CA, USA). The processed samples underwent analysis via the Infinium Methylation EPIC 2.0 
BeadChip platform according to manufacturer specifications (Illumina, Hayward, CA, USA). This platform enables 
quantitative analysis of over 935,000 CpG sites across the genome at single-nucleotide resolution.

Shanghai Bohao Biotechnology Co., Ltd. conducted all laboratory procedures, including DNA extraction, quality 
control assessment, bisulfite conversion, and BeadChip-specific protocols (amplification, labeling, hybridization, wash-
ing, and scanning) under standardized conditions.

Data Preprocessing and Analysis
To ensure the reliability and precision of our data analysis, each dataset was independently preprocessed and analyzed. 
After downloading the raw data, we utilized the ChAMP package22 in R software for preliminary processing.
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Specifically, we employed the champ.load () function to import and screen the data using the following parameters: 
methValue was set to “B” for beta values, autoimpute was enabled to automatically impute missing values, and filterDetP 
was enabled with a detection p-value threshold (detPcut) of 0.01 to exclude probes with detection p-values exceeding this 
limit. Probes with bead counts below 3% in at least 10% of the samples were removed, along with non-CpG probes, 
probes with multiplex mapping, and probes located on sex chromosomes (X and Y) or associated with single nucleotide 
polymorphisms (SNPs).

After initial filtering, stringent quality control was performed using the champ.QC () function. To normalize the beta 
value matrix and correct for biases between type I and type II probes, we applied the BMIQ normalization method through 
the champ.norm () function. To mitigate batch effects, we implemented the champ.runCombat () function for batch 
correction. Additional preprocessing parameters included the exclusion of probes based on bead count cutoffs 
(beadCutoff set to 0.05) and the adjustment for population-specific genetic variations (population parameter set to “EAS”).

Differential Methylation Analysis
Following the preprocessing of genomic DNA methylation microarray data, we utilized the DMP () function from the ChAMP 
package in R to identify differentially methylated positions (DMPs). To determine the statistical significance of the detected 
DMPs, we applied the following criteria: a p-value < 0.05, an absolute beta value difference (|β difference|) > 0.1,23 and false 
discovery rate (FDR) correction using the Benjamini-Hochberg procedure, with the adjusted p-value threshold set at < 0.05.

Gene Functional Enrichment Analysis
To gain a comprehensive understanding of the biological functions associated with the differentially methylated sites in 
our dataset, we employed the DAVID database (https://david.ncifcrf.gov). Gene Ontology (GO) analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were subsequently performed on the genes 
containing these differentially methylated sites. Entries with a p-value < 0.05 were considered significantly enriched. 
This approach aimed to elucidate the functional roles and biological pathways influenced by these genes.

Bisulfite Pyrosequencing
To validate the reliability of array-based methylation measurements, we performed technical replication using bisulfite 
pyrosequencing on candidate CpG sites. Genomic DNA from an independent cohort of 44 VLOSLP patients and 36 
matched healthy controls was bisulfite-converted using the EZ DNA Methylation-Gold Kit (Zymo Research) following 
manufacturer protocols.

Correlation Analysis of DNA Methylation in Multiple Tissues
Recognizing tissue specificity as a defining feature of DNA methylation, we utilized the Blood Brain DNA Methylation 
Comparison Tool (https://epigenetics.essex.ac.uk/bloodbrain/) to assess the concordance of methylation levels at differ-
entially methylated loci between peripheral blood and selected brain regions. Comparative analyses were performed to 
evaluate methylation levels in peripheral blood relative to four brain regions: the prefrontal cortex (PFC), entorhinal 
cortex (EC), superior temporal gyrus (STG), and cerebellum (CER). A p-value < 0.05 was considered indicative of 
a statistically significant correlation.

The Methylation Quantitative Trait Loci Analysis
To explore the interplay between alleles and methylation sites, we extracted data from two well-established methylation 
quantitative trait loci (meQTL) databases. Specifically, we utilized the meQTL Database (https://epicmeqtl.kcl.ac.uk) to perform 
a detailed analysis of meQTL associations in the acquired dataset. Our investigation focused exclusively on cis-meQTLs, 
defining statistically significant single nucleotide polymorphism (SNP)-CpG site pairs as those with a p-value ≤ 1 × 10-8.

