International Journal of General Medicine Dovepress
Taylor & Francis Group

ORIGINAL RESEARCH

Advanced Machine Learning did not Surpass
Traditional Logistic Regression in First-Trimester
Gestational Diabetes Mellitus Prediction:

A Retrospective Single-Center Study From
Eastern China

Hongyan Ni', Jinli Miao?, Jian Chen?

'Department of maternity care, PingHu Maternal and Child Health Hospital, Jiaxing, Zhejiang, 314200, People’s Republic of China; >The Yangtze River
Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou,
Zhejiang, 314006, People’s Republic of China; *Department of internal medicine, PingHu Maternal and Child Health Hospital, Jiaxing, Zhejiang,
314200, People’s Republic of China

Correspondence: Jian Chen, Email 15988398470@ 163.com

Background: Gestational diabetes mellitus (GDM) poses serious health risks to both mothers and fetuses. However, effective tools
for identifying GDM are lacking. This study, based on a Chinese cohort, aims to construct and compare the predictive performance of
traditional logistic regression (LR) and six advanced machine learning (ML) models, thereby aiding in the early identification and
intervention of GDM.

Methods: This retrospective study utilized medical examination data from 956 singleton pregnant women collected between January
and December 2023 from ten maternal and child health hospitals in Pinghu City. We employed receiver operating characteristic curves
and precision-recall curves to assess the predictive performance of the models. Decision curve analysis (DCA) was used to evaluate
clinical utility, while calibration curves and Hosmer-Lemeshow (HL) tests were applied to assess the calibration of each model.
Results: The 956 participants were randomly divided into a training set and a validation set at a 3:1 ratio. We identified 13 features
through Spearman correlation analysis and the Boruta algorithm to construct the models. The LR model exhibited the best AUC at
0.787 (0.723-0.85), outperforming the seven other ML models including RF at 0.776 (0.711-0.841). Furthermore, the LR model
showed good calibration and clinical utility.

Conclusion: Although ML has tremendous potential, in predicting the occurrence of GDM based on common early pregnancy data,
the ML models did not completely outperform the traditional LR model. Simpler, traditional models may be more effective than
complex ML approaches.

Keywords: GESTATIONAL diabetes mellitus, logistic regression, machine learning, first trimester, prediction model

Introduction

Gestational diabetes mellitus (GDM) is a metabolic syndrome characterized by abnormal elevations in blood glucose
levels during pregnancy. Although it typically resolves after childbirth, GDM poses significant short-term and long-term
health risks to both mother and child." The incidence of GDM exhibits substantial variation across different populations
and has shown a consistent upward trend.? In the United States, the prevalence of GDM increased from 4.6% to 8.2%
between 2006 and 2016, representing a 78% relative increase. This rise was particularly pronounced among Hispanic,
non-Hispanic Black women, and women of other races/ethnicities compared to non-Hispanic White women.> The
observed disparities in GDM susceptibility across different racial groups can be attributed to a combination of genetic

predisposition, lifestyle factors, and socioeconomic determinants, which contribute to significant variations in incidence

International Journal of General Medicine 2025:18 2263-2274 2263
Received: 18 December 2024 © 2025 Ni et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
AT 2nd incorporate the Creative Commons Attribution — Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work

Accepted: 19 April 2025
Published: 26 April 2025

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).


http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/4.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com

Ni et al

rates across regions and ethnicities.** Similarly, China has experienced a rising prevalence of GDM, influenced by rapid
economic development, lifestyle modifications, and changes in fertility policies.® The clinical implications of GDM are
substantial. For mothers, GDM can increase the risks of hypertension, preeclampsia, and type 2 diabetes. For fetuses,
GDM can induce macrosomia, preterm birth, difficult labor, and stillbirth.”*®

