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Aim: To identify the molecular signature of differentially expressed genes (DEGs) associated with PANoptosis in idiopathic 
pulmonary fibrosis (IPF) and to interpret their immune landscape and cellular distribution characteristics.
Methods and Results: We acquired two IPF datasets from the Gene Expression Omnibus (GEO) database to identify PANoptosis-related 
DGEs (PAN-DEGs), initially identifying thirty PAN-DEGs. Utilizing machine learning algorithms, we established a five-gene PANoptosis- 
related signature comprising IGF1, GPX3, GADD45β, SMAD7, and TIMP3, each demonstrating robust diagnostic performance. The 
expression of these hub genes was subsequently validated using a third GEO dataset and a bleomycin-induced pulmonary fibrosis model. 
Immune infiltration analysis revealed a close association of these genes with various immune cells, and single-cell RNA sequencing indicated 
significant expression changes in diverse pulmonary cell types, particularly endothelial cells and fibroblasts.
Conclusion: We identified and validated a PANoptosis-related gene signature in IPF, providing insights into their immune infiltration 
and potential cellular distribution. Further research is necessary to elucidate the biological functions and mechanisms of these genes in 
the pathogenesis of IPF.
Keywords: bioinformatics analysis, differentially expressed genes, idiopathic pulmonary fibrosis, PANoptosis

Introduction
Idiopathic pulmonary fibrosis (IPF) represents a significant progressive fibrotic lung disease with an unknown etiology. It 
is characterized by persistent physiological impairment, deteriorating respiratory symptoms, and reduced pulmonary 
function.1 The progression and prognosis of IPF are typically unpredictable and vary among individuals. In patients not 
receiving anti-fibrotic therapies, the average survival period is approximately four years.2 In recent decades, increased 
awareness of IPF has led to notable advancements in treatment regimens, while the overall prognosis remains largely 
unchanged. Consequently, a deeper understanding of the cellular processes and molecular mechanisms involved is crucial 
for the development of effective treatments.

Programmed cell death (PCD) is an autonomous and orderly form of cell death that plays a critical role in maintaining 
health and contributing to human disease.3 It generally involves common fundamental components that lead to the 
spontaneous termination of a cell due to developmental cues or immune-mediated signals initiated by death receptors.4 
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Numerous PCDs have been identified in mammalian cells with apoptosis, pyroptosis, and necroptosis being the three 
primary types. These PCDs form distinct individual pathways while also contributing to a highly interconnected and 
coordinated cell death system.5 The significance of these PCDs in tissue damage and fibrotic remodeling associated with 
IPF has been documented in some studies.6–8 However, medications targeting PCDs have not yet demonstrated success in 
clinical trials. PANoptosis, a unique inflammatory PCD modality initially identified in the context of infectious diseases, 
integrates key features of apoptosis, pyroptosis, and necroptosis. It is regulated by a polymeric protein complex that 
senses pathogens, pathogen-associated molecular patterns, damage-associated molecular patterns (DAMPs), and 
cytokines.9 Recent research has demonstrated that PANoptosis also plays a role in the development of pulmonary 
diseases, including septic lung injury and acute respiratory distress syndrome (ARDS).10,11 A latest study found that the 
traditional Chinese medicine can delay the progression of bleomycin-induced pulmonary fibrosis by inhibiting 
PANoptosis, suggesting its involvement in pulmonary fibrosis.12 Nevertheless, the primary targets of signaling pathways 
mediated by PANoptosis remain inadequately defined.

The application of innovative bioinformatic tools is expediting research into the pathogenesis of IPF, thereby enhancing 
our understanding of the disease’s pathways, cell-specific mechanisms, and cell-cell interactions that contribute to the 
fibrotic environment.13 In this study, we performed a comprehensive bioinformatic analysis to elucidate the role of 
PANoptosis in the pathogenesis of pulmonary fibrosis and to identify key genes that regulate PANoptosis-mediated cellular 
processes. Initially, gene expression profiles from IPF patients and normal controls were retrieved from the Gene 
Expression Omnibus (GEO) database,14 and PANoptosis-related differentially expressed genes (DEGs) were identified 
using Weighted Gene Co-expression Network Analysis (WGCNA).15 Subsequently, key candidate signatures were 
identified through machine learning techniques. These PANoptosis-related candidate genes were then validated using 
two external datasets, and a nomogram model was employed to predict the risk of IPF. In addition, we developed a 
bleomycin-induced murine model of pulmonary fibrosis to further validate the expression of these genes. Finally, the 
distribution of hub genes was analyzed through immune infiltration and single-cell analyses. This study aims to investigate 
the potential mechanisms of PANoptosis in IPF and to propose a viable therapeutic strategy for this irreversible condition.

