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Background: Multiple studies have suggested that lncRNAs and pyroptosis play important roles in ovarian cancer (OC). However, 
the function of pyroptosis-related lncRNAs (PRLs) in OC is not fully understood.
Methods: Clinical information and RNA-seq data of OC patients (n = 379) were collected from TCGA database. Pearson correlation 
analysis and univariate Cox analysis were performed to identify prognostic PRLs, respectively. LASSO-COX regression was utilized 
to construct a prognostic PRLs signature. Kaplan–Meier (K–M) curve analyses and receiver operating characteristics (ROC) were used 
to evaluate the prognostic prediction of the signature. The association between risk score and tumor microenvironment infiltration, 
immunotherapy response and chemotherapy sensitivity were also analyzed. In addition, the function of TYMSOS on OC and 
pyroptosis was experimentally confirmed in cell lines.
Results: Firstly, 32 prognostic PRLs were identified, and a novel prognostic PRLs signature was constructed and validated. 
Surprisingly, the prognostic PRLs signature could solidly predict the clinical outcome of patients with OC and patients with high- 
risk score shown a short overall survival. GSEA results suggested that the RPLs were mainly enriched in the inflammatory response 
pathway, p53 pathway, TGF-β signaling and TNFα signaling. Besides, our results demonstrated that the risk score was significantly 
associated with patients with immune infiltration, immunotherapy response and the sensitivity of veliparib and metformin. 
Furthermore, the oncogene effect of TYMSOS on OC by inhibiting pyroptosis was verified by experiments.
Conclusion: This study found that the prognostic PRLs signature may serve as an efficient biomarker in predicting the prognosis, 
tumor microenvironment infiltration, and sensitivity of chemotherapeutic agents. TYMSOS is a potential biomarker in OC, and it 
might promote tumor progression by inhibiting pyroptosis.
Keywords: pyroptosis, ovarian cancer, prognosis, immune microenvironment, signature

Introduction
Worldwide, ovarian cancer (OC) ranks as the third most common gynecologic cancer and patients with OC suffer from 
an extremely high recurrence and mortality rate.1 In 2023, there were 19,710 new cases and 13,270 deaths of OC in the 
United States, and it was the sixth most prevalent cause of death among all women who died of cancer.2 Due to the 
absence of early physical signs, over 70% of epithelial ovarian cancer (EOC) cases are reported to be newly diagnosed at 
advanced stages with a five-year survival rate of approximately 48%.3 The standard of therapy for OC is tumor 
cytoreductive surgery in conjunction with platinum-based chemotherapy. However, most patients recur within two 
years. It indicates that recurrence and drug resistance are the major challenges that need to be addressed.4 Given the 
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limitations of current OC treatment, new targets for therapy are desired to enhance the clinical outcome of OC. In this 
context, there is an overwhelming urgency for robust prognostic models to render targeted therapies more plausible.

At present, multiple evidences have demonstrated that pyroptosis plays important roles in cancer.5 Pyroptosis, which 
is morphologically characterized by swollen cell lysis, rupture of cell membranes and the release of cell contents, is 
a programmed cell death referring to the Gasdermin family-induced and caused by the inflammasome, and ultimately 
activating a cascade of enlarged inflammatory responses.6–8 As is known to us, there are two main forms of pyroptosis: i) 
the caspase-1 dependent classical pathway; ii) the caspase-4/5/11 reliant non-classical pathway. In the non-classical 
inflammasome pathway, bacterial lipopolysaccharide (LPS) induces pyroptosis by initiating caspase-4/5/11 cleavage of 
gasdermin D (GSDMD). In the typical inflammasome pathway, the inflammasome recruits and combines with ASC 
(CARD-containing apoptosis-associated spot-like protein), resulting in ASC gathering, which in turn activates caspase-1. 
Caspase-1 is involved in the cleavage and maturation of pro-IL-18/1b and the cleavage of GSDMD. Subsequently, the 
excretion of IL-18/1b causes the influx of water, cell swelling and permeability lysis.9–11 Recent findings demonstrated 
that pyroptosis played an emerging role in various diseases, including autoimmune and inflammatory diseases, infectious 
diseases, deafness, and cancer.12–16 In cancer, it is suggested that the process of pyroptosis inhibits tumorigenesis and 
progression, conversely, it serves as a pro-inflammatory signal to establish a microenvironment suitable for tumor cell 
growth.17–20 Yet, the exact function of pyroptosis was poorly investigated in OC.