Current diagnostic protocols typically occur during the second and third trimesters, with no universally accepted gold
standard. The International Association of Diabetes and Pregnancy Study Groups (IADPSG) recommends a one-step
screening approach involving a 75 g oral glucose tolerance test (OGTT) with measurements at fasting, 1 h, and
2 h intervals.” In contrast, the American College of Obstetricians and Gynecologists (ACOG) advocates a two-step
Carpenter—Coustan approach, beginning with a non-fasting 50 g OGTT followed by diagnostic 100 g OGTT if initial
results exceed threshold values.'® While both methods are clinically valuable, they are time-intensive and present
challenges; notably, the one-step approach may carry a higher risk of false-positive diagnoses compared to the two-
step method.'"'* Emerging evidence indicates that fetal growth abnormalities, particularly excessive growth, may
particularly.'® Furthermore, animal studies demonstrate that insulin treatment following GDM diagnosis in mouse models
fails to fully protect offspring from metabolic disorders induced by diet in adulthood.'* These findings underscore the
importance of early intervention, as first-trimester management has been shown to reduce GDM risk and promote optimal
fetal development.'> Therefore, the development of early diagnostic methodologies for GDM represents a critical area of
research for improving maternal and fetal outcomes.

Previous studies have identified multiple risk factors associated with GDM onset, including advanced maternal age,
pre-pregnancy body mass index (BMI), family history of diabetes, history of macrosomia, and thyroid function.'®'® In
predictive modeling, logistic regression (LR) remains a fundamental statistical approach for disease prediction.
Concurrently, machine learning (ML), as advanced artificial intelligence methodologies, are increasingly being applied
in disease prediction research. Several investigators have attempted to develop LR and ML models for early GDM
prediction.'®?* However, there remains a paucity of models specifically developed and validated for the Chinese
population. In this study, we report the development and validation of traditional LR and six ML models based on
a Chinese cohort to, and compare their performance from various aspects.

Materials and Methods
Study Population and Data Collection

This retrospective study analyzed medical data from 956 singleton pregnancies between January and December 2023.
The data were collected from a network of ten healthcare facilities in Pinghu, China, with Pinghu Maternal and Child
Health Hospital serving as the primary coordinating center. The collaborating institutions included: Pinghu Lindai Town
Health Center, Pinghu Xindai Town Central Health Center, Pinghu Caoqiao Sub-district Community Health Service
Center, Pinghu Zhapu Town Central Health Center, Pinghu Xincang Town Central Health Center, Pinghu Zhongdai Sub-
district Community Health Service Center, Pinghu Danghu Sub-district Community Health Service Center, Pinghu
Dushangang Town Central Health Center, and Pinghu Guangchen Town Health Center. We retrospectively collected
comprehensive clinical variables, including demographic data and laboratory test results. All data, except for OGTT and
fasting plasma glucose (FPG) measurements, were obtained through patient interviews and clinical examination before
12th weeks of pregnancy. The inclusion criteria comprised: (1) singleton pregnancy; (2) undergoing a 75 g OGTT or FPG
test between the 24th to 28th weeks of pregnancy at our hospitals. We excluded women who had pre-existing diabetes
prior to pregnancy.

Diagnosis of GDM

According to the 2010 IADPSG recommendations for GDM diagnosis, a diagnosis can be made if any of the following
glucose values are exceeded during a 75 g OGTT conducted in a fasting state between 24—28 weeks of pregnancy: 0 h >
5.1 mmol/L, 1 h > 10 mmol/L, 2 h > 8.5 mmol/L.** If an OGTT was not performed, GDM can be directly diagnosed
based on the World Health Organization (WHO) 2013 standards, where a mid-pregnancy FPG level > 5.1 mmol/L
qualifies.”
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Data Pre-Processing

Missing data were systematically addressed through a rigorous preprocessing protocol. Variables exhibiting missing
values exceeding 30% of the total observations, including ferritin, beta-2 microglobulin, insulin resistance (HOMA-IR),
and glycated hemoglobin (HbAlc), were excluded from subsequent analyses. For the remaining features with incomplete
data, we implemented multiple imputation using a random forest algorithm through the “mice” package (version 3.14.0)
in R statistical software. To prevent dimensionality disaster, we assessed multicollinearity among all features by
calculating Spearman correlation coefficients, removing redundant features to ensure the stability of subsequent models.
Features with absolute correlation coefficients greater than 0.6 and a p-value less than 0.05 were considered significantly
associated.