Materials and Methods
The Acquisition of Datasets and Processing
The “GEOquery” R package was used to get gene expression of IPF patients and healthy controls from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The GSE32537 dataset contained 167 fibrosing idiopathic interstitial pneumonia 
and 50 non-disease control lung tissues, which were performed on the GPL6244 platform. GSE47460 included 
sequencing data of 206 UIP/IPF and 108 control lung tissues, which were performed on the GPL6480 and GPL14550 
platforms. The Bioconductor “sva” R package was used for removing batch effects and making a unified GEO dataset. 
An external validation was conducted using the GSE110147 dataset performed on the GPL6244 platform, of which lung 
tissue samples were obtained from 22 IPF patients and 11 normal controls. All data were transformed into logarithmic 
form for subsequent analyses. The workflow chart was illustrated in Figure 1.

Identification of Differentially Expressed Genes and Candidate Key PANoptosis- 
Related DEGs (PAN-DEGs)
To identify DEGs, we conducted Principal Component Analysis (PCA) using the “FactoMineR” and “factoextra” R 
packages, and differential analysis using the “Limma” package, with a threshold of adjusted P value < 0.05 and |fold 
change| ≥ 0.5. Visualization of DEGs between IPF and controls was achieved through a volcano plot using “ggplot2” and 
a heatmap using the “pheatmap” package. The PANoptosis gene set integrated genes associated with apoptosis, 
pyroptosis, and necroptosis. We combined the Molecular Signature Database (MsigDB) version 7.0 (http://www.gsea- 
msigdb.org/gsea/msigdb/) with the PANoptosis-related genes reported in a previous study,16 to produce a comprehensive 
PANoptosis-related gene set. After duplication, 274 key candidate genes were remained and used for the subsequent 
analyses. Detailed PANoptosis-related genes were shown in Supplementary Table 1.
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Figure 1 Schematic representation of the workflow for the study.
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Functional Enrichment Analysis of DEGs and PAN-DEGs in IPF
Further investigation of biological functions of identified DEGs were conducted with Gene Ontology (GO) enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, using the R package of “clusterProfiler”.

WGCNA
We employed WGCNA using the “WGCNA” R package to identify gene modules associated with IPF. Normalized 
expression data from IPF patients and controls were filtered to remove low-variance genes. A weighted gene co- 
expression network was constructed with a soft-thresholding power to achieve scale-free topology. The adjacency matrix 
was converted into a topological overlap matrix to measure network connectivity, and gene modules were identified using 
hierarchical clustering. Modules were defined by branches of the dendrogram and assigned unique colors. Module 
eigengenes were correlated with clinical traits, and significant modules were identified. Candidate hub genes within these 
modules were determined using a module membership threshold of > 0.8 and intersected with previously identified 
PANoptosis-related differentially expressed genes. Visualization of the dendrogram, module colors, and module-trait 
relationships illustrated the associations. Detailed hub genes in each module were shown in Supplementary Table 2.

Protein-Protein Interaction (PPI) Network Analysis
We used GeneMANIA (http://genemania.org/) to construct a PPI network for candidate hub PANoptosis-related genes.17 

This tool integrates data from various sources such as physical interactions and co-expression. Default settings were 
applied, and interactions were prioritized based on confidence scores. The network visualization displayed nodes as 
genes/proteins and edges as interactions, with thickness and color indicating interaction confidence. Key hub genes with 
high interaction counts were identified, highlighting their potential roles in IPF pathogenesis and relevance as therapeutic 
targets or biomarkers.

Machine Learning
We employed machine learning methods to select and reduce the dimensions of candidate genes derived from WGCNA 
modules and previously identified PAN-DEGs. Gene expression data were standardized and divided into training and test 
sets for cross-validation. Feature selection was performed using SVM-RFE (Support Vector Machine - Recursive Feature 
Elimination) with the R package “e1071” to pinpoint the most discriminative genes. Additionally, Random Forest was 
utilized to rank genes based on their importance scores using the R package “randomForest”.18 To further refine the gene 
selection, LASSO regression was applied with the R package “glmnet”, with the optimal λ chosen based on the minimum 
binomial deviance.19 The selection process was evaluated and optimized through cross-validation to ensure robustness. 
This comprehensive approach enabled the identification of hub genes, setting the stage for further functional analysis and 
offering insights into the molecular mechanisms underlying IPF.