Long non-coding RNAs (lncRNAs) are identified as a group of RNA molecules over 200 bp in length that are not 
translated into proteins. They are reported to participate in various biological processes, such as epigenetic modifications, 
inheritance stamping, chromatin organization, and protein amendment.21 Several studies have indicated that lncRNAs 
might be engaged in OC and pyroptosis.22–25 Previous studies have primarily focused on the utility of protein-coding 
genes of pyroptosis, lncRNAs related with pyroptosis (PRLs) have barely been reported in OC.26–28 Therefore, the 
identification of PRLs is essential for deciphering the underlying motifs of pyroptosis in OC and investigating new 
therapeutic targets. In our study, PRLs were first screened by using the Pearson correlation analysis. Furthermore, 
a prognostic signature was constructed based on the PRLs. The prognostic PRLs signature significantly predicted the 
clinical outcome of OC patients in high-risk subgroup and low-risk subgroup with a high diagnostic accuracy. In 
addition, it was correlated with the tumor microenvironment infiltration, immunotherapy response and drug sensitivity. 
Finally, we validated the effects of TYMSOS on cell proliferation, invasion and migration in OC cell lines.

Materials and Methods
Data Acquisition and Preprocessing
In this study, TCGA dataset was publicly accessible and downloaded from the University of California, Santa Cruz 
(UCSC) Xena website (https://xena.ucsc.edu). A total of 379 OC patient samples were available from the TCGA-RNA- 
seq dataset, and 2 patients without prognostic information were excluded. Finally, only 377 patients were retained for 
subsequent analysis. The distribution of clinical information was presented in Table 1. Normal samples were acquired 

Table 1 Clinical Characteristics of OC Subjects in TCGA-RNA-Seq Dataset (n = 377)

Characteristics Training Cohort Test Cohort Sum Cohort p-value*

Age 0.63
Younger (≤55y) 76 71 147

Older (>55y) 113 117 230

FIGO Stage 0.20
I 0 1 1

II 9 14 23

III 153 140 293
IV 26 31 57

NA 1 2 3

(Continued)
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from the GTEx dataset. E-MTAB-1814 dataset was downloaded from the ArrayExpress website (https://www.ebi.ac.uk/ 
arrayexpress/). GSE26193 dataset was downloaded from GEO database (www.ncbi.nlm.nih.gov/geo/). The quality 
control and gene expression values were normalized by log2(X+1) transformation with R package “limma” and 
“reshape2”. For the gene annotation, we transformed the Ensembl IDs to gene symbols and genes expression values 
with multiple probes are determined as the average of the individual probes. The whole TCGA data were randomly split 
into two equal cohorts: training cohort and test cohort, which was also applied to validate as a sum cohort. There was no 
difference in pathological features and treatment. The PRGs (pyroptosis-related genes) were obtained from the previously 
published literature and MSigDB dataset (www.gsea-msigdb.org/gsea/msigdb/).22–29

Identification of PRLs
The lncRNA annotation file was acquired from the GENCODE website for the annotation of lncRNAs. Consequently, 
14826 lncRNAs were obtained from the TCGA-RNA-Seq cohort.30 Pearson correlation analysis was used to screen 
PRLs. Those lncRNAs with r > 0.4 and P < 0.001 were considered as the PRLs.31 To determine the prognostic value of 
PRLs, we further conducted univariate Cox regression analysis by using the “survival” package, and the hazard ratios 
(HR) with 95% confidence intervals (CIs) were examined. P < 0.05 indicated that PRLs were significantly associated 
with overall survival (OS) and considered as prognostic PRLs. PRLs with HR > 1 were considered to be risk factors, 
whereas those with HR < 1 were considered to be protective factors.

Table 1 (Continued). 