Model Development and Validation

In this study, we performed feature pre-selection on the training set samples using the Boruta algorithm, a feature
selection method based on random forests.”® This algorithm operates by creating shadow features (randomly shuffied
copies of the original features) and evaluating feature importance through the random forest algorithm to identify truly
significant original features. The pre-selected features were subsequently utilized as input variables for seven predictive
models, including LR, eXtreme gradient boosting (XGB), light gradient boosting (LGBM), multi-layer perceptron
(MLP), k-nearest neighbors (KNN), random forest (RF), and support vector machine (SVM). For the LR model, we
implemented 10-fold cross-validation with 10,000 iterations, resetting the random seed each time to ensure randomness.
During each iteration, we calculated the area under the receiver operating characteristic (AUC) curve value for the
validation set, retaining the logistic regression model demonstrating the highest AUC. Regarding the 6 machine learning
models, we optimized each model by Bayesian optimization and used five-fold cross-validation to select a set of
hyperparameters that have the largest area under the curve (AUC) of the subjects’ work receiver operating characteristic
curve (ROC) in the training set to obtaining optimal performance. These models were then validated on the validation set
and the results were compared. Specific hyperparameters are detailed in the Supplementary Material. To ensure

robustness, all models underwent five-fold cross-validation on the training and validation sets to ensure robustness.
We plotted the receiver operating characteristic (ROC) curve and precision-recall curve (PRC) for each model on the
validation set to evaluate predictive performance. Decision curve analysis (DCA) was used to assess clinical utility.
Calibration curves and the Hosmer-Lemeshow (HL) validation were used to evaluate the calibration of each model.
Additionally, we calculated standard performance metrics including accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) for all models.

Statistical Analysis

The data from 956 patients were randomly divided into a training set (75%) and a validation set (25%) in a 3:1 ratio. For
continuous variables, normality was first assessed. Data following a normal distribution were described using mean + standard
deviation (SD) and compared between groups using independent samples #-tests. Non-normally distributed data were
described using median and interquartile range and compared using non-parametric tests. For categorical variables, the
frequency of each category was calculated, and the percentage of each category within each group was determined (n, %). The
chi-square test was then used to compare the distribution differences of categorical variables between groups. P-value < 0.05
was considered statistically significant. All statistical analyses were performed using R software (version 4.3.0) and Python
(version 3.8.18).

Results

Population Characteristics

Figure 1A illustrates the missing data distribution for features with less than 30% missing values. We conducted
a Spearman correlation analysis to identify and eliminate redundant features. The analysis revealed strong correlations
between the following feature pairs: pre-pregnancy BMI and maternal weight, gravidity and abortion, alanine amino-
transferase (ALT) and aspartate aminotransferase (AST), total bilirubin and conjugated bilirubin, high-density lipoprotein
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Figure | Feature selection workflow for first-trimester GDM prediction models. (A) Missing value distribution across candidate clinical parameters. (B) Spearman’s rank
correlation matrix of analyzed biomarkers. (C) Boruta algorithm-driven feature importance ranking.

Note: **Indicates that the correlation P value is < 0.001.

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cells; ALT, alanine aminotransferase; FBG, fasting
blood glucose; Alb, albumin; Crea, creatinine, BUN; SUA, serum uric acid; HDL-C, high density lipoprotein cholesterol; TG, triglycerides; CK, creatine kinase; LDH, lactate
dehydrogenase.

cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and total protein with globulin (Figure 1B). Based
on clinical relevance and missing data patterns, we excluded following redundant features: maternal weight, gravidity,
AST, conjugated bilirubin, LDL-C, and globulin as redundant features.
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The study population of 956 pregnant women was randomly divided into a training set (N=717) and a validation set
(N=239). As shown in Table 1, no statistically significant differences were observed in any clinical factors between the
training and validation sets (P > 0.05). Table 2 presents the distribution and comparison of clinical variables between
non-GDM and GDM participants in the training set. Compared to the non-GDM group, the GDM group showed
significantly higher values for the following parameters: maternal age, pre-pregnancy BMI, systolic blood pressure

Table | Clinical Variables Grouped by Training and Validation Dataset

Variables Training Dataset Validation Dataset P
(n=717) (n=239)

GDM 0.453

No 471 (65.69%) 164 (68.62%)

Yes 246 (34.31%) 75 (31.38%)

Age 28 (26, 31) 29 (26, 32) 0.658

Height 160 (157, 164) 160 (157, 163) 0.700

Pre pregnancy BMI 21.63 (19.88, 23.88) 21.23 (19.78, 24.18) 0.523

Number of abortions 0(,1) 0(0, 1) 0.901

Age at menarche 0.434

>11 17 (2.37%) 3 (1.26%)