Validation and Functional Analysis of Hub Genes
To validate and analyze the functional roles of key genes identified through machine learning techniques, we assessed 
gene expression levels in both a combined dataset and an independent validation dataset (GSE110147). Boxplots were 
generated using the “ggplot2” R package to compare expression between IPF patients and normal controls, confirming 
significant differential expression. We performed pathway enrichment analysis using the HALLMARK gene sets from 
the Molecular Signature Database (MsigDB) version 7.0 (http://www.gsea-msigdb.org/gsea/msigdb/) to explore the 
biological functions of the key genes. Correlations between the key genes and various biological pathways were 
visualized with a heatmap using the “ComplexHeatmap” R package, highlighting significant associations. The interac-
tions among the key genes were illustrated using a chord diagram created with the “circlize” R package, demonstrating 
their co-regulation and potential combined effects in IPF. The diagnostic potential of the key genes was evaluated using 
Receiver Operating Characteristic (ROC) curves with the “pROC” R package, and the area under the curve (AUC) values 
were calculated to assess their accuracy in distinguishing IPF patients from normal controls.
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Immune Cell Infiltration Analysis
To understand the immunological mechanisms underlying IPF and its association with hub gene expressions, we utilized 
the CIBERSORT algorithm to estimate the fractions of 22 immune cell types in both IPF patients and normal controls. 
Gene expression profiles were input into CIBERSORT, which provided relative proportions of immune cell types in each 
sample. The resulting data were visualized using violin plots created with the “ggplot2” R package to compare the 
distribution of immune cell fractions between IPF patients and normal controls, with statistical significance assessed 
using the Wilcoxon rank-sum test. To investigate the relationship between hub gene expressions and immune cell 
fractions, Pearson correlation coefficients were calculated and visualized with a heatmap using the “ComplexHeatmap” R 
package. Significant correlations were marked by asterisks, indicating robust associations between gene expression and 
immune cell infiltration. Gene set variation analysis (GSVA) is an unsupervised gene set enrichment analysis method 
used to evaluate changes in gene set activity in a single sample. It directly calculates the enrichment score of each sample 
in a specific gene set, which is suitable for discovering continuous differences in gene set activity among samples. To 
evaluate the immunological characteristics across all samples, we used the “GSVA” R package with the single-sample 
gene set enrichment analysis (ssGSEA) technique.

Animal Models and Experimental Procedures
Male C57BL/6 mice (6~8 weeks, average weight 18~22 grams) were purchased from Beijing Huafukang Technology Co. 
(China) and housed in specific pathogen-free room with free access to food and water. After one week of acclimation 
period, mice were anesthetized by isoflurane inhalation and secured in the supine position. A micro-sprayer tip was 
inserted into the trachea through the glottis, and 50 μL of bleomycin (2.5 mg/kg, prepared in sterile PBS) was aerosolized 
evenly to the lungs to build a pulmonary fibrosis model. Mice in the control group were intratracheally atomized equal 
volume of PBS solutions. After three weeks, all mice were anesthetized with 0.25% pentobarbital sodium (50 mg/kg, 
intraperitoneal injection) and sacrificed by cervical dislocation, and lung tissues were collected, with the left side 
embedded in paraffin for histopathology and the right side stored at −80°C for further analysis. The study was carried 
out in compliance with the ARRIVE guidelines. All animal experiments were strictly performed in accordance with the 
NIH Guide for the Care and Use of Laboratory Animals and approved by the Committee on the Ethics of Animal 
Experiments of West China Hospital, Sichuan University (20230922001).

Micro-Computed Tomography (Micro-CT)
Chest micro-CT was performed for mice under isoflurane anesthesia using a Quantum GX micro-CT scanner 
(PerkinElmer, Inc., Waltham, MA) on the day before lung sample collections. The parameters of X-ray tube were 90 
KVp and 160 μA, and projection radiographs were obtained during the entire 360° gantry rotation, which took 
approximately 4.5 minutes for each mouse.