Characteristics Training Cohort Test Cohort Sum Cohort p-value*

Grade 0.13

G1 0 1 1
G2 28 17 45

G3 156 164 320

G4 1 0 1
GB 1 1 2

GX 1 0 1

NA 0 2 2
Tumor residual 0.42

No Macroscopic disease 35 32 67

1–10 mm 89 82 171
11–20 mm 15 12 27

>20 mm 29 41 70

NA 21 21 42
Lymphatic invasion 0.32

YES 53 48 101

NO 21 27 48
NA 115 113 228

Subdivision 0.19
Left/ right 57 45 102

Bilateral 123 132 255

NA 9 11 20
Chemotherapy 0.32

Yes 174 176 350

Platinum-based 163 169 332
Others 11 7 18

NO 15 12 27

Note: *Training cohort vs Test cohort.
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Construction of Prognostic PRLs Signature
A risk signature was constructed by performing the LASSO-COX regression on the prognostic-related lncRNAs using 
the “glmnet” package.32 Through 1000 cross-validation, a panel of genes and their LASSO coefficients were obtained. 
The risk score for the signature was calculated using the following formula:

(n, is the number of the gene; β, LASSO coefficient; X, the expression of each prognostic PRLs in each sample). Based 
on the best cutoff risk score determined by the “survcutpoint” function of the “survminer” R package, patients were 
divided into high-risk and low-risk subgroups. Kaplan–Meier method with the long-rank test was performed to reveal the 
difference of OS between the high- and low-risk subgroups by using the “survival” package. Besides, the time-dependent 
ROC curve and area under the curve (AUC) were applied to evaluate the prediction accuracy of the signature. All the 
time-dependent ROC curves were calculated by the “SurvivalROC” package and drawn by the “ggplot2” package.

Nomogram Construction Based on Clinical Features and Risk Score
Univariate and multivariate Cox regression were performed to select the prognostic risk factors. The nomogram model 
was constructed using the “RMS” package to predict the 3, 5-year survival probability. The calibration curves were used 
to assess the concordance of the observed and predicted rates of 3, 5-year overall survival.33

Estimation of Tumor-Infiltration, Immunotherapy and Drug Sensitivity
First, all microenvironment scores, including EstimateScore, ImmuneScore, PurityScore, and StromalScore were calcu-
lated using the ESTIMATE algorithm (https://bioinformatics.mdanderson.org/public-software/estimate/).34 The infiltrating 
immune cells scores and the activity of immune-related pathways were calculated by performing the ssGSEA analysis with 
“gsva” package.35 Tumor Immune Dysfunction and Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/), which is 
commonly utilized to accurately predict the outcome of patients treated with immune checkpoint inhibitors (ICIs), was 
employed to evaluate the immunotherapy response.36 The drug sensitivity of each patient was evaluated using the 
Genomics of Drug Sensitivity in Cancer database (GDSC, https://www.cancerrxgene.org). The half-maximal inhibitory 
concentration (IC50) of all drugs commonly used to treat tumors was calculated and represented by the drug sensitivity. The 
R package “pRRopheticRredic” was used with 10-fold cross-validation and other parameters by default.37

Functional Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed to identify the potential molecular mechanisms or potential 
functional pathways associated with prognostic PRLs signature. It was performed in Java GSEA v. 4.0.3 on the 
Molecular Signatures Database (MSigDB). Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset and Gene 
Ontology (GO) enrichment analyses were performed to identify enriched pathways between the high- and the low-risk 
subgroup by using the “clusterProfiler” R package. |NES| > 1 and false discovery rate (FDR) <0.05 were considered 
statistically significant.

Cell Culture
The human ovarian cancer cell lines A2780 and SKOV3 were purchased from China Center for Type Culture Collection 
(CCTCC, Wuhan, China) and both cultured in RPMI-1640 medium, supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin. They were cultured in a sterile incubator maintained at 37°C with 5% CO2. The cells in 
logarithmic growth phase were collected for subsequent experiments.

RNA Extraction and Quantitative PCR
Total RNA was extracted using TRIZOL reagent according to the manufacturer’s protocol (Invitrogen, 15596-026). 
Reverse transcription of cDNA was performed using the PrimeScript RT kit (Takara, RR047A, Japan). RT-qPCR assays 
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were performed using LightCycler480 detector (Roche, USA). The relative mRNA levels were calculated using the 
comparative Ct method with GAPDH as the reference gene. All the primers are listed in Supplement Table 1.

Colony Forming Assay
Cells were transfected with or without lncRNA-targeted siRNAs for about 48 h. Then, cells with the density of 200 cells/ 
well were plated in the six-well culture plates and cultured for about 2 weeks. The cellular colonies were counted by 
staining with crystal violet.

