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Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major pathogen responsible for urinary tract infections 
(UTIs). However, its role and characteristics in recurrent urinary tract infections (rUTIs) remain poorly understood. Investigating its 
features in rUTIs may provide insights into effective prevention strategies.
Methods: We analyzed a cohort of patients with rUTIs caused by Klebsiella pneumoniae from April 2020 to April 2024. Antibiotic 
susceptibility of the isolates was evaluated. Biofilm Formation Assay and Galleria mellonella infection models were employed to 
assess the virulence of the strains. Polymerase Chain Reaction (PCR) and whole-genome sequencing (WGS) were utilized to 
determine multilocus sequence typing (MLST) and capsular serotyping, as well as to identify resistance genes, virulence genes, and 
plasmid replicons. Phylogenetic relationships among the isolates were also established.
Results: A total of 41 patients with rUTIs were included, with 56.1% caused by CRKP. 97.01% of CRKP carry the blaKPC-2 gene. 
Compared to patients infected with carbapenem-susceptible Klebsiella pneumoniae (CSKP), those infected with CRKP had a higher 
prevalence of underlying diseases and complications. Both groups of strains exhibited a high degree of antibiotic resistance. CRKP 
strains demonstrated enhanced biofilm formation capacity and greater lethality in Galleria mellonella infection models. The 
predominant phenotype of the CRKP strain was ST11 KL64, whereas the CSKP strain showed multiple phenotypes in different 
patients. Sequencing analyses revealed that both groups of strains carried a wide range of virulence genes, resistance genes, and 
plasmid replicons. Among the cases of rUTIs, 31 were identified as relapses caused by the same strain, with no significant differences 
between the initial and final infection strains.
Conclusion: This study demonstrates that patients with rUTIs caused by CRKP present significant complexity in terms of clinical 
features, strain resistance and virulence properties. When managing UTIs caused by CRKP, special care needs to be taken to manage 
recurrent infections.
Keywords: recurrent urinary tract infections, carbapenem-resistant Klebsiella pneumoniae, antibiotic resistance, virulence, whole 
genome sequencing

Introduction
UTIs are among the most common bacterial infections, affecting approximately 150 million people globally each year.1 

UTIs can occur across all age groups, from newborns to the elderly, with clinical manifestations ranging from localized 
infections to complicated conditions such as pyelonephritis and cystitis.2 Severe cases may lead to renal pelvis and tubule 
damage, potentially resulting in renal failure, bacteremia, sepsis, or even life-threatening complications.3

RUTIs are defined as at least three UTIs in a 12-month period or at least two UTIs in a 6-month period with at least 
14 days between infections. Approximately 60% of women will experience at least one UTI during their lifetime, and 
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30% to 40% may develop rUTIs, with some experiencing six or more infections annually. Among elderly males, rUTIs 
are also prevalent due to age-related pathological changes.4 Klebsiella pneumoniae is a significant pathogen responsible 
for UTIs, second only to Escherichia coli in some regions.5

Klebsiella pneumoniae is classified as one of the ESKAPE pathogens, which also includes Enterococcus faecium, 
Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. As a common 
uropathogen, Klebsiella pneumoniae poses a considerable global health threat.6 Its virulence factors, such as capsules and 
fimbriae, enhance its ability to colonize and persist in the urogenital tract. Additionally, Klebsiella pneumoniae can form 
biofilms in the urinary tract, shielding itself from the bladder environment and strengthening its colonization ability. 
These virulence factors and biofilm formation contribute to rUTIs development.7–9 CRKP further strengthens its survival 
capacity, increasing its transmissibility.10 During the acquisition of drug resistance, Klebsiella pneumoniae may incor-
porate virulence-related mobile genetic elements, significantly expanding its adaptability and geographical spread. The 
resistance mechanisms include the production of carbapenemases, porin gene deletions or mutations, and upregulation of 
efflux pumps.11,12 In Asian countries like Vietnam and Laos, CRKP transmission has intensified, with infections being 
prolonged and difficult to treat.13 The increasing resistance rate of Klebsiella pneumoniae undermines the effectiveness 
of empirical treatment strategies.