<I| 700 (97.63%%) 236 (98.74%)

Educational level 0.965

Primary school 16 (2.23%) 7 (2.93%)

Middle school 176 (24.55%) 58 (24.27%)

High school 101 (14.09%) 31 (12.97%)

Junior college 174 (24.27%) 58 (24.27%)

Bachelor 248 (34.59%) 85 (35.56%)

Master 2 (0.28%) 0 (0%)

Family history 0.984

No 661 (92.19%) 220 (92.05%)

Hypertension 36 (5.02%) 13 (5.44%)

Diabetes 9 (1.26%) 3 (1.26%)

Hypertension & Diabetes 11 (1.53%) 3 (1.26%)

History of Macrosomia 1.000

No 708 (98.74%) 236 (98.74%)

Yes 9 (1.26%) 3 (1.26%)

Insulin 1.000

No 708 (98.74%) 236 (98.74%)

Yes 9 (1.26%) 3 (1.26%)

Mode of delivery 0.055

Normal vaginal delivery 368 (51.32%) 138 (57.74%)

Cesarean section 315 (43.93%) 84 (35.15%)

Vacuum extraction 18 (2.51%) 5 (2.09%)

Forceps delivery 15 (2.09%) Il (4.6%)

Breech delivery 1 (0.14%) | (0.42%)

Thyroid antibodies 0911

No 623 (86.89%) 209 (87.45%)

Yes 94 (13.11%) 30 (12.55%)

SBP 108 (100, 116) 108 (100, 120) 0.306

DBP 70 (62, 75) 70 (63, 78) 0.137

WBC 8.1 (6.76, 9.23) 8 (6.75, 9.4) 0.720

ALT 14 (10, 20) 14 (10, 20.5) 0.827

Early pregnancy FBG 4.96 (4.6, 5.2) 4.9 (4.6, 5.18) 0.541

Total bilirubin 9.2 (6.9, 12.2) 9.4 (7.25, 11.8) 0.619

(Continued)
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Table | (Continued).

Variables Training Dataset Validation Dataset P
(n=717) (n=239)

Alb 44.6 (42.4, 46.8) 45 (42.6, 47.6) 0.078
Crea 45 (40, 49.5) 44.9 (40, 49) 0.294
BUN 2.9 (24, 3.5) 2.8 (2.38,3.3) 0.074
Total protein 72.1%£5.33 72.8+5.03 0.095
SUA 218 (186.8, 253) 70 (63, 78) 0.331
Total cholesterol 5.0 (4.36, 5.82) 5.1 (4.34, 5.84) 0.946
HDL-C 1.73 (1.4, 2.07) 1.75 (1.42, 2.1) 0.744
TG 1.61 (1.15,2.22) 1.60 (1.21, 2.19) 0.860
CK 42 (32, 55) 41 (33, 52.5) 0.832
LDH 150 (135, 164) 148 (133, 166.5) 0.724

Abbreviations: GDM, Gestational diabetes mellitus; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic
blood pressure; WBC, White blood cells; ALT, Alanine aminotransferase; FBG, Fasting blood glucose; Alb, Albumin;
Crea, Creatinine, BUN; SUA, Serum uric acid; HDL-C, High density lipoprotein cholesterol; TG, Triglycerides; CK,
Creatine kinase; LDH, Lactate dehydrogenase.

Table 2 Clinical Variables of Participants With GDM and Non-GDM Participants in

the Training Dataset

Variables Non-GDM (n=471) GDM (n=246) P
Age 28 (26, 31) 29 (27, 32) 0.007
Height 160 (156, 165) 160 (157.12, 163) 0.484
Pre pregnancy BMI 21.3 (19.53, 23.44) 22.47 (20.57, 24.67) <0.001
Number of abortions 0(0, 1) 0,1 0.594
Age at menarche 1.000
> 11 (2.34%) 6 (2.44%)
<1l 460 (97.66%) 240 (97.56%)
Educational level 0.859
Primary school 12 (2.55%) 4 (1.63%)
Middle school 114 (24.2%) 62 (25.2%)
High school 68 (14.44%) 33 (13.41%)
Junior college 109 (23.14%) 65 (26.42%)
Bachelor 167 (35.46%) 81 (32.93%)
Master 1 (0.21%) 1 (0.41%)
Family history 0.232
No 441 (93.63%) 220 (89.43%)
Hypertension 20 (4.25%) 16 (6.5%)
Diabetes 4 (0.85%) 5 (2.03%)
Hypertension & Diabetes 6 (1.27%) 5 (2.03%)
History of Macrosomia 0.001
No 471 (100%) 237 (96.34%)
Yes 0 (0%) 9 (3.66%)
Insulin <0.001
No 471 (100%) 237 (96.34%)
Yes 0 (0%) 9 (3.66%)
Mode of delivery 0.201
Normal vaginal delivery 244 (51.8%) 124 (50.41%)
Cesarean section 204 (43.31%) 111 (45.12%)
Vacuum extraction 15 (3.18%) 3 (1.22%)
Forceps delivery 8 (1.7%) 7 (2.85%)
Breech delivery 0 (0%) 1 (0.41%)