Cell Counting Kit-8 Assay
Cell viability was measured by using Cell Counting Kit-8 (Proteintech, PF00004) after transfection with or without 
lncRNA targeted siRNAs for 24 h, 48 h, and 72 h, respectively. Briefly, cells were incubated with RPMI-1640 medium 
with 10% CCK-8 at 37°C. After 4 h incubation, the OD value was measured at 450nm.

Transwell Migration and Invasion
A total of 2*105 cells were seeded in the upper chamber of transwell plates with serum-free medium and were then 
incubated for 48 hours. To perform invasion experiments, the upper chambers were covered with a mixture of RPMI- 
1640 and Matrigel. Finally, the cells at the lumen were removed with a cotton swab, whereas the cells across the 
membrane were stained with 0.5% crystal violet, observed and counted under 100x magnification.

Statistical Analysis
Significant quantitative differences between groups were analyzed using the two-tailed Students’ t-test, whereas 
differences among groups were analyzed using the one-way ANOVA. Kaplan–Meier curves and Log rank test 
were used to calculate the overall survival rate. All statistical analyses were performed using R software (version 
4.0.2). * means P < 0.05, ** means P < 0.01, *** means P < 0.001. P < 0.05 was considered statistically 
significant.

Results
Clinical Characteristics of the Study Patients
The mRNA and lncRNA expression profiles of 377 OC subjects were screened in the TCGA-RNA-seq dataset. All 
patients were randomly separated into training cohort (n = 189) and test cohort (n = 188). There was no difference 
between the two cohorts in age, FIGO stage, grade, tumor residual, lymphatic invasion, subdivision and chemotherapy 
(Table 1). The flow chart of this study was presented in Figure 1A.

Identification of Prognostic PRLs in OC Patients
Firstly, we compared the expression of the 33 PRGs between OC tissues and normal ovary tissues using the TCGA 
datasets and GTEx datasets. The results suggested that 31 among 33 PRGs were either upregulated or downregulated in 
OC, compared to normal ovarian tissues (Figure 1B). Based on the lncRNA annotation file from the GENCODE website, 
we identified 14826 lncRNAs in the TCGA-RNA-seq dataset. To extract the potential PRLs, Pearson correlation analysis 
was performed to assess the correlation between PRGs and lncRNAs. Consequently, we obtained 2792 PRLs in the 
TCGA-RNA-seq dataset (Supplement Table 2). To assess the prognostic value of PRLs, univariate Cox regression 
analysis was performed, and 32 PRLs were identified to be notably associated with prognosis (Figure 1C). Besides, the 
Cytoscape software (3.8.2) was applied to briefly display the interactive relationships between prognostic PRLs and 
PRGs (Figure 1D).

Construction and Validation of the Prognostic PRLs Signature
To establish an optimal prognostic signature for predicting clinical outcome in OC patients, the LASSO-COX regression 
analysis was performed to screen out the most robust model from the candidate lncRNAs (Figure 2A and B). In summary, 
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we constructed a 7-PRLs prognostic signature and the risk score for each patient was assigned based on the coefficients of 
each lncRNA in the TCGA cohort (Figure 2C). The following is the formula for calculating the risk score: The risk score =  
(0.1506) * RP11-443B7.3 + (−0.1965) * CELSR3-AS1 + (0.1693) * RP11-213H15.1 + (−0.1342) * IFNG-AS1 + (−0.3121) 
* AC018647.3+ (0.2218) * CTC-246B18.8 + (−0.3302) * AC012360.4. Patients were divided into high- and low-risk 
subgroups depending on the best cutoff of risk score. Kaplan–Meier survival curves exhibited that the OS of patients with 
lower risk was substantially longer than those with high risk both in the training cohort and validation cohorts (test and sum 
cohort) (Figure 2D–F). Moreover, the time-dependent ROC curve analysis was carried out and the AUC value demon-
strated that the signature harbored a promising ability to predict the 3-year OS and the 5-year OS, and the prognostic values 
of the signature in two validation cohorts were consistent with the findings in the training cohort (Figure 2G–I). The 
distributions of the risk score and survival status were listed in Figure 3A–F. It suggested that the risk score was associated 
with survival status. Furthermore, the different expressions of all the seven lncRNAs in the high- and low-risk subgroups 
were shown in the heatmap. The four protective lncRNAs (AC018647.3, AC012360.4, CELSR3-AS1, and IFNG-AS1) 
exhibited low expression in the high-risk subgroup; meanwhile, the other three risk lncRNAs (RP11-443B7.3, RP11- 