There are many studies on Escherichia coli causing rUTIs. For instance, a study in the Netherlands found that 
Escherichia coli could persist in the bladder for extended periods or recolonize the bladder from the intestines, causing 
rUTIs.14 Similarly, an Iranian hospital study revealed that nearly all isolated Escherichia coli strains exhibited biofilm 
formation in vitro, which extended their urinary tract presence, thereby exacerbating recurrence rates and treatment 
challenges.15 However, research on rUTIs caused by Klebsiella pneumoniae remains limited. Additionally, the predominant 
strains and resistance mechanisms of Klebsiella pneumoniae vary regionally.16 For example, community-acquired rUTIs in 
Taiwan demonstrated stronger adhesion and invasion abilities in pathogenic Klebsiella pneumoniae compared to urinary 
colonizers.17 A case study by Michelle Kalu described a rUTI caused by CRKP, in which CRKP adapted to repeated 
antibiotic exposure through changes in carbapenem resistance and biofilm formation, highlighting its versatility.18

Due to the limited reports on rUTIs caused by CRKP and the variations in patient characteristics and CRKP strains 
across regions, this study statistically analyzed cases of rUTIs in a tertiary hospital in Guizhou. The analysis examined 
drug resistance, biofilm formation, virulence levels, and gene profiles of CRKP strains responsible for rUTIs. 
Furthermore, it aimed to determine whether rUTIs in hospitalized patients were caused by the recurrence of the same 
strain or reinfection by different strains. Ultimately, this research seeks to inform strategies for the prevention and 
treatment of rUTIs and the optimal use of antibiotics.

Materials and Methods
Patient Information and Strain Collection for rUTIs
From April 2020 to April 2024, we conducted a study at a tertiary hospital in Guizhou, China, collecting samples from 
patients with rUTIs caused by Klebsiella pneumoniae. According to the diagnostic criteria for rUTIs, patients must have 
had at least three UTIs within a 12-month period or at least two UTIs within a 6-month period with at least 14 days 
between infections.4 Samples with incomplete patient information or those containing two or more bacterial or fungal 
species in the same urine specimen were excluded.

The isolates were identified using a Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer 
(BioMérieux, France). Klebsiella pneumoniae ATCC 700603 (Microbiologics, USA) was used as the quality control strain.19

Antibiotic Susceptibility Testing and Carbapenemase Screening
Antibiotic susceptibility of Klebsiella pneumoniae was assessed using the minimum inhibitory concentration (MIC) 
method on the VITEK 2 automated microbiology system (BioMérieux, France). Tested antibiotics included cefoxitin, 
cefuroxime, ceftriaxone, ceftazidime, cefepime, aztreonam, amikacin, levofloxacin, ertapenem, meropenem, and imipe-
nem. Klebsiella pneumoniae ATCC 700603 served as the quality control strain. Results were interpreted following the 
Clinical and Laboratory Standards Institute (CLSI) guidelines.20
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Biofilm Formation Assay
The biofilm formation assay was performed using 1% crystal violet staining, with absorbance measured at 570 nm. 
Biofilm generation capacity was calculated using the formula: ODc = average OD of the negative control + (3 × SD of 
the negative control). Based on this, strains were classified as follows: Strong biofilm producer (OD > 4 × ODc), 
Moderate biofilm producer (4 × ODc ≥ OD > 2 × ODc), Weak biofilm producer (2 × ODc ≥ OD > ODc), non-biofilm 
producer (OD ≤ ODc). Klebsiella pneumoniae NTUH-K2044 (Microbiologics, USA) and LB broth were used as positive 
and negative controls, respectively. Each experiment was performed in triplicate.21

Galleria Mellonella Assay
The virulence of the collected Klebsiella pneumoniae strains was evaluated using the Galleria mellonella infection 
model. Overnight bacterial cultures were adjusted to a 0.5 McFarland concentration (approximately 1 × 108 CFU/mL) in 
saline. Ten microliters of the bacterial suspension were injected into Galleria mellonella larvae (250–350 mg; Guilin 
Jiacheng Co., Ltd)., which were incubated at 37°C in darkness for 72 hours. Larval survival was monitored at 12-hour 
intervals. Saline was used as the negative control, and Klebsiella pneumoniae NTUH-K2044 served as the positive 
control. Each experiment was repeated three times.22

Virulence Gene Identification
PCR was used to detect nine virulence factors associated with Klebsiella pneumoniae, including iroB (siderophore 
synthesis), peg344, rmpA, rmpA2 (capsule overexpression), mrkD (type 3 fimbriae), entB, ybtS (iron uptake), fimH (type 
1 fimbriae), and wcaG (capsule fucose and endotoxin synthesis). PCR products were analyzed by electrophoresis to 
identify target bands.23

String Test
A single bacterial colony was picked from an agar plate using an inoculation loop and lifted vertically. A positive string 
test was defined as a string >5 mm in length, indicating a hypermucoviscous phenotype of Klebsiella pneumoniae.24

Capsular Serotyping
PCR was conducted to determine the capsular serotypes of Klebsiella pneumoniae strains, focus-ing on the following 
serotypes: K1, K2, K5, K20, K54, K57, and K64.25 Strains outside these sero-types were further characterized 
using WGS.