(Continued)
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Table 2 (Continued).

Variables Non-GDM (n=471) GDM (n=246) P
Thyroid antibodies 0.861
No 408 (86.62%) 215 (87.4%)

Yes 63 (13.38%) 31 (12.6%)

SBP 107 (100, 114) 110 (100, 119) 0.002
DBP 70 (62, 75) 70 (64, 75.75) 0.294
WBC 7.9 (6.7,9.1) 8.28 (6.93,9.7) 0.007
ALT 14 (10, 20) 14 (10, 20.75) 0.969
Early pregnancy FBG 4.9 (4.59, 5.1) 547, 54) <0.001
Total bilirubin 9.2 (7, 11.95) 9.15 (6.7, 12.6) 0.926
Alb 44.6 (42.35, 47) 44.6 (4245, 46.7) 0.764
Crea 45.4 (41, 50) 44 (40, 49) 0.041
BUN 3 (25, 3.5) 2.74 (2.22, 3.45) 0.001
Total protein 71.7 (68, 75.75) 72 (69.38, 75.27) 0.362
SUA 215 (183, 248.5) 222 (192.48, 258.5) 0.009
Total cholesterol 5.04 (4.39, 5.89) 4.9 (4.27, 5.69) 0.036
HDL-C 1.8 (1.46, 2.16) 1.58 (1.31, 1.88) <0.001
TG 1.59 (1.19, 2.2) 1.65 (1.09, 2.27) 0.813
CK 39 (31, 52) 47 (37, 61.75) <0.001
LDH 149 (132, 164) 151 (138, 165) 0.066

Note: Values with P < 0.05 are bolded in the table.

Abbreviations: GDM, Gestational diabetes mellitus; BMI, Body mass index; SBP, Systolic blood pressure;
DBP, Diastolic blood pressure; WBC, White blood cells; ALT, Alanine aminotransferase; FBG, Fasting blood
glucose; Alb, Albumin; Crea, Creatinine, BUN; SUA, Serum uric acid; HDL-C, High density lipoprotein
cholesterol; TG, Triglycerides; CK, Creatine kinase; LDH, Lactate dehydrogenase.

(SBP), white blood cells (WBC), first-trimester FPG, serum uric acid (SUA), and creatine kinase (CK), and had more
participants with a history of macrosomia and insulin use during pregnancy. Creatinine (Crea), blood urea nitrogen
(BUN), total cholesterol, and HDL-C levels were significantly lower than non-GDM group.

Predictive Performance of The Models

After eliminating features with missing data >30% and redundant features, we assessed the importance of the remaining
27 features using the Boruta algorithm. Ultimately, 13 features were deemed relevant (Figure 1C). We developed seven
models employing six ML techniques and traditional LR based on the 13 features. All models were adjusted on the
training set and internally validated in the validation set. Figure 2 shows the ROC curves of all models in the validation
set. The LR model had the highest AUC of 0.787 (0.723-0.85), followed by RF, SVM, XGB, and LGBM, with AUCs of
0.776 (0.711-0.841), 0.771 (0.702-0.84), 0.757 (0.687-0.826), and 0.743 (0.672—0.815), respectively. Both MLP and
KNN models did not achieve an AUC above 0.7. The PRC indicated that the LR had the highest area under the PRC
(AUPR) of 0.644. The LR model showed higher precision at both low and high recall intervals and comparable precision
at medium recall intervals with other ML models (Figure 3A). Among the seven models, the LR model performed well in
terms of accuracy, sensitivity, PPV, and NPV (Table 3). However, all seven models had relatively low specificity (0.08 to
0.387), although the LR model was at a relatively higher level (specificity=0.360).