Figure 1 Identification of pyroptosis-related genes (PRGs) and pyroptosis-related lncRNAs (RPLs); (A) The flowchart of the whole process of data analysis; (B) A Heatmap 
of the PRGs between the normal ovary and tumor tissues (blue: low expression level; red: high expression level; Normal: brilliant blue; Tumor, yellow); (C) A forest plot of 
the prognostic ability of the PRLs; (D) The interaction network of the prognostic-PRLs and the PRGs (blue: PRGs; Orange: prognostic-PRLs).
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213H15.1, and CTC-246B18.8) had high expression in the high-risk subgroup (Figure 3G–I). All these demonstrated that 
the 7-PRLs prognostic signature might solidly predict the clinical outcome of patients with OC.

Stratification Analysis of the Prognostic PRLs Signature
To better evaluate the prediction ability of the prognostic PRLs signature, the stratification analysis was subsequently 
performed. Compared to patients with high risk, patients with low risk had better OS in patients aged ≤55 and aged >55 
subgroup (Figure 4A, P = 0.00014, P < 0.0001, respectively). Likewise, the prognostic PRLs signature retained its prognostic 
ability to predict OS for patients in advanced-stage subgroup (Figure 4B, P < 0.0001), low-grade subgroup (Figure 4C, P = 
0.0032), high-grade subgroup (Figure 4C, P < 0.0001), lymphatic invasion subgroup (Figure 4D, P = 0.048), no lymphatic 
invasion subgroup (Figure 4D, P = 0.0026), no macroscopic disease subgroup (Figure 4E, P = 0.0045), 1–10 mm tumor 
residual subgroup (Figure 4E, P = 0.00022) and 20+ mm tumor residual subgroup (Figure 4E, P = 0.00044). Due to the small 
sample size, there was no remarkable difference in OS between high-risk patients and low-risk patients in early-stage 
subgroup (Figure 4B, P = 0.19) and 11–20 mm tumor residual subgroup (Figure 4E, P = 0.078). However, patients with high- 

Figure 2 The construction and validation of a 7-PRLs prognostic signature. (A) LASSO regression of the prognostic PRLs; (B) 10 times cross-validation for tuning the 
parameter selection in the LASSO regression; (C) The coefficients of the signature; (D–F) Kaplan–Meier curves for the OS of patients in the training cohort (D) and the test 
cohort (E) and the sum cohort (F); (G–I) The time-dependent ROC curves to assess the prognostic capabilities of the risk score in the training cohort (G) and the test 
cohort (H) and the sum cohort (I).
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risk score in these subgroups had the tendency for worse OS, in contrast to patients with low-risk. Altogether, these results 
suggested that the 7-PRLs prognostic signature retained its ability to predict OS in various subgroups and could serve as 
a potential predictor for OC patients.

Figure 3 The association between risk score and survival status and seven PRLs expression; (A–C) The distributions of survival status of OC patients in the training cohort 
and the test cohort and the sum cohort; (D–F) The risk score calculated in the training cohort and the test cohort and the sum cohort; (G–I) The Heatmap showed the 
expression profiles of seven PRLs between the high- and low-risk subgroups.

Figure 4 Stratification analysis to assess the prognostic value of risk score in subgroups divided based on age (A), FIGO stage (B), grade (C), lymphatic invasion (D) and 
tumor residual size (E).
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Modeling the Prognostic Nomogram
In addition, Univariate and Multivariate Cox regression analysis were used to assess whether the prognostic PRLs 
signature was an independent prognostic factor. As shown in the forest plot, the red color presented the risk factors (HR > 
1) and the blue one indicated the protective factors (HR < 1). The risk score (HR: 1.555; 95% CI: 1.391–1.739; P < 
0.001), age (HR: 1.022; 95% CI: 1.009–1.035; P < 0.001), FIGO stage (HR: 1.395; 95% CI: 1.045–1.863; P = 0.024) but 
not grade (HR: 1.236; 95% CI: 0.842–1.814; P = 0.279) were associated with OS of patients (Figure 5A). Multivariate 
Cox analysis further proved that risk score (HR: 1.529; 95% CI: 1.367–1.709; P < 0.001), age (HR: 1.020; 95% CI: 
1.008–1.032; P = 0.001), FIGO stage (HR: 1.401; 95% CI: 1.044–1.881; P = 0.025) but not grade (HR: 1.100; 95% CI: 
0.741–1.631; P = 0.636) were independent prognostic factors for OC patients (Figure 5B). Thus, Age, FIGO stage and 
risk score were applied in the construction of a nomogram model (Figure 5C). Calibration plots indicated that the actual 
vs predicted rates of 3- and 5-year OS showed perfect concordance (Figure 5D). The diagram verified that the nomogram 
has a reliable and robust ability to predict the prognosis for OC patients.