Histopathological and Immunohistochemical (IHC) Staining
Left lung samples were formalin-fixed, paraffin-embedded, and sectioned at 6 μm for Hematoxylin-eosin (H&E) staining, 
Masson staining, and Sirius red staining, and the extent of lung tissue damage and fibrosis was assessed. For IHC staining, the 
paraffin sections were dewaxed and rehydrated, and the microwave antigen retrieval was conducted with the citrate antigen 
repairing solution (1X). Then endogenous peroxidases were removed with 3% hydrogen peroxide, and sections were blocked 
with 5% goat serum for 20 minutes and incubated with the primary antibodies overnight at 4°C. Primary antibodies against 
IGF1, SMAD7, and GPX3 were purchased from ABclonal (China), the primary antibody against GADD45β was purchased 
from Invitrogen (USA), and the primary antibody against TIMP3 was purchased from Zenbio (China). The biotin labelled 
secondary antibody was applied to sections at the following day and incubated at room temperature for one hour. Finally, the 
color reaction was performed using the freshly prepared diaminobenzidine (DAB) solution and cell nuclei were slightly 
stained with hematoxylin. All specimens were scanned using the OLYMPUS VS200 full slide scanning system and digital 
pictures were observed and photographed by the CaseViewer 2.4.
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Quantitative Real-Time PCR (qRT-PCR)
Total RNA from right upper lung tissues were extracted using the RNeasy Mini Kit (QIAGEN, Germany), and RNA 
concentrations were quantified by NanoDrop 2000 Spectrophotometer. RNA reverse transcription was performed using 
the PrimeScriptTM FAST RT Reagent Kit (Takara, Japan) according to the manufacturer’s instructions. Target genes of 
IGF1, SMAD7, GPX3, GADD45β, and TIMP3 were obtained from Beijing Tsingke Biotech Co., Ltd. (China) and 
amplified using the FastStart Essential DNA Green Master (Roche, Switzerland) and examined by quantitative real-time 
PCR. β-actin was set as an internal reference and relative gene expression levels were calculated with the equation 2−ΔΔct. 
The primer pair sequences of mice were listed in Table 1.

Processing of Single-Cell RNA Sequencing (scRNA-Seq) Data
We accessed publicly available scRNA-seq data from the GEO database (GSE122960) consisting of 4 IPF and 8 healthy lung 
tissue samples. The data were analyzed using the “Seurat” and “harmony” packages in R. To ensure high-quality data, cells with a 
mitochondrial gene percentage higher than 15%, ribosomal gene percentage higher than 3%, erythrocyte gene percentage less 
than 0.1%, cell counts less than three, or cells expressing more than 5,000 genes were excluded. The gene expression of the 
included cells was normalized using the “NormalizeData” function in Seurat. The PCA was then performed to extract the top 15 
principal components based on the top 2000 highly variable genes, identified using the “FindVariableFeatures” function. 
Unsupervised clustering of cell subpopulations was conducted using the “FindNeighbors”, “FindClusters” (resolution = 0.5), 
and “RunUMAP” functions. The “SingleR” package was used to annotate cell types. Gene expression levels across different cell 
types were visualized using UMAP plots, and heatmaps were generated to show the proportion and expression of hub genes 
(GPX3, IGF1, SMAD7, GADD45β, and TIMP3) across cell types.

Statistical Analysis
R version 4.3.3 was used for bioinformatics data analyses. Results were displayed as mean ± standard deviation (SD), 
and the Student’s t-test was used for comparison between two groups. GraphPad Prism 9.5.1 software (USA) was used 
for statistical analyses. P < 0.05 was considered statistically significant.

Results
Identification of DEGs and PAN-DEGs Between IPF and Normal Lung Tissues
Initially, an integrated dataset comprising 373 IPF and 158 control lung tissue samples was obtained from the GEO 
database, and batch effects were eliminated to generate a consolidated gene expression profile (Figure 2A and B). 

Table 1 The Primer Sequences for qRT-PCR

Gene Sequences (5’ - 3’)