Genome Sequencing
Genomic DNA was extracted using a bacterial DNA extraction kit (Beijing Solarbio Science & Technology Co., Ltd). 
Whole-genome sequencing was performed on the Illumina platform PE150 (Beijing Novogene). Assembly was achieved 
using SOAPdenovo (version 2.04) and SPAdes, with fragments below 500 bp filtered out.26 Resistance and virulence 
genes were identified using the ResFinder and VFDB databases, respectively. Plasmid replicon types were classified 
using the PlasmidFinder v2.1 database.27,28 Capsular typing was determined via Kaptive, while MLST was performed 
using MLST software based on seven housekeeping genes (gapA, infB, mdh, pgi, phoE, rpoB, and tonB).29 SNP analysis 
was conducted with Snippy v4.6.0, using the initial isolate from each patient as a reference.30 Phylogenetic relationships 
were analyzed using RAxML v8.2.4, and trees were visualized with the Interactive Tree of Life (iTOL) tool.31

Statistical Analysis
Clinical data were analyzed using GraphPad Prism 9.0. Normally distributed data were expressed as mean ± standard 
deviation, while non-normally distributed data were represented as median (interquartile range). Differences between two 
independent samples were analyzed using the Wilcoxon signed-rank test. Categorical data were presented as frequency 
(percentage) and compared using the Chi-square test or Fisher’s exact test. A p-value < 0.05 was considered statistically 
significant.32
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Results
Clinical Characteristics of Patients Statistical Analysis
Between April 2020 and April 2024, a total of 589 Klebsiella pneumoniae isolates were obtained from urine samples. 
After reviewing medical records and excluding cases of UTIs involving multi-ple bacterial species, 41 patients were 
identified with rUTIs caused by Klebsiella pneumoniae, resulting in a total of 114 isolates.

Carbapenem susceptibility screening showed that, among the 41 patients with rUTIs, 23 (56.1%) were infected with 
CRKP strains, and 18 (43.9%) were infected with CSKP strains. There were 67 CRKP isolates from patients with CRKP- 
associated rUTIs and 47 CSKP isolates from patients with CSKP-associated rUTIs.

A comparison of clinical characteristics between the two patient groups revealed that those with rUTIs caused by 
CRKP were older and had significantly more underlying conditions, including cardiac insufficiency, neurodegenerative 
diseases, severe pneumonia, and COPD. Regarding complications, patients with CSKP-associated rUTIs exhibited higher 
rates of hydronephrosis and neurogenic bladder. Additionally, CRKP-associated rUTIs were linked to complications such 
as respiratory failure, electrolyte imbalance, and hypoalbuminemia. Hypertension was prevalent in both groups, and 
urinary catheter rates were similarly high (Table 1).

Antibiotic Susceptibility Testing
CRKP strains causing rUTIs demonstrated high resistance rates to all 11 antibiotics tested. Re-sistance rates for FOX, 
CXM, CRO, FEP, ATM, ETP, IPM, and MEM were 100%. Sensitivity or intermediate responses were observed only for 

Table 1 Comparison of Clinical Characteristics Between Patients with rUTIs Caused 
by CRKP and CSKP

Characteristics CRKP (n=23) CSKP (n=18) p-value

Frequency Rate Frequency Rate

Age (years) 81 (65.5–88.5) 53 (45.5–69.5) 0.0026

Sex Male 17 73.91% 13 72.22% 0.9035
Female 6 26.09% 5 27.78%

Underlying medical conditions

DM 9 39.13% 4 22.22% 0.2482
HTN 14 60.87% 7 38.89% 0.1623

Cardiac insufficiency 11 47.83% 2 11.11% 0.0122
Neurodegenerative disease 9 39.13% 1 5.56% 0.0130

Severe pneumonia 16 69.57% 1 5.56% <0.0001

COPD 9 39.13% 1 5.56% 0.0130
Comorbidities

History of urinary incontinence 7 30.43% 6 33.33% 0.8431

Urethral catheter 20 86.96% 14 77.78% 0.4382
Ureteral abnormalities 2 8.70% 5 27.78% 0.1071

Kidney failure 3 13.04% 3 16.67% 0.7446

Kidney stone 3 13.04% 4 22.22% 0.4382
Renal insufficiency 3 13.04% 4 22.22% 0.4382