Clinical Utility of The Models

Figure 3B illustrates the net benefit across different thresholds for all models. The threshold range for the KNN model
was the narrowest. The threshold range for the LR model was slightly narrower than for LGBM and XGB models but
similar to other ML models. The LR model maintained a broad range, approximately from 0.1 to 0.8, and its net benefit

was comparable to several ML models.
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ROC Curves
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Figure 2 ROC curves of LR and 6 ML algorithms.
Abbreviations: LR, Logistic regression; XGB, eXtreme gradient boosting; LGBM, light gradient boosting; MLP, multilayer perceptron; KNN, k-nearest neighbors; RF,
random forest; SVM, support vector machine.

Precision-Recall Curve Decision Curve Analysis
1.0 M | AUPR Logistic = 0644 04
1“ AUPR XGB = 0624
i AUPRLGBM = 0818
LRI AUPR MLP = 0.57
AUPR KNN = 0.455
AUPR RF = 0637
AUPRSVM = 061
model 02
KNN 3
2
§ ~— LGBM K3
@ — Logistic %
2 MLP z
&0, — RF
— SVM
— XGB oo
0.00 025 050 0.75 1.00
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0.00 0.25 0.50 0.75 1.00 — LR_model LGBM_model — KNN_model — SVM_model - - None
Recall — XGB_model — MLP_model — RF_model — All

Figure 3 Comparative performance evaluation of prediction models through precision-recall and clinical utility analysis. (A) Precision-Recall Curve (PRC) comparison
across models. (B) Decision Curve Analysis (DCA) quantifying net clinical benefit.

Calibration of The Models

Calibration curves demonstrated the consistency between model-predicted probabilities and actual outcomes. As shown in
Figure S1, XGB and RF models were closest to the ideal curve, followed by the LR model. The p-values for HL validation for the
LR, XGB, LGBM, and MLP models were all >0.05, specifically 0.361, 0.794, 0.196, and 0.107 (Table 3). These results indicate
that these four models provide predictions that align well with actual scenarios and are suitable for clinical decision-making.
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Table 3 Performances of Various Prediction Tools Predicting GDM

Models | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC | HL P- value
Logistic | 0.75 0.93 0.36 0.76 | 0.71 0.79 0.36

XGB 0.74 0.93 0.35 0.76 | 0.68 | 0.76 0.79

LGBM 0.74 091 0.36 076 | 0.64 | 0.74 0.20

MLP 0.76 0.93 0.39 0.77 | 0.71 0.68 0.11

KNN 0.70 091 0.24 0.72 | 055 | 0.60 <0.001

RF 0.71 1.00 0.08 070 | 1.00 | 0.78 <0.001

SVM 0.73 0.95 0.24 073 | 0.69 | 0.77 0.01

Notes: HL P-value: Results from the Hosmer-Lemeshow goodness-of-fit test, indicating agreement between
predicted probabilities and observed outcomes across decile groups (P>0.05 suggests adequate model calibration
with non-significant deviations between groups). Values with HL P > 0.05 are bolded in the table.
Abbreviations: GDM, Gestational diabetes mellitus; PPV, Positive predictive value; NPV, Negative predictive
value; AUC, Area under the ROC curve; HL, Hosmer-Lemeshow.

Discussion

In this study, we evaluated the performance of traditional LR and 6 advanced ML models in early prediction of GDM.
Surprisingly, LR exhibited the highest AUC, and performed comparably to the ML models in terms of calibration and
clinical utility.

According to the widely applied IADPSG recommendation for the 75 g OGTT diagnostic method, the prevalence of
GDM in mainland China ranges from 5.12% to 33.30%," a proportion substantially higher than that in Europe (3.8-7.8%)
and Africa (approximately 14.0%).2"-*® This highlights the importance of developing simple yet accurate early prediction
tools for GDM in the Chinese population to facilitate early intervention and treatment. Although some studies have
utilized biochemical parameters, metabolomics, or proteomics to construct prediction models, demonstrating very high
predictive accuracy (AUC 0.985-0.998),° 3! these models rely on costly tests based on unconventional GDM risk
factors and complex biomarkers. Despite their potential application value, the high cost and specialized nature of these
tests limit their widespread use in current clinical practice. Therefore, developing prediction tools based on routine and
readily obtainable GDM risk factors would be more clinically practical.