Igf1-F TGTCGTCTTCACACCTCTTCTAC

Igf1-R ACATCTCCAGTCTCCTCAGATCA

Gadd45β-F GGCCAAACTGATGAATGTGGAC
Gadd45β-R CTGGATCAGGGTGAAGTGAATCT

Gpx3-F TGTGCCTAATTTCCAGCTCTTTG

Gpx3-R CAGCGGATGTCATGGATCTTCAT
Timp3-F GGCCTCAATTACCGCTACCA

Timp3-R ATGCAGGCGTAGTGTTTGGA

Smad7-F CCCTCCTCCTTACTCCAGATACC
Smad7-R GAGGGCTCTTGGACACAGTAGA

β-actin-F CCACCATGTACCCAGGCATT

β-actin-R CAGCTCAGTAACAGTCCGCC

Abbreviations: qRT-PCR, quantitative real-time polymerase chain reaction; 
Igf1, insulin-like growth factor 1; Gadd45β, growth arrest and DNA damage- 
inducible 45-beta; Gpx3, glutathione peroxidase 3; Timp3, tissue inhibitor of 
metalloproteinase 3; Smad7, mothers against decapentaplegic homolog 7.
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Figure 2 Comparative gene expression and functional annotation analysis in datasets GSE32537 and GSE47460 related to Idiopathic Pulmonary Fibrosis (IPF) and Normal 
Control (NC) samples. (A) PCA plot showing the separation between the two datasets. (B) PLS-DA plot depicting the discrimination between the datasets. (C) Volcano plot 
of differentially expressed genes, with up-regulated genes in red, down-regulated genes in blue, and non-significant genes in grey. (D) Heatmap of top differentially expressed 
genes between IPF and NC samples, with higher expression in red and lower in blue. (E) GO enrichment analysis bar plot for biological processes, with dot size representing 
gene count and color indicating adjusted p-value. (F) KEGG pathway enrichment analysis bar plot, with dot size representing gene ratio and color indicating p-value.
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Overall, 663 up-regulated and 667 down-regulated DEGs were identified and visualized in a volcano plot (Figure 2C). 
Among these, BPIFB1, MSMB, MMP1, SPP1, and MMP7 were the top five up-regulated genes in the lung tissues of IPF 
patients, whereas IL1RL1, ANKRO1, AGTR2, MATN3, and FAM167A exhibited the most significantly down-regulated 
expressions (Figure 2D). GO analysis revealed that the DEGs were primarily associated with apoptotic signaling, cell 
proliferation, and adhesion processes, with molecular functions enriched in cytokine activity, receptor binding, and DNA- 
binding transcription activator activity (Figure 2E). The KEGG analysis identified significant associations with cellular 
senescence, the cell cycle, and critical signaling pathways including MAPK, Hippo, FoxO, and p53 (Figure 2F).

The intersection of PANoptosis-related genes with DEGs in IPF revealed 30 overlapping genes, including 12 up- 
regulated and 18 down-regulated genes (Figure 3A and B). A heat map illustrated the expression profiles of these PAN- 
DEGs in IPF (Figure 3C). Furthermore, the WGCNA analysis identified 25 co-expression modules, with their relation-
ships to specific characteristics depicted in Figure 3D, E, and Supplementary Figure 1.

PPI Network Construction and Identification of Hub PANoptosis-Related Gene 
Signatures
To predict potential functions and interactions of PANoptosis-related gene sets in IPF, a PPI network was conducted 
using the online tool GeneMANIA (Figure 4A). Hub genes associated with PANoptosis were identified via machine 
learning, specifically employing LASSO regression, support vector machine (SVM), and random forest algorithms to 
isolate key genes (Figure 4B–D). This analysis resulted in the establishment of a five-gene PANoptosis-related signature, 
consisting of GPX3, TIMP3, SMAD7, IGF1, and GADD45β.

Validation of Hub PANoptosis-Related Gene Expression and Their Diagnostic 
Performance
The expression levels of hub PANoptosis-related genes from internal datasets are presented in Figure 5A. In IPF lung 
tissues, IGF1 was found to be up-regulated, whereas GPX3, TIMP3, SMAD7, and GADD45β were down-regulated. 
Subsequent to our initial findings, we conducted further validation of the gene expressions using an external dataset from 
GEO (GSE110147), confirming that all five genes retained statistical significance (Figure 5B). Gene Set Variation 
Analysis (GSVA) indicated that these genes were significantly linked to several pathways, including TGF-β, Wnt/β- 
catenin, PI3K/Akt/mTOR, NF-κB, and p53. This association suggests their involvement in processes such as epithelial- 
mesenchymal transition, cellular senescence, inflammation, oxidative stress, glycolysis, and fatty acid metabolism 
(Figure 5C). A Circos plot illustrated the interrelationships among the PANoptosis-related genes, notably identifying a 
negative correlation between IGF1 and the other four genes (Figure 5D). Furthermore, ROC curves demonstrated robust 
diagnostic capabilities, with each gene achieving an AUC exceeding 0.80. As expected, the combined genes attained the 
highest AUC of 0.945 (Figure 5E).

Immune Cell Fraction Analysis and Correlation with Hub Gene Expression
Figure 6A depicted the proportions of various immune cell types in IPF and NC samples, revealing significant differences 
between the groups. Violin plots further elucidated the distribution of these immune cells, emphasizing alterations in cell 
types such as naive B cells, memory B cells, plasma cells, T cells, monocytes, macrophages, dendritic cells, eosinophils, 
and neutrophils. The heat map analysis presented in Figure 6B illustrates the correlation between the expression levels of 
hub PANoptosis-related genes (IGF1, GADD45β, TIMP3, SMAD7, and GPX3) and the proportions of various immune 
cell types. These correlations imply potential interactions between PANoptosis-related genes and the immune micro-
environment in IPF.