Kidney cysts 7 30.43% 4 22.22% 0.5559

Hydronephrosis 1 4.35% 5 27.78% 0.0352
Neurogenic bladder 1 4.35% 8 44.44% 0.0021

Respiratory failure 16 69.57% 2 11.11% 0.0002

Anaemia 6 26.09% 7 38.89% 0.3820
Electrolyte imbalances 11 47.83% 3 16.67% 0.0368

Hypoalbuminemia 13 56.52% 2 11.11% 0.0027

Dyslipidemia 5 21.74% 2 11.11% 0.3694
Deficiencies in action 11 47.83% 9 50.00% 0.8901

Abbreviations: DM, Diabetes mellitus; HTN, Hypertension; COPD, Chronic obstructive pulmonary disease.
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CAZ, AN, and LVX. In contrast, CSKP strains showed varying resistance levels to eight antibiotics: FOX, CXM, CRO, 
CAZ, FEP, ATM, AN, and LVX (Figure 1).

Virulence Comparison
All 114 Klebsiella pneumoniae strains isolated from rUTIs exhibited biofilm formation capability. A higher proportion of 
CRKP strains displayed moderate biofilm formation compared to CSKP strains (p = 0.0336, Figure 2).

Figure 1 Antibiotic susceptibility and resistance statistics for CRKP and CSKP strains in rUTIs. 
Notes: The solid box represents the CRKP; The striped box represents the CSKP. FOX, Cefoxitin; CXM, Cefuroxime; CRO, Ceftriaxone; CAZ, Ceftazidime; FEP, 
Cefepime; ATM, Aztreonam; AN, Amikacin; LVX, Levofloxacin; ETP, Ertapenem; IPM, Imipenem; MEM, Meropenem.

Figure 2 Biofilm formation ability of CRKP and CSKP in rUTIs. 
Notes: The statistical method is Chi-square test; The asterisk (*) indicates p < 0.05.
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The Galleria mellonella infection model was used to evaluate virulence levels of 67 CRKP strains and 47 CSKP 
strains from rUTIs. Over a 72-hour observation period, CRKP strains caused significantly higher mortality rates in 
Galleria mellonella larvae compared to CSKP strains (p = 0.0003, Figure 3).

PCR Screening for Virulence Gene Carriage
PCR analysis was conducted to compare the virulence genes of Klebsiella pneumoniae strains isolated from rUTIs. Both 
groups exhibited 100% carriage rates for entB and mrkD. However, CRKP strains showed higher carriage rates for 
virulence genes peg344, rmpA, rmpA2, and ybtS. The fimH virulence gene was prevalent in both groups, while the 
carriage rate of wcaG remained low (Table 2).

Figure 3 Mortality comparison in Galleria mellonella virulence assay between CRKP and CSKP strains causing rUTIs. 
Notes: The statistical method is Wilcoxon signed-rank test; The asterisk (***) indicates p < 0.0005.

Table 2 Comparison of Virulence Gene Carriage Between CRKP and 
CSKP Strains in rUTIs

Virulence gene CRKP (n=67) CSKP (n=47) p-value

Frequency Rate Frequency Rate

iroB 59 88.06% 35 74.47% 0.0604

peg344 63 94.03% 7 14.89% <0.0001
rmpA 64 95.52% 10 21.28% <0.0001

rmpA2 63 94.03% 36 76.60% 0.0067

entB 67 100% 47 100% ns
ybtS 67 100% 37 78.72% <0.0001

mrkD 67 100% 47 100% ns

fimH 64 95.52% 43 91.49% 0.3773
wcaG 1 1.49% 2 4.26% 0.3643

Abbreviation: ns, No significance.
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Molecular Characteristics
A total of 114 Klebsiella pneumoniae strains were isolated from 41 patients with rUTIs. Among these, 45 strains 
tested positive in the string test. Specifically, 33 of 67 CRKP strains (49.25%) and 12 of 47 CSKP strains (25.53%) 
were positive, indicating a significantly higher string test positivity rate in CRKP strains compared to CSKP strains 
(p = 0.0108, Figure 4).

The 114 isolates were classified into 20 sequence types (ST) and 19 capsular types. Five strains were untyped for ST, 
and six were untyped for capsular type. The most common ST type among CRKP strains was ST11 (60/67, 89.55%). 
However, some patients exhibited different ST types before and after infection, suggesting recurrent infections were 
caused by distinct strains. The predominant capsular serotype among CRKP strains was KL64 (59/67, 88.06%), all of 
which were ST11. The second most common was KL2 (5/67, 7.46%), though these strains were not typed for ST. In 
contrast, CSKP strains displayed diverse ST and KL types across different patients, suggesting a variety of infection 
sources (Figure 4).