We employed the Boruta algorithm to select statistically important features for model construction from a pool of
candidate features. Ultimately, the 13 features selected for our model is based on are routine clinical data and demographic
characteristics. Interestingly, CK, typically used to detect muscle damage and malnutrition, showed the highest importance in
the Boruta analysis. Some studies have found associations between blood CK levels and obesity, insulin resistance, diabetes,
and heart disease,>>** suggesting that metabolic disorders, including GDM, may indirectly affect CK levels. Age is commonly
considered a risk factor for GDM. However, in this study, despite statistically significant differences in age between the non-
GDM and GDM populations, age did not play a significant role in model construction. A study targeting Chinese pregnant
women found that age > 35 was an independent risk factor for GDM (OR: 1.15, 95% CI: 1.05-1.26).>* This discrepancy could
be attributed to the small sample size of older pregnant women (aged 35 and above) in our dataset, which may not have
provided sufficient statistical power to significantly impact the model. HbA 1c, although not a preferred method for diagnosing
GDM, is an important indicator for assessing long-term glucose control in pregnant women and is considered an effective
predictor of GDM.** Unfortunately, due to economic factors and other reasons, the missing value rate of HbAlc exceeded
30% in this study and it was therefore excluded from the analysis.

We found that advanced ML models did not outperform the traditional LR model in the early prediction of GDM,
a finding consistent with studies on other diseases such as acute kidney injury, traumatic brain injury, and major chronic
diseases.>*** However, some studies comparing LR and ML models for predicting GDM have reported that ML models
can enhance predictive performance, a result that contradicts ours.'>**?* This discrepancy may be attributed to the
complexity (or lack thereof) of the data used. Traditional LR offers advantages such as computational efficiency and ease
of interpretation, while ML models excel at handling complex nonlinear relationships but require substantial data for
training and are sensitive to parameter tuning and model selection. Our results indicate that ML models do not always
surpass the simpler, traditional LR models. The performance of ML models can vary significantly depending on the
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context and requires further investigation. Our developed LR model demonstrated excellent accuracy and sensitivity, with
a sensitivity of 0.933, indicating its effectiveness in identifying GDM cases. However, its specificity was only 0.360,
indicating a high rate of false positives and a need for improvement in excluding non-GDM cases. Similar outcomes are

4041 which can lead to decreased trust in the models and

commonly observed in predictive and prognostic models,
potentially their abandonment. Further optimization in larger sample sizes is needed to ensure the accuracy and
practicality of predictions.

Predictive models for GDM are frequently published, yet many studies often lack comprehensive model evaluation,
typically focusing primarily on overall performance (AUC). The strength of this study lies its comparison of not only the
performance of LR and six ML models but also in its comprehensively assessment of their performance and applicability
in early GDM prediction. Moreover, we focused not only on AUC but also compared calibration, clinical efficacy, and
other metrics such as accuracy, sensitivity, specificity, PPV, and NPV, providing a detailed view of each model’s strengths
and weaknesses. However, the limitations of this study are also noteworthy. First, although the sample size of 956 might
be adequate for traditional statistical methods, it might not be sufficient to fully leverage the potential of ML techniques.
Therefore, the limited sample size could lead to inadequate model training, potentially affecting the reliability of the
results and their applicability to a broader population. Additionally, the study only underwent internal validation and has
not yet been externally or independently validated.

In conclusion, we utilized 13 readily available early pregnancy clinical data points as predictors to construct one
traditional LR model and 6 ML models for predicting GDM. The results suggest that based on common clinical data, ML
models may not always outperform to the classic LR model. Nevertheless, significant challenges remain for clinical
application, particularly due to unresolved issues with low specificity.

Abbreviations

GDM, Gestational diabetes mellitus; LR, Logistic regression; ML, Machine learning; IADPSG, International Association
of Diabetes and Pregnancy Study Groups; OGTT, Oral glucose tolerance test; ACOG, American College of Obstetricians
and Gynecologists; BMI, body mass index; FPG, Fasting plasma glucose; WHO, World Health Organization; HbAlc,
Glycated hemoglobin