Analysis of Linkage Disequilibrium
In our study, we utilized the Linkage Disequilibrium Score Regression (LDSC) tool (https://github.com/bulik/ldsc) to 
calculate linkage disequilibrium (LD) scores for single nucleotide polymorphisms (SNPs) within our dataset. The East 
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Asian cohort from the Thousand Genomes Project served as the reference population for these computations. SNPs were 
classified as being in linkage disequilibrium if their R² > 0.5 or D’ > 0.5. To further elucidate the observed LD patterns, 
we employed the LDmatrix tool to generate graphical representations of the linkage disequilibrium structure.

Dimensionality Reduction Analysis
We utilized three advanced dimensionality reduction techniques to extract latent features indicative of mental illness risk: 
Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold 
Approximation and Projection (UMAP). PCA was performed using the prcomp () function within the R statistical 
environment. The t-SNE algorithm was implemented via the R t-SNE () function provided by the corresponding 
R package (https://github.com/jkrijthe/Rtsne), while UMAP was executed using the UMAP () function from the 
dedicated R package (https://github.com/tkonopka/umap). To ensure methodological consistency and result reliability, 
all datasets were preprocessed with centering and scaling using the preprocess () function from the caret package in 
R. This preprocessing step enabled a rigorous assessment of methylation profiles and clinical characteristics using these 
dimensionality reduction techniques.

Machine-Learning Model Development
Using the R software and the caret package (https://github.com/topepo/caret), we incorporated the observed differentially 
methylated positions (DMPs) and chip type as independent variables, with disease classification as the dependent 
variable. The dataset of methylated samples was divided into training and testing subsets in a 1:1 ratio. Data in the 
training set were centered, scaled, and transformed to follow a Gaussian distribution using the preprocess () function 
from the caret package prior to model development. To address potential underfitting or overfitting, we employed either 
ten-fold cross-validation or leave-one-out validation during the training phase.

Model construction was performed using the XGBoost algorithm.24,25 Key hyperparameters were optimized via 
a random search approach, including the number of trees (n estimators), maximum tree depth (max depth), minimum 
samples required for a split (min samples split), minimum samples required at a leaf node (min samples leaf), learning 
rate (eta), regularization parameter (C), feature sampling rate per tree (colsample bytree), kernel coefficient (gamma), 
sample sampling rate per tree (subsample), and the number of boosting iterations (n rounds).

The classification performance of the predictive models was evaluated using the area under the curve (AUC). Clinical 
utility was further assessed via decision curve analysis, implemented using the rmda package in R (https://github.com/ 
mdbrown/rmda).

Statistical Analysis
Statistical analyses were performed using SPSS version 26.0. Continuous variables were analyzed using t-tests, ANOVA, 
or Kruskal–Wallis tests, depending on their distribution. Categorical variables were assessed with chi-square tests, while 
Pearson correlation was employed for evaluating relationships between continuous variables. A statistical power analysis 
was conducted using G*Power 3.1.9.2 software. Based on preliminary experimental data, we set α = 0.05, β = 0.1 (Type 
II error rate of 10%), and estimated an effect size of 0.79. The analysis determined that a sample size of 70 participants 
provided sufficient power (1−β = 0.90) for all statistical tests. To account for multiple comparisons, we applied false 
discovery rate (FDR) correction using the Benjamini-Hochberg method, with a threshold of q = 0.05.