The phylogenetic tree demonstrated that strains isolated from different infection periods in the same patient generally 
clustered together. SNP analysis of strains from the same patient, using the initial strain as a reference, revealed an 
average of fewer than 10 SNPs. This indicates that most recurrent infections were caused by the same strain. However, 

Figure 4 Phylogenetic tree of 114 Klebsiella pneumoniae strains causing rUTIs. 
Notes: CRKP is indicated by shades of red, CSKP is indicated by shades of green; From the inner to the outer circle, the rings represent MLST typing, capsular serotyping, 
and string test results.
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exceptions were observed, such as in patients P1 and P13, whose recurrent infections involved different strains 
(Figure 4).

Sequencing results showed that resistance mechanisms in most patients remained unchanged during recurrent 
infections. The majority of CRKP strains carried the blaKPC-2 gene (65/67, 97.01%). However, some patients harbored 
strains with different resistance genes, such as P10-CRKP4 carrying the blaKPC-33 gene and P1-CRKP1 carrying the 
blaOXA-232 gene (Figure 5).

A total of 114 Klebsiella pneumoniae strains were screened for resistance genes related to more than 10 
classes of antibiotics, including carbapenems, quinolones, β-lactams, sulfonamides, and aminoglycosides. Among 
the 67 CRKP strains, the most frequently detected resistance genes were the β-lactamase-encoding gene blaLAP-2 

(n = 61), the broad-spectrum β-lactamase-encoding gene blaTEM-1 (n = 57), and the quinolone resistance gene 
qnrS1 (n = 64). Conversely, the 47 CSKP strains harbored a wider variety of resistance genes, such as the 

Figure 5 Distribution of resistance genes, virulence genes, and plasmid replicons in Klebsiella pneumoniae strains causing rUTIs. 
Notes: CRKP is indicated by shades of red, CSKP is indicated by shades of green; Red boxes indicate resistance genes, blue boxes indicate virulence genes, and yellow boxes 
indicate plasmid replicon types.
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rifamycin resistance gene arr-3 (n = 6), the gentamicin resistance gene aac (3)-IId (n = 13), and the chloram-
phenicol and quinolone resistance gene oqxB (n = 6).

Virulence gene analysis revealed that all 114 strains carried enterobactin-related genes (fepC, entB), outer membrane 
protein (ompA) genes, and fimbrial structure-related genes (ecpA/B/D/E/R). The enterobactin-related gene fepG was only 
identified in CSKP strains. Except for P15-CRKP2, which lacked the fimbrial gene ecpC, and P38-CSKP1 and P38-CSKP2, 
which lacked the enterobactin-related gene entA, all other strains contained these genes. CRKP strains displayed higher 
carriage rates of yersiniabactin-related genes (fyuA, irp1/2, ybtA/E/P/Q/S/T/U/X) and aerobactin-related genes (iucA/B/C, 
iutA) compared to CSKP strains.

Plasmid replicon sequencing identified 14 plasmid replicon types in CRKP strains, primarily IncFIB(K) (n = 66), 
IncR (n = 60), ColRNAI (n = 66), and IncFII (pHN7A8) (n = 60). CSKP strains carried 13 plasmid replicon types, with 
IncFIB(K) (n = 33) being the most prevalent (Figure 5).

Before-and-After Comparison
Phylogenetic analysis revealed that recurrent infections in 31 patients were caused by the same strain. Comparisons of 
the initial and final infection strains for string test results, biofilm formation, Galleria mellonella mortality rates, and gene 
presence showed no differences between the initial and final isolates (Table 3).

Table 3 Comparison of Characteristics Between Initial and Final Strains in rUTIs

Characteristics ALL Initial Infection Final Infection p-value

N=62 (%) N=31 (%) N=31 (%)

String test 27 (43.55%) 13 (41.94%) 14 (45.16%) 0.7978

Biofilm-forming capacity
Strong 45 (72.58%) 21 (67.74%) 24 (67.74%) 0.3931

Moderate 14 (22.58%) 9 (29.03%) 5 (29.03%) 0.2244

Weak 3 (4.84%) 1 (3.23%) 2 (6.45%) 0.5540
Mortality of Galleria mellonella 0.9 (0.6–1) 0.9 (0.7–1) 0.8 (0.6–1) 0.3420