Validation of PANoptosis-Related Gene Signature in a Bleomycin-Induced Pulmonary 
Fibrosis Model
To further substantiate the expression levels of the five PANoptosis-related candidate genes identified through bioinfor-
matic analyses, we established a bleomycin-induced murine model of pulmonary fibrosis. This was initially confirmed 
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using micro-CT technology and lung histological examination to ensure the successful development of the murine 
pulmonary fibrosis model. As shown in Figure 7A, the model group exhibited reduced lung transmittance on chest CT, 
characterized by an increased percentage of non-aerated parenchyma and thickening of bronchial walls and interlobar 
fissures. H&E staining revealed the disappearance of normal alveolar structures in fibrotic lung tissues, replaced by 

Figure 3 Analysis of differentially expressed genes and gene co-expression modules in IPF and NC samples. (A and B) Venn diagrams showing the overlap of up-regulated 
and down-regulated genes between merged datasets and panoptosis-related genes. (C) Heatmap of selected differentially expressed genes in IPF and NC samples, with 
higher expression in red and lower in blue. (D) Gene dendrogram and module colors from weighted gene co-expression network analysis. (E) Heatmap of module-trait 
relationships, with colors representing the correlation between module eigengenes and traits, and values indicating correlation coefficients.
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inflammatory cell infiltration and the proliferation of tissue cells within the alveolar cavity. Furthermore, Masson’s 
trichrome and Sirius red staining confirmed the excessive deposition of collagen fibers in fibrotic lungs (Figure 7B). In 
comparison to normal controls, the signature genes were significantly expressed in bleomycin-induced murine pulmonary 
fibrosis samples aligning with findings from external validation (Figure 7C and D).

Differential Cell Type Distribution and Hub Gene Expression in IPF Lung Tissues 
Revealed by ScRNA-Seq
The analysis of lung tissue samples from patients with IPF and healthy controls revealed marked differences in cell type 
distributions and gene expression profiles. Uniform Manifold Approximation and Projection (UMAP) plots illustrated 
distinct clustering of various cell types, including epithelial cells, T cells, endothelial cells, macrophages, mast cells, 

Figure 4 Protein-protein interaction (PPI) network and hub gene selection for PANoptosis-related genes. (A) PPI network generated using GeneMANIA, showing 
interactions between PANoptosis-related proteins. (B) Variable importance plot highlighting the top hub gene. (C) Cross-validation RMSE for selecting the optimal number 
of variables. (D) Binomial deviance for the logistic regression model with different λ values.
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Figure 5 Gene expression analysis and diagnostic performance in Idiopathic Pulmonary Fibrosis (IPF) and Normal Control (NC) samples. (A) Box plots showing the 
expression levels of hub genes in the combined dataset for IPF and NC samples. (B) Box plots displaying the expression levels of the same hub genes in the GSE110147 
dataset. (C) Heatmap of gene set enrichment analysis results, illustrating the association between hub genes and various biological pathways, with color intensity 
representing the enrichment score. (D) Circos plot depicting the correlation between hub genes, with the strength of correlation indicated by the thickness of 
connecting lines. (E) Receiver Operating Characteristic curves for hub genes, showing their diagnostic performance with the Area Under the Curve values for hub genes. 
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Figure 6 Immune cell fraction analysis and correlation with hub gene expression in IPF and NC samples. (A) Violin plots showing the fractions of different immune cell types 
in IPF and NC samples. Significant differences between groups are indicated. (B) Heatmap illustrating the correlation between hub gene expression and the fractions of 
various immune cell types, with color intensity representing the correlation coefficient. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Figure 7 Construction of bleomycin-induced murine pulmonary fibrosis and gene expression analyses in vivo. (A) micro-CT showing radiological changes in Pulmonary 
Fibrosis (PF) and Normal Control (NC) lungs. (B) H&E, Masson, and Sirius red staining showing the pathological changes in PF and NC left lung samples. (C) qRT-PCR 
validating the expression levels of hub genes in PF and NC samples (n = 5 per group). (D) Immunohistochemical (IHC) staining validating the expression levels of hub genes 
in PF and NC samples (n = 3 per group). *P < 0.05, and **P < 0.01.
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monocytes, plasma cells, fibroblasts, and B cells, with a notably higher proportion of fibroblasts observed in IPF samples 
(Figure 8A). The heat map of cluster scores indicated variations in relative expression levels among different cell 
clusters, with elevated scores in specific clusters suggesting increased activity or abundance of certain cell types in IPF 
(Figure 8B). Heat maps depicting the proportion and expression levels of hub genes across various cell types showed 
distinct patterns. For instance, GPX3 and IGF1 exhibited significantly increased expression in fibroblasts and macro-
phages in IPF samples compared to controls, illustrating their potential involvement in fibrosis and inflammatory 
pathways, respectively (Figure 8C and D). UMAP plots of individual hub genes further delineate specific expression 
patterns within different cell populations. GPX3 was predominantly upregulated in fibroblasts, IGF1 in both fibroblasts 
and macrophages, SMAD7 in epithelial cells, GADD45β in T cells, and TIMP3 in endothelial cells. These findings 