Identification of the Biological Function of Prognostic PRLs Signature in OC
Gene Set Enrichment Analysis (GSEA) was employed to find the key pathways and biological functions that differ in the 
high- and low-risk subgroups. Firstly, |logFC| > 2, P < 0.05 was identified as DEGs (Figure 6A). GSEA results suggested 
that the DEGs were mainly enriched in the inflammatory response pathway, p53 pathway, TGF-β signaling and TNFα 
signaling via NF-kB and so on (Figure 6B). Then, KEGG analysis and GO analysis were conducted and the outcomes 
displayed that the DEGs were mainly enriched in cell adhesion molecules, MAPK signaling pathway, NF-kB signaling 
pathway, PI3K-AKT signaling pathway, Wnt signaling pathway, primary immunodeficiency, and plentiful immune- 
related biological process (Figure 6C and D). Thus, these results suggested the PRLs may participate in the above 
pathways.

Association Between PRLs Signature and Immune Infiltration
Considering the enrichment analysis and the significant association between pyroptosis and immune status, we explored the 
relationship between risk score and tumor microenvironment infiltration. To explain the immune cell and stromal cell 
infiltration situation, we calculated the ESTIMATEScore, ImmuneScore, PurityScore and StromalScore. The correlation 
analysis implied that the risk score was positively relevant with the ESTIMATEScore (Figure 7A, r = 0.14, P = 0.006), and 
StromalScore (Figure 7C, r = 0.20, P = 9.64e-05) but negatively correlated with the PurityScore (Figure 7D, r = −0.14, P = 
0.005). There was no correlation between risk score and ImmuneScore (Figure 7B, r = 0.215, P = 0.06). After that, the 
distribution proportion of different subpopulations of adaptive immunity cells and innate immunity cells in high- and low- 
risk subgroups were analyzed using the ssGSEA method. The distribution proportion of MHC class I cells and Type I IFN 
response was significantly lower in the high-risk subgroup than the low-risk subgroup (Figure 7E). In addition, the potential 
response of individual patients to immunotherapy was appraised using the TIDE algorithm. Our results showed that patients 
with low-risk score were potentially more sensitive to immunotherapy than patients with high-risk score (Figure 7F), which 
might be associated with higher expression of PD-L1, CTAL4 and LAG3 in low-risk group (Figure 7G–I). Taken together, 
we speculated that patients with high-risk score might recruit multiple immune cells and stromal cells and escape immune 
surveillance. Due that the predominant therapeutics for OC patients were still chemotherapy, we contrasted the sensitivity to 
a variety of anticancer drugs between the high- and low-risk subgroups (Supplement Table 3). The results displayed that the 
IC50s of veliparib and metformin were higher in patients with higher risk score, which means the shrinkage risk occurs with 
the growing sensitivity to veliparib and metformin (Figure 8). Unfortunately, there was no significant difference in IC50 of 
cisplatin and paclitaxel between two subgroups (Supplement Figure 1). All this evidence indicated that veliparib and 
metformin might be a good choice for OC patients with low-risk score.