Major resistance gene

blaLAP-2 34 (54.84%) 17 (54.84%) 17 (54.84%) >0.9999
blaTEM-1 41 (66.13%) 21 (67.74%) 20 (64.52%) 0.7884

qnrS1 43 (69.35%) 22 (70.97%) 21 (67.74%) 0.7830

sul2 36 (58.06%) 18 (58.06%) 18 (58.06%) >0.9999
rmtB1 33 (53.23%) 17 (54.84%) 16 (51.61%) 0.7991

tet(A) 47 (75.81%) 23 (74.19%) 24 (67.74%) 0.7668

dfrA14 31 (50%) 16 (51.61%) 15 (48.39%) 0.7995
Major virulence gene

fyuA 44 (70.97%) 22 (70.97%) 22 (70.97%) >0.9999

irp1/2 44 (70.97%) 22 (70.97%) 22 (70.97%) >0.9999
iucA/B/C 42 (67.74%) 21 (67.74%) 21 (67.74%) >0.9999

iutA 43 (69.35%) 22 (70.97%) 21 (67.74%) 0.7830

fepG 6 (9.68%) 3 (9.68%) 3 (9.68%) >0.9999
entA 60 (96.77%) 30 (96.77%) 30 (96.77%) >0.9999

ecpC 60 (96.77%) 30 (96.77%) 30 (96.77%) >0.9999
Major plasmid replicon

IncFIB(K) 54 (87.10%) 27 (87.10%) 27 (87.10%) >0.9999

IncR 40 (64.52%) 20 (64.52%) 20 (64.52%) >0.9999
ColRNAI 38 (61.29%) 19 (61.29%) 19 (61.29%) >0.9999

IncFII(pHN7A8) 36 (58.06%) 18 (58.06%) 18 (58.06%) >0.9999

IncN 2 (3.23%) 2 (6.45%) 0 0.1506

IncHI1B 8 (12.90%) 4 (12.90%) 4 (12.90%) >0.9999

IncFII 4 (6.45%) 2 (6.45%) 2 (6.45%) >0.9999
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Discussion
Klebsiella pneumoniae is one of the ESKAPE pathogens and a priority pathogen identified by the World Health 
Organization. In many low-income countries, limited treatment options necessitate reliance on empirical approaches 
for managing Klebsiella pneumoniae infections, exacerbate the severity of these cases. For instance, in Tanzania and 
Egypt, multidrug-resistant and hypervirulent Klebsiella pneumoniae is frequently detected.6,33 Conversely, in developed 
countries such as those in Europe, research indicates that the problem of Klebsiella pneumoniae infections remains 
inadequately controlled. A French study identified Klebsiella pneumoniae as the leading pathogen in bloodstream 
infections, accounting for over half of the cases.34 Similarly, studies in Germany have highlighted its ability to spread 
not only among humans but also through animals and food.35 Previous research has suggested that CRKP may evolve in 
both virulence and resistance during infection, thereby increasing its pathogenicity and complicating treatment.18 

However, most investigations have concentrated on CRKP in bloodstream infections and pyogenic liver abscesses, 
with relatively limited focus on its role in rUTIs.

In this study, we examined the underlying diseases and complications of patients with rUTIs caused by CRKP and 
CSKP in a hospital setting. Both groups exhibited high rates of urinary catheter use, a factor that not only heightens the 
risk of UTIs but also predisposes patients to bloodstream infections. Invasive procedures increase the likelihood of 
pathogen entry or reduce immune functionality, thereby making patients more vulnerable to infections.36 While previous 
studies have reported a predominance of rUTIs among female patients, our findings showed a higher prevalence in males. 
This discrepancy may be attributed to the prolonged hospitalization of patients and the limited sample size, which 
skewed the inclusion toward male patients. A study in India suggested that urinary stones in patients with UTIs elevate 
the risk of recurrent infections.37 In contrast, our research identified only seven cases with concurrent urinary stones, 
indicating that factors contributing to rUTIs may vary geographically. Phylogenetic analysis revealed that strains isolated 
from different time points in patients with rUTIs typically clustered within the same branch, suggesting that rUTIs were 
predominantly caused by the initial strain of Klebsiella pneumoniae. However, a few cases involved reinfection by 
distinct strains. Specifically, recurrent infections in 31 patients were attributed to the initial strain, with no significant 
differences in virulence or genetic characteristics observed between initial and final isolates.