Figure 8 Continued.
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indicate the diverse functions these genes serve across various cell types and underscore notable differences between IPF 
and control samples (Figure 8E–I).

Discussion
Interstitial pneumonias encompass a broad category of diseases with diverse etiologies and heterogeneous histopathological 
and radiological features.20 Typically, pulmonary fibrosis manifests in the advanced stages, signifying an irreversible and fatal 
progression. In fibrosis arising from various etiologies, IPF remains a prevalent form, with recent estimates of global incidence 
ranging from 0.09 to 1.30 per 10,000 population and prevalence between 0.33 and 4.51 per 10,000 population.21 The 
prognosis for IPF is notably poor, with a median expected life span of 3–5 years from diagnosis.22 Despite advancements 
in anti-fibrotic therapies designed to decelerate the deterioration of pulmonary function and disease progression, a definitive 
cure for IPF remains elusive. Risk factors for IPF encompass both genetic predispositions and environmental exposures, 
including age, tobacco use, viral infections, and occupational exposure to certain particles or chemicals.23 Apoptosis, 
pyroptosis, and necroptosis have been implicated in the pathogenesis of IPF, playing critical roles in tissue remodeling; 
however, targeting these pathways individually may prove insufficient.8,24 Hence, there is an increasing interest in developing 
a comprehensive therapeutic approach for IPF by targeting distinct cell death pathways.

PANoptosis is a newly proposed inflammatory cell death modality representing a complex interplay among apoptosis, 
pyroptosis and necroptosis.25 This novel cell death pathway is characterized by the simultaneous activation of these three 
distinct processes, which are traditionally considered separate. The concept of PANoptosis has emerged from the 
recognition of the extensive crosstalk and mechanistic overlaps among these pathways, leading to the formation of a 
multiprotein complex known as the PANoptosome. This complex integrates components from each pathway, facilitating 
a coordinated cell death response that can bypass pathogen-mediated inhibition of individual pathways.26 Accumulating 
evidence demonstrate that PANoptosis is intricately involved in cell homeostasis and occurs under vast and multifarious 
stimuli.27 In cancer, for instance, PANoptosis has been associated with the tumor immune microenvironment, offering 

Figure 8 Cell type distributions and hub gene expression in Idiopathic Pulmonary Fibrosis (IPF) and Normal Control (NC) samples. (A) UMAP plots showing the distribution of 
various cell types in IPF and NC samples. (B) Heatmap of cell cluster scores in IPF and NC samples, with clusters listed on the right and colors representing score levels; higher 
scores are indicated by brighter colors. (C) Heatmap depicting the proportion of cells expressing hub genes across different cell types in IPF and NC samples, with color 
intensity representing the proportion; darker red indicates higher proportions. (D) Heatmap illustrating the expression levels of hub genes in various cell types from IPF and NC 
samples, with color intensity indicating expression levels; darker red signifies higher expression. (E–I) UMAP plots showing the expression of individual hub genes in cell 
populations from IPF and NC samples. Each plot highlights cells expressing a specific gene, with positive cells marked in Orange and non-expressing cells in grey.
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potential therapeutic applications. The ability of PANoptosis to modulate immune responses and influence tumor 
progression makes it a promising target for cancer therapy.28 Furthermore, PANoptosis plays a crucial role in auto-
immune diseases, where it contributes to systemic chronic inflammation and abnormal immune responses. The dual role 
of PANoptosis in both promoting and regulating inflammation underscores its complexity and potential as a therapeutic 
target in autoimmune conditions.29

In addition to cancer and autoimmune diseases, PANoptosis is implicated in infectious diseases, where it serves as a 
defense mechanism against pathogens. The activation of PANoptosis during infections, such as those caused by influenza 
virus and bacterial pathogens, demonstrates its role in host defense by eliminating infected cells and preventing pathogen 
spread.30 The ability of PANoptosis to integrate signals from various cell death pathways and respond to diverse stimuli 
makes it a critical component of the innate immune response, with implications for the development of novel therapeutic 
strategies targeting inflammatory and infectious diseases.31 The involvement of PANoptosis in various diseases highlights 
its significant pathophysiological relevance.

Through bioinformatics analysis, we identified five potential PANoptosis-related signature genes associated with the 
pathogenesis of idiopathic pulmonary fibrosis: IGF1, GPX3, GADD45β, SMAD7, and TIMP3. Besides, the expression patterns 
of these significant candidate genes were validated in a murine model of bleomycin-induced pulmonary fibrosis. Our results 
showed that the differences in expression levels of all five genes remained statistically significant. Subsequently, we examined the 
molecular functions and cellular localization of these genes within the lungs, discovering that the PANoptosis-related genes 
exhibited a positive correlation with various pro-fibrotic processes including epithelial-mesenchymal transition, cellular senes-
cence, inflammation, and oxidative stress. Utilizing single-cell sequencing techniques, we also projected the expression and 
distribution of these genes in pulmonary cells.

The involvement of various molecular pathways, including those mediated by IGF1 and SMAD7, has been a focus of 
research in understanding IPF’s pathogenesis and progression. IGF1 signaling has been implicated in the disease’s 
pathogenesis due to its role in cellular proliferation and differentiation.32,33 SMAD7 serves as a negative feedback 
regulator of the TGF-β signaling pathway, which is also crucial in fibrosis development.34 Besides, TIMP3 was found 
remarkably expressed in IPF tissues and localized to fibroblastic foci and extracellular matrix (ECM), and TGF-β1 could 
induce strong up-regulation of TIMP3 at the mRNA and protein levels, suggesting it as an important mediator in lung 
fibrogenesis.35 By contrast, studies specifically focusing on the roles of GPX3 and GADD45β in pulmonary fibrosis are 
limited. GPX3, an extracellular antioxidant enzyme, has been studied in the context of cancer and metabolic syndrome, 
where it plays a role in modulating oxidative stress and cellular redox balance.36,37 GADD45β is known for its 
involvement in cellular stress responses, including DNA repair, apoptosis, and cell cycle regulation. It has also been 
implicated in various inflammatory and cancer-related processes.38,39 While these studies provide insights into the 
functions of GPX3 and GADD45β in other diseases, their specific contributions to IPF pathogenesis are not well- 
documented. A previous study accessed the regulation and distribution of GPX3 in murine and human pulmonary fibrosis 
and found that GPX3 localized to ECM and was upregulated in lung homogenates from IPF patients, revealing an effect 
of GPX3 on IPF.40 In short, although these molecules are related to the fibrotic process, whether they regulate fibrosis 
through PANoptosis pathways require further investigation. Understanding these roles could provide new insights into 
molecular mechanisms of IPF and identify potential therapeutic targets for this debilitating disease.

It is important to acknowledge several limitations of this study. First, the PANoptosis-related gene set was derived from 
previous studies, and our conclusions are based solely on the current dataset. Therefore, the functional mechanisms and 
interactions of identified genes in relation to PANoptosis remain uncertain and warrant further experimental investigation. 
Second, the selection of current PANoptosis signature genes related to IPF was conducted using public databases and 
comprehensive bioinformatic analyses. The heterogeneity among studies may affect the reliability of results. To address 
this issue, we chose two datasets with the largest sample sizes to identify PANoptosis-related genes and then validated their 
expressions at both transcriptional and translational levels. Third, due to the challenges in obtaining lung samples from IPF 
patients, we utilized murine fibrotic lung tissues as a substitute, which may not fully represent gene expression changes in 
IPF patients. In general, further research should include gene knockout/overexpression experiments, protein interaction 
network analyses, and clinical studies to elucidate the functions of PANoptosis-related genes.
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In conclusion, this study identified several novel targets potentially involved in PANoptosis and IPF processes, which 
could serve as potential diagnostic biomarkers for IPF. More to the point, our findings demonstrated that these genes are 
correlated with various immune cells and provided potential distribution information within pulmonary cells. More studies 
are further required to elucidate the biological functions and mechanisms of these genes in the pathogenesis of IPF.
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