Results
Overview of Whole Genome DNA Methylation
Our genome-wide DNA methylation analysis identified significant differential methylation sites across 5 VLOSLP 
patients compared to 3 healthy control samples. The analysis revealed 2213 hypermethylated and 3274 hypomethylated 
sites (Figure 2A), suggesting distinct epigenetic modification patterns between experimental groups. Functional domain 
analysis of hypermethylated sites demonstrated their distribution across genomic regions: 296 sites (63%) within 
promoter regions, 32 sites (7%) in 5’ untranslated regions (5’UTR), 13 sites (3%) in 3’ untranslated regions (3’UTR), 
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and 125 sites (27%) within exonic regions. Similarly, hypomethylated sites exhibited a comparable distribution pattern: 
488 sites (62%) in promoter regions, 36 sites (5%) in 5’UTR, 45 sites (6%) in 3’UTR, and 211 sites (27%) in exonic 
regions (Figure 2B).

Further analysis of the 1246 differentially methylated sites in promoter regions revealed specific patterns of CpG-related 
features. The distribution comprised 11% CpG islands, while flanking regions showed distinct patterns: North (N) and 
South (S) shores each represented 36%, and N and S shelves constituted 7% and 10%, respectively (Figure 2C). 
Hierarchical clustering analysis revealed substantial similarities among samples within their respective groups. Notably, 
the disease group samples exhibited higher methylation pattern homogeneity and clustered distinctly from control group 
samples (Figure 2D). Additional details are provided in Supplementary Figure S1.

Specific Differentially Methylated Sites of VLOSLP
This investigation examined genome-wide DNA methylation patterns across four distinct groups: patients with VLOSLP 
(5 cases), healthy controls (696 cases), individuals with SCZ (161 cases), and patients with AD (361 cases). Subsequent 
gene mapping analysis of these differentially methylated sites, visualized through Venn diagram analysis (Figure 3A), 
identified 983 uniquely differentially methylated genes, suggesting distinct epigenetic signatures associated with 
VLOSLP.

Figure 2 Overview of Whole Genome DNA Methylation. (A) Volcano plot illustrating the analysis of differential methylation sites in VLOSLP. (B), left: Functional 
domain analysis of hypermethylated sites (B), right: Functional domain analysis of hypomethylated sites. (C) Analysis of differential methylation sites in the promoter 
region. (D) Hierarchical clustering analysis of VLOSLP and healthy group.
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To noted, we identified six VLOSLP-specific sites (Figure 3B). Statistical analysis revealed varying effect sizes and 
confidence intervals for these sites: cg06324048 (effect size: 2.05 [95% CI: 0.174–3.824]; cg27661264 (effect size: 2.15 [95% 
CI: 0.24–3.96]; cg19428235 (effect size: 2.19 [95% CI: 0.26–4.01]; cg18380528 (effect size: −1.60 [95% CI: −3.24–0.13]; 
cg00638797 (effect size: 0.406 [95% CI: −1.06–1.84]; cg00256593 (effect size: −0.482 [95% CI: −1.92–0.99]).

Functional Enrichment Analysis
Gene Ontology (GO) functional enrichment analysis revealed distinct biological focuses in the datasets. The SCZ dataset 
(Figure 4A) was primarily enriched for processes related to glutamate synapse function and neuron cell body structure. In 
contrast, the AD dataset (Figure 4B) demonstrated enrichment in synapse activity, glutamate synapse, neuron cell body, 
nervous system development, axonogenesis, and neuronal protrusion growth.

In the independent VLOSLP dataset, functional enrichment analysis of the identified differentially methylated 
positions (DMPs) highlighted significant involvement in key biological processes essential to nervous system function. 
These included G protein-coupled receptor activity, protein tyrosine kinase activator activity, and the regulation of 
neurotransmitter secretion and phagocytosis mediated by calcium ions (Figure 4C).

KEGG pathway enrichment analysis indicated that the identified DMPs were significantly enriched in pathways such 
as adrenergic signaling in cardiomyocytes, cAMP signaling, cGMP-PKG signaling, linoleic acid metabolism, arachidonic 
acid metabolism, and cocaine addiction signaling pathways (Figure 4D).

Furthermore, disease-associated gene network analysis revealed notable interactions involving GNB5, GNAS, GNB1, 
GNAI1, and ADCYAP1R1, forming a robust interaction network (Figure 4E).