Antibiotic susceptibility testing of isolated strains from patients with rUTIs showed that 56.1% of the strains were 
resistant to carbapenems. Compared to previous studies in China and Iran,38,39 our findings indicate a higher resistance rate 
to carbapenems in urine-derived Klebsiella pneumoniae. Carbapenems are essential for treating Klebsiella pneumoniae 
infections, and resistance to these antibiotics has become increasingly common. For example, an epidemiological study 
from the Great Lakes region in the USA reported that approximately half of CRKP isolates were derived from urine.40 

Similarly, a 20-year surveillance project by Castanheira et al, spanning 199 hospitals in 42 countries, found that CRKP 
accounted for 71.1% of carbapenem-resistant Enterobacteriaceae causing UTIs.41 In developing countries, carbapenems are 
often inaccessible due to their high cost and are not used in animals, leading to generally lower resistance rates.42 However, 
factors such as diversified resistance mechanisms, cross-resistance among antibiotics, excessive use of β-lactams, and 
patient-to-patient transmission in hospital settings have contributed to the widespread dissemination of CRKP.43

WGS in our study identified blaKPC-2 as the primary carbapenem resistance gene. P10-CRKP4 carried blaKPC-33, 
a variant of blaKPC-2.

44 SNP analysis revealed significant differences between P10-CRKP4 and other isolates, suggesting 
acquisition of blaKPC-33 through distinct infection pathways. Additionally, P1-CRKP1 carried the blaOXA-232 gene, a subtype 
of blaOXA-48, another critical carbapenem resistance determinant. Recent studies in India, Wenzhou, and Yunnan, China, 
have also identified CRKP strains harboring blaOXA-232.45,46 Our sequencing data revealed that CRKP isolates carried 
a diverse array of resistance genes, including those for quinolones, β-lactams, sulfonamides, and aminoglycosides. 
Antibiotic susceptibility testing indicated high resistance rates to cephalosporins, β-lactams, and quinolones, suggesting 
potential overuse of these antibiotics in treatment. Carbapenemases, such as those encoded by blaKPC-2, can hydrolyze 
almost all β-lactam substrates, including penicillins and cephalosporins. Combined with the co-expression of β-lactam 
resistance genes, this results in elevated cephalosporin resistance.47 The resistance rates to cephalosporins vary geographi-
cally. For instance, in a Tanzanian hospital, Klebsiella pneumoniae exhibited a 91% resistance rate to third-generation 
cephalosporins,32 while a Nigerian study reported a resistance rate of 46.5%.48 Cephalosporins and monobactams inhibit 
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bacterial cell wall synthesis, while quinolones inhibit DNA synthesis.49 These antibiotics are widely recommended for UTIs 
treatment and are extensively used worldwide.50,51 Plasmid replicon sequencing revealed that CRKP strains predominantly 
carried IncFIB(K), IncR, ColRNAI, and IncFII(pHN7A8) plasmid replicons. The IncFII(pHN7A8) and IncR replicons are 
associated with resistance and are commonly found in Klebsiella pneumoniae strains harboring blaKPC-2.

52 Consistent with 
this, all blaKPC-2-carrying Klebsiella pneumoniae isolates in our study contained these plasmid replicons.

Virulence factors play a critical role in bacterial invasion and disease progression. PCR screening detected the 
WcaG gene, associated with bacteremia and regarded as a marker of high virulence, in only a small number of 
isolates.53 Genes involved in siderophore and ferric iron uptake enhance bacterial iron acquisition, thereby promoting 
proliferation within the host. Consistent with the findings of Areli Bautista-Cerón et al, our study revealed a high 
prevalence of these genes in urine-derived Klebsiella pneumoniae strains.23 Capsule expression-related genes, such as 
rmpA and rmpA2, which enhance bacterial growth and counteract host bactericidal substances, were also frequently 
detected. Similar observations were reported in patients with Klebsiella pneumoniae UTIs studies by Jun Li.54 

Analysis of all 114 isolates demonstrated the presence of type 3 fimbriae gene mrkD, which enhance bacterial 
adhesion and invasion of host cells. Adhesion-related factors are vital for bacterial colonization and infection in 
UTIs.55 Notably, regional differences in virulence genes were observed. For example, the prevalence of the rmpA gene 
in Klebsiella pneumoniae in UTIs from India was only 10.5%,56 while an Egyptian study reported a fimH prevalence of 
66.7%.57 These findings underscore regional variations in the pathogenic mechanisms of Klebsiella pneumoniae. 
Sequencing of virulence genes showed that all 114 isolates carried enterobactin-related gene fepC, outer membrane 
protein gene ompA, and fimbrial structure-related genes ecpA/B/D/E/R. Additionally, iucA/B/C genes, previously 
linked to high virulence, were more prevalent in CRKP strains than in CSKP strains. Previous reports identified 
IncFIB(K) as a virulence-associated plasmid.52 In our study, this plasmid replicon was detected in 86.84% of isolates, 
suggesting that the strains causing rUTIs may exhibit high virulence.