Inhibition of LncRNA TYMSOS Reduced Cell Proliferation, Invasion and Migration
Due to the high abundance, TYMSOS was further validated in SKOV3 and A2780 ovarian cancer cell lines. Firstly, we 
analyzed the different expression of TYMOS in normal ovary tissues and OC tissues. The results showed that TYMSOS 
expression was significantly upregulated in tumor tissues, compared to normal ovary tissues (Figure 9A). In contrast to 
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Figure 5 Construction of nomogram based on clinical features and risk score. (A and B) The forest plot represents the univariate and multivariate Cox analyses to select 
the independent prognostic predictors; (C) Establishment of a nomogram based on risk score, age, and stage to predict 3-, 5-year OS in the TCGA cohort; (D) Calibration 
plots of the nomogram to predict OS at 3-, 5-year.
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patients with low expression of TYMSOS, patients with high expression of TYMSOS had worse OS in GSE26193 
dataset (Figure 9B). To reveal the role of TYMSOS in OC, the endogenous expression of TYMSOS in SKOV3 and 
A2780 cells was interfered with siRNA (Figure 9C). CCK-8 assay indicated that the inhibition of TYMSOS decreased 
cell proliferation (Figure 9D and E). In addition, inhibition of TYMSOS apparently reduced the migration and invasion 
ability of OC cells (Figure 9F and G). It has been reported that overexpression of GSDMD and GPX4 defect induced 
pyroptosis, and we found that TYMSOS was positively correlated with the expression of GPX4 (Figure 9H, r = 0.48, P = 
8.1e-31) and negatively correlated with the expression of GSDMD (Figure 9H, r=−0.26, P = 4.2e-9) in TCGA-GETx 
combined datasets. More importantly, TYMSOS inhibition significantly increased the expression of GSDMD and 
decreased the mRNA expression of GPX4 (Figure 9I). All these indicated that inhibition of lncRNA TYMSOS reduced 
cell proliferation, invasion and migration via promoting pyroptosis.

Discussion
OC is one of the most common gynecologic malignancies with a high mortality rate in the world. Consequently, there is of 
great importance to identify reliable and effective biomarkers for the OC prognosis. In prior research, the lncRNA 
signatures for prognostic prediction have been validated in many categories of cancers,38 and there is even a database 
Lnc2Cancer 3.0, which includes comprehensive data on experimentally supported long non-coding RNAs (lncRNAs) and 
circular RNAs (circRNAs) associated with human cancers.39 In the same way, based on the differentially expressed 
lncRNAs and illness etiology, several lncRNA-associated signatures have correspondingly been constructed to forecast 
the outcome of OC patients.40,41 Nevertheless, the mutual interactions of PRLs in prognosis of OC patients remain unclear. 
In this study, we reported a prognostic PRLs signature, providing a promising strategy for prognosis and immune features in 
OC patient, which have important clinical implications for guiding individual treatment and improving the effectiveness of 
the immune response. Taking advantage of the TCGA and GTEx databases, we compared the mRNA expression of 33 
PRGs in OC samples and normal ovary tissues. Surprisingly, we discovered that all PRGs except two genes (CASP1 and 

Figure 6 Functional analysis based on the DEGs between the high- and low-risk subgroups. (A) The volcano plot showed the different expression genes between high- and 
low-risk subgroups; (B) Gene set enrichment analysis to screen DEGs; (C) The bubble plot displayed the analysis of KEGG pathway enrichment; (D) The bar plot revealed 
the analysis of GO pathway enrichment.
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CASP4) were differently expressed in tumor samples. Subsequently, 32 lncRNAs associated with OS were picked out and 
defined as prognostic PRLs. Unexpectedly, several prognostic PRLs have been identified to play important roles in various 
cancers. For instance, Overexpression of TOPORS-AS1 was supposed to inhibit ovarian cancer cell proliferation and 
restrain cell aggressive behavior in vivo and in vitro.42 LINC01281 was confirmed as immune-associated lncRNAs for 
predicting prognosis in cervical cancer.43 Subsequently, we performed LASSO-COX regression to construct a 7-PRLs 
prognostic signature. The KM plotter analysis and AUC curves suggested that the prognostic PRLs signature might 
effectively predict the clinical outcome of OC patients. Furthermore, stratification analysis indicated that the prognostic 
PRLs signature still retained its prognostic ability to predict OS for patients without considering other clinical features. 
Multivariate Cox regression analysis showed that risk score was an independent risk factor for prognosis of OC patients. 
For better clinical applicability of the signature, we also created a nomogram. GSEA analysis was then carried out to 
explore the potential functions of the PRLs. The results demonstrated that the PRLs had a robust association with cell 
proliferation and immunity. It’s worth mentioning that GSDME expression has been reported to enhance both the number 
and functions of tumor-infiltrating natural killer and CD8+ T lymphocytes to increase the phagocytosis of tumor cells.44 

Natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis.45 In 
addition, several lncRNAs were also validated to participate in immune pathways through the process of pyroptosis.46 

Therefore, we then analyzed the different distributions of immune function and immune cells between high- and low-risk 
subgroups. Our results indicated that the risk score was associated with tumor microenvironment infiltration and immune 
response. Various immune cells, especially MHC class I cells and Type I IFN response, were differently distributed in the 
high-risk group and low-risk group. All the evidence revealed that patients with high-risk score might recruit multiple 

Figure 7 Association between the prognostic PRLs signature and tumor microenvironment infiltration and immunotherapy response. (A–D) Correlation between risk 
score and ESTIMATEScore, ImmuneScore, StromalScore and TumorPurity; (E) The differences of immune cells calculated by the ssGSEA analysis in high- and low-risk 
subgroups; (F) The different proportion of patients between high- and low-risk subgroups to immunotherapy; (G–I) The different expression of immune checkpoints 
including PD-L1, CTLA4 and LAG3 in high- and low-risk subgroups. *P < 0.05, ***P < 0.001, ****P < 0.0001; n.s indicates non-significant.
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immune cells and stromal cells and escape immune surveillance. Also, we conducted a comparison of the sensitivity of 138 
common anti-cancer drugs between the high-risk and low-risk groups. It suggested that patients with high risk acquired 
drug-resistance in metformin and veliparib, which acted as the first-line Chemotherapy and Maintenance Therapy in OC.47 

Finally, the expressive abundance of several lncRNAs in ovarian cancer cell lines were detected (Data not shown). Due to 
the high abundance, TYMSOS was selected for further validation. TYMSOS inhibition significantly decreased the cell 
proliferation, invasion and migration in A2780 and SKOV3 ovarian cancer cell lines. Inhibition of TYMSOS increased the 
expression of GSDMD and decreased the expression of GPX4. Besides, TYMSOS was highly expressed in ovarian cancer 
tissues, and high expression of TYMSOS was associated with worse OS in GSE26193 dataset. All these evidences proved 
that TYMSOS might regulate cell proliferation and aggressive behavior through pyroptosis pathway and it might serve as 
a novel target to treat OC patients.

Recently, several PRLs signature in OC have been constructed.48–51 Compared with the reported risk signatures, our risk 
signature has the higher prediction prognostic ability with the 5-year AUC = 0.770 in training cohort and 5-year AUC = 0.716 
in sum cohort. Obviously, there are lots of limitations in our study. Firstly, the biggest limitation is that external validation 
datasets are lacking, which makes the results less credible. Secondly, the mechanisms of PRLs in OC are only predicted by 
using online datasets and that is insufficient. In addition, whether the PRLs identified in our study can regulate prognosis of OC 

Figure 8 Estimated drug sensitivity in patients with high- and low-risk subgroups.
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Figure 9 Inhibition of lncRNA TYMSOS reduced cell proliferation, invasion and migration. (A) TYMSOS was significantly upregulated in ovarian cancer tissues; (B) The KM 
plot showed that the high expression of TYMSOS had a remarkably worse prognosis in GSE26193 cohorts; (C) The expression of TYMSOS was significantly inhibited after 
treating with siRNA for 48h. (D and E) the inhibition of TYMSOS significantly reduced the proliferation of A2780 and SKOV3 cells; (F and G) Inhibition of TYMSOS led to 
remarkable decrease in migratory capacity and invasion ability of A2780 and SKOV3 cells; (H) TYMSOS was negatively correlated with GSDMD and positively correlated 
with GPX4 in the TCGA and GTEx combined dataset; (I) Inhibition of TYMSOS expression increased the mRNA expression of GSDMD and decreased the mRNA 
expression of GPX4 in A780 and SKOV3 cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.
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patients is not validated in our self-test samples. Finally, the effect of TYMSOS on clinical outcome and pyroptosis in OC is 
also inadequate. Therefore, further experimental research should be performed in the future.

Conclusions
In conclusion, our study constructed a novel prognostic signature based on PRLs in silico. It effectively predicted the 
clinical outcome of OC patients. Except to prognosis, the tumor microenvironment infiltration, immune response and 
drug sensitivity were potentially different in high- and low-risk subgroups.
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