Bisulfite Pyrosequencing Validation
To validate our genome-wide methylation findings, we conducted bisulfite pyrosequencing on seven neurologically 
relevant CpG sites selected by effect size magnitude (effect size>0.4): (GNB1 (cg16645714), GNAI1 (cg19428235), 
RYR2 (cg18380528), GNAS (cg06324048, cg27661264), GNB5 (cg00638797), ADCYAP1R1 (cg00256593). The analysis 
revealed locus-specific methylation alterations in VLOSLP patients compared to healthy controls. A statistically sig-
nificant hypermethylation was observed at the GNB5 cg00638797 site (Δβ = +14.7%, p < 0.001, Mann–Whitney U) 
(Figure 5). In contrast, the remaining sites showed no significant intergroup differences: GNB1 (cg16645714, p = 0.753); 
GNAI1 (cg19428235, p = 0.881); RYR2 (cg18380528, p = 0.097); GNAS (cg06324048, p = 0.498); GNAS (cg27661264, 
p = 0.958); ADCYAP1R1 (cg00256593, p = 0.923), as shown in Supplementary Table S1.

Figure 3 Specific differential methylation site analysis. (A) Venn diagram illustrating the overlap of differentially expressed genes across datasets, revealing 983 genes 
commonly altered with the intersecting regions highlighting the shared differentially expressed genes among the datasets. (B) Analysis of Specific Differential Methylation 
Sites in VLOSLP.
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Figure 4 GO and KEGG enrichment analysis. (A) GO functional enrichment analysis of SCZ. (B) GO functional enrichment analysis of AD. The red column denotes 
Biological Processes (BP), the green signifies Cellular Components (CC), while the blue column is indicative of Molecular Functions (MF). (C) GO functional enrichment 
analysis of VLOSLP. (D) KEGG pathway enrichment analysis of VLOSLP. (E) Network analysis of GNB5 related diseases.
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Correlation Analysis of Methylation Levels Between Peripheral Blood and Brain Tissue
In VLOSLP peripheral blood, the methylation status of cg13934625 demonstrated a significant association with the 
prefrontal cortex (p = 0.000331) and the entorhinal cortex (p = 0.0025), as shown in Figure 6A. Similarly, the methylation 
level of cg11871050 was significantly correlated with the frontal lobe (p = 0.0394), entorhinal lobe (p = 0.016), superior 
temporal lobe (p = 0.0126), and cerebellum (p = 0.0408), as illustrated in Figure 6B. For cg00638797, a strong correlation 
was observed with the frontal lobe (p = 0.00091), entorhinal lobe (p = 0.0249), superior temporal lobe (p = 0.000696), and 
cerebellum (p = 4.2×10−16), as depicted in Figure 6C. Additional correlations are provided in Supplementary Figure S2.

Figure 5 Pyrophosphate verification of GNB5. Asterisks denote statistical significance: ***p < 0.001.

Figure 6 Correlation of GNB5-linked methylation patterns in blood and brain tissue. (A–C) show methylation for cg13934625, cg11871050, and. cg00638797.
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Genetic-Epigenetic Interaction Analysis
Analysis of genetic-epigenetic interactions within the GNB5 gene in VLOSLP patients, specifically examining the 
relationship between differential methylation sites and methylome quantitative trait loci (mQTL), revealed 286 signifi-
cant single nucleotide polymorphism (SNP)-CpG pairs functioning as mQTLs across 349 differentially methylated 
regions (see Supplementary Table S2).

Linkage disequilibrium analysis, conducted with reference to East Asian population allele frequencies, indicates 
potential associations between the GNB5-meQTL and multiple neurobiological phenotypes. These associations encom-
pass structural brain characteristics (including volumetric variations in specific brain regions), calcium homeostasis, and 
white matter integrity, with particular emphasis on the posterior cingulate cortex. Moreover, the GNB5-meQTL appears 
to correlate with pharmacological response to antipsychotic agents and may contribute to the pathophysiology of severe 
depressive disorder (comprehensive data presented in Supplementary Table S3).

Development, Validation, and Evaluation of the Predictive Model
We developed a diagnostic classification model predicated on DNA methylation patterns at five specific CpG sites 
(cg13934625, cg14120436, cg19366178, cg19747632, cg20557935) within the GNB5 gene to differentiate among 
SCZ, AD, and VLOSLP. The model’s classification performance underwent evaluation using both training and test 
datasets (Figure 7A and B). In the binary classification of AD versus VLOSLP (n train = 184(n AD = 181; n VLOSLP = 3), 
n test = 182(n AD = 180; n VLOSLP = 2)), the model demonstrated an area under the curve (AUC) of 1.0 in the training set 
and 0.958 (95% CI: 0.875–1.000) in the test set. The AD versus SCZ binary classification (n train = 264(n AD = 181; n 
SCZ = 83), n test = 263(n AD = 180; n SCZ = 83)) yielded an AUC of 0.995 in the training set and 0.955 (95% CI: 
0.926–0.983) in the test set. For SCZ versus VLOSLP differentiation (n train = 84(n SCZ = 81; n VLOSLP = 3), n test = 82 
(n SCZ = 80; n VLOSLP = 2)), the model achieved an AUC of 1.0 in both training and test sets.

Decision curve analysis (Figure 7C) indicates substantial net benefits in the test set for all three binary classification 
models (AD vs SCZ, AD vs VLOSLP, and SCZ vs VLOSLP). These findings suggest that GNB5 methylation patterns 
may serve as potential biomarkers for distinguishing among these neuropsychiatric conditions, though further validation 
studies are warranted.

The outcomes of the sensitivity assessment, subgroup examination, and Bootstrap testing indicate a high degree of 
robustness for the model. Details are provided in Supplementary Figure S3.

Dimensionality reduction analysis revealed associations between GNB5 methylation profiles and specific clinical 
parameters. Notably, variations in language performance scores on the Montreal Cognitive Assessment (MoCA) and 
Activities of Daily Living (ADL) scores, stratified by GNB5 methylation levels, appear to contribute to the identification 
of VLOSLP subtypes (Figure 7D).

Discussion
This study identified significant DNA methylation changes in the blood of patients with VLOSLP, primarily affecting 
gene promoter regions. Our enrichment analysis suggests that pathways related to neurotransmitter regulation, inflam-
mation, and cognitive function may play central roles in VLOSLP pathogenesis. Notably, we observed a strong genetic- 
epigenetic interaction involving the GNB5 gene,26 which is critical for brain structure and has been implicated in various 
psychiatric disorders. By leveraging the methylation status of GNB5, we developed and validated a predictive model that 
demonstrated excellent classification performance and clinical utility. Moreover, we identified distinct VLOSLP subtypes 
with unique clinical features, emphasizing the disorder’s heterogeneity.

The observed DNA methylation alterations primarily affected promoter regions of genes involved in neurotransmitter 
pathways. As DNA methylation modulates gene expression, increased methylation levels may downregulate genes 
associated with the synthesis, release, and metabolism of neurotransmitters,27 thereby affecting the balance of the 
neurotransmitter system. For instance, the methylation status of GNB5 is closely related to VLOSLP occurrence. 
Studies have shown that GNB5 is significantly enriched in the brain, particularly in the hippocampus and striatum28 
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Figure 7 Performance evaluation of predictive models. (A) Performance of the training set model. (B) Test set model performance. AUC. Area under the curve. 
(C) Decision Curve Evaluation for Identifying Distinctive Features of Three Models in the Test Data. The green curve shows the AD vs VLOSLP binary 
classification model, the red curve shows the AD vs SCZ binary classification model, and the blue curve shows the SCZ vs VLOSLP binary classification model. (D) 
Dimensionality reduction analysis of GNB5 methylation profile, Montreal Cognitive Assessment (MoCA) language function, and Activities of Daily Living (ADL). 
Error bars show data variability (standard error or confidence intervals). 
Note: Asterisks denote statistical significance: *p < 0.05, **p < 0.01.
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and is integral to neurotransmitter signal transduction.29 Altered GNB5 methylation may thus contribute to neurotrans-
mitter dysfunction and the pathogenesis of VLOSLP.

Our study revealed distinct neurotransmitter pathway-specific methylation alterations that significantly differ from 
findings in SCZ epigenetic research. Previous genome-wide methylation studies of SCZ primarily identified methylation 
abnormalities in glutamatergic receptors (GRM3,30 GRIN2A31) and dopamine receptor DRD2,32 whereas our findings 
demonstrate predominant methylation changes in GNB5, a key gene in the G protein signaling transduction pathway. 
This discrepancy suggests that VLOSLP may involve different regulatory targets compared to typical SCZ. Specifically, 
VLOSLP appears to predominantly involve G protein-mediated transmembrane signaling transduction, while typical 
SCZ more frequently associates with receptor functional impairments.

Comparative analysis with AD revealed that although both conditions exhibit epigenetic modifications in cognition- 
related pathways, AD characteristic methylation loci predominantly cluster in amyloid precursor protein metabolism33,34 

(ANK1, APP, PSEN1) and tau phosphorylation regulation35 (MAPT). In contrast, the GNB5 methylation signature 
identified in our study may reflect synaptic plasticity impairments - a potential VLOSLP-specific pathological 
mechanism.

Besides, the methylation characteristics of VLOSLP demonstrate a distinct pattern from late-onset major depressive 
disorder (MDD) and anxiety disorders. In MDD, where elevated methylation of neuroplasticity-related genes (BDNF) 
and stress-responsive loci (NR3C1) is linked to depression risk.36 What’s more, generalized anxiety disorder37,38 (GAD), 
shows methylation changes at neuroinflammation-associated CpG sites (RIOK3 cg21515243, PSMB4 cg01334186). 
However, VLOSLP predominantly involves G protein-coupled receptor (GNB5) and calcium-mediated synaptic plasticity 
pathways.

Notably, the epigenetic dysregulation observed in VLOSLP exhibits pathway-level convergence with neurodegen-
erative disorders beyond AD. This is particularly evident in GPCR signaling pathways — as evidenced by the 
involvement of inhibin-mediated GPCR modulation in frontotemporal dementia pathogenesis.39 Furthermore, calcium 
signaling alterations in VLOSLP show functional parallels to neurodegenerative mechanisms, such as the calcium 
dyshomeostasis observed in striatal neurons in Huntington’s disease,40 though these disorders diverge in their specific 
molecular targets within shared calcium-regulated neurotransmitter pathways.

Aging-related epigenetic changes appear to play a key role in VLOSLP. Epigenetic modifications accumulate with 
age,41 influencing gene expression and potentially leading to cognitive decline42 and neuropsychiatric symptoms.43 In 
this study, DNA methylation alterations associated with VLOSLP suggest that age-related epigenetic remodeling may 
underlie the disorder’s late onset. Shifts in methylation patterns of neurotransmitter-related genes might compromise 
cognitive function and promote neuropsychiatric manifestations as individuals grow older.

Epigenetic regulation, including DNA methylation, significantly affects neurocognitive processes. It can impair 
neuronal metabolism, synaptic regulation, neurogenesis, and neuroplasticity,44,45 all of which are vital for maintaining 
cognitive function. Consistent with previous findings,5 our MoCA assessments revealed cognitive deficits in VLOSLP 
patients, aligning with the observed methylation alterations at specific loci. These changes may further disturb neuro-
transmitter equilibrium, exacerbating cognitive dysfunction.

From a clinical perspective, our findings underscore the potential of DNA methylation markers as biological tools for 
diagnosis, treatment planning, and prognosis.46 In this study, DNA methylation markers exhibited high performance 
(AUC: 0.958 to 1) for diagnosing VLOSLP and can be integrated with existing clinical scales for more accurate early 
screening. Additionally, they show promise for predicting drug responses and monitoring treatment efficacy. 
Identification of prognosis-related methylation sites could guide early interventions, inform personalized treatment 
strategies, and support dynamic monitoring of disease progression and recurrence risk.

Although numerous epigenetic studies in SCZ focus on late adolescence or early adulthood,47 most emphasize 
isolated loci, non-coding RNAs, epigenetic aging, or telomere shortening.8 There remains a paucity of empirical research 
specifically examining first-episode SCZ in individuals aged 40 or above, or 60 and older, with existing studies often 
limited to clinical follow-up or cross-sectional comparisons.5 A PubMed search (2000–August 2024) for “late-onset 
schizophrenia-like psychosis” yielded 95 publications, of which only 3 were clinical trials focused solely on antipsy-
chotic treatments.48–50 By conducting a whole-genome DNA methylation study on VLOSLP, we address this gap, 
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demonstrating unique epigenetic signatures and highlighting the importance of neurotransmitter-, inflammatory-, and 
cognition-related pathways in disease pathology.

VLOSLP presents particular diagnostic challenges, especially when distinguishing it from other age-related neuro-
degenerative conditions such as AD, frontotemporal dementia, and Lewy body de entia.51,52 Cognitive impairments in 
SCZ and AD overlap across domains including attention, memory, and language.53 Our predictive model, based on five 
CpG sites within GNB5, effectively differentiated VLOSLP from AD, providing a novel biomarker that could refine 
differential diagnosis and deepen our understanding of cognitive dysfunction across these conditions.

Importantly, the epigenetic patterns we identified in VLOSLP differ markedly from known aging-related epigenetic 
markers.54 These findings suggest that aging-related epigenetic mechanisms might be central to VLOSLP pathogenesis. 
Recent epigenetic meta-analyses55 further support the relevance of factors such as age, gender, disease duration, and 
polygenic risk in SCZ, reinforcing the complexity of epigenetic influences in late-onset presentations.

This study offers several innovations. First, we systematically characterized VLOSLP’s DNA methylation landscape 
for the first time, identifying distinct epigenetic markers that differentiate VLOSLP from SCZ and AD. Second, we 
developed a DNA methylation analysis framework for elderly psychiatric disorders, integrating multi-omics strategies 
(genomics and epigenetics) with clinically useful predictive models. Theoretically, we proposed specific hypotheses 
regarding age-related epigenetic mechanisms in VLOSLP, establishing patterns of association between epigenetic 
changes and clinical phenotypes. Practically, we proposed diagnostic, therapeutic, and prognostic models based on 
epigenetic markers.

Despite these strengths, some limitations must be acknowledged. The relatively small sample size reduces statistical 
power, potentially explaining why certain VLOSLP-specific sites did not reach significance after correction. Larger 
cohorts are needed for validation. In addition, SCZ vs VLOSLP, AD vs VLOSLP classifiers need to be interpreted with 
caution and require external dataset validation. In addition, the prediction model includes blood and brain tissue samples, 
which may cause some confusion. Methodological constraints persist in DNA methylation testing, bioinformatics 
approaches, and phenotype-genotype association studies.56 Confounding variables, including age, gender, medication 
use, comorbidities, and lifestyle, may influence our results. Additionally, the follow-up lacked and incomplete phenotypic 
data collection limit our capacity for deeper mechanistic understanding. Finally, our research is still in the conceptual 
validation stage, and the directionality of the observed associations is still unclear without functional experiments.

Future research should thus expand sample sizes, extend follow-up durations, incorporate functional validations, 
enrich clinical data, integrate multi-omics peripheral blood data, explore multi-class models, and apply multivariate 
analytical methods to mitigate confounders. Further explore the heterogeneity of VLOSLP subtypes. Through these steps, 
we can refine our understanding of VLOSLP’s epigenetic underpinnings, ultimately improving diagnostic accuracy, 
treatment efficacy, and prognostic precision.

Conclusions
This study identifies novel DNA methylation alterations in VLOSLP, revealing distinct epigenetic biomarkers and 
a highly accurate diagnostic model (85%). These findings differentiate VLOSLP from other psychiatric disorders, 
implicate key pathways, and offer new targets for personalized treatment, advancing both diagnostic and therapeutic 
strategies.
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