Biofilm formation plays a significant role in Klebsiella pneumoniae invasion of bladder epi-thelial cells and evasion of 
phagocytes during UTIs.11 Our study found that all 114 Klebsiella pneumoniae strains causing rUTIs had biofilm-forming 
capabilities, likely due to the expression of fimH and mrkD virulence genes.58,59 Similar to our findings, other studies have 
reported high biofilm formation rates in urine-derived Klebsiella pneumoniae.39,54 Both CRKP and CSKP strains in our 
study had biofilm-forming capabilities, but CRKP strains had a significantly higher proportion of moderate biofilm 
formation compared to CSKP strains. This may be related to the expression of fimH and mrkD virulence genes, influencing 
biofilm formation. Biofilm formation can reduce antibiotic efficacy, leading to prolonged infection cycles and playing 
a crucial role in recurrent infections.60 We used a Galleria mellonella model to analyze the virulence levels of CRKP and 
CSKP strains causing rUTIs. The results showed high mortality rates in Galleria mellonella for both CRKP and CSKP 
strains, with CRKP strains causing significantly higher mortality than CSKP strains. This finding suggests that virulence 
gene expression may influence strain virulence, consistent with the studies by Shankar61 and Jun Li.54 Differences in 
virulence may also contribute to the higher prevalence of underlying diseases and complications in CRKP-induced rUTIs 
compared to CSKP, although further confirmation is needed.

Previous reports indicated that KL2 was the main capsule serotype of CRKP in China, but KL64 has recently become 
the predominant serotype for CRKP.62 Despite all samples coming from the same hospital, the results showed distinct 
regional characteristics for ST types. Over 2000 different ST types have been identified globally, with different regions 
exhibiting different predominant ST types.63 In European countries, ST258 is the predominant CRKP type,43 while in 
China, ST11 is the main type,64 consistent with our findings. Different ST types of Klebsiella pneumoniae may vary in 
virulence levels,65 and our results confirmed this. Due to the transmissibility of plasmids, the integration of virulence 
plasmids among strains is one of the reasons for the high prevalence of ST11 CRKP in China.66 In our study, the capsular 
serotypes of ST11 CRKP were mainly KL64, with only one strain identified as KL47. Recent studies have indicated that 
ST11 KL64 and ST11 KL47 are the predominant CRKP types in China,67 which is consistent with our findings. 
Additionally, our study detected one strain each of ST231 and ST15 Klebsiella pneumoniae. ST231 Klebsiella pneumo-
niae is primarily prevalent in South and Southeast Asia and has only recently been introduced to China.46 Meanwhile, 
ST15 Klebsiella pneumoniae has gradually become an emerging international epidemic type, second only to ST11 and 
ST258.68 Klebsiella pneumoniae has also been detected in animals. Notably, some animal isolates are nearly identical to 
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human isolates, belonging to the same ST. However, compared to animal isolates, human-derived strains exhibit more 
pronounced drug resistance patterns.69

This study has limitations, as the samples and cases were limited to a tertiary hospital in the capital city of Guizhou 
Province. Future research could consider collaborating with other institutions to expand the study scope and enhance the 
generalizability of the findings.

Conclusion
In conclusion, from the patient’s perspective, we found that compared with patients with rUTIs caused by CSKP, those 
with rUTIs caused by CRKP were older and had a higher prevalence of conditions such as Cardiac insufficiency and 
Electrolyte imbalances. From the perspective of strains, we observed that CRKP strains exhibited multidrug resistance. 
CRKP strains showed higher biofilm-forming ability and mortality rate in Galleria mellonella compared to CSKP strains. 
The results of gene sequencing indicated that the main prevalent type of CRKP in our hospital was ST11 KL64, and its 
main resistance mechanism was the carriage of blaKPC-2, while CSKP strains had different types among different 
patients. In addition, the two groups of strains carried a wide variety of genes, and in this study, most rUTIs were 
relapses of the same strain. The results of this study will contribute to a better understanding of the clinical characteristics 
of rUTIs, as well as the microbiological characteristics of Klebsiella pneumoniae and the situation of antibiotic resistance 
in this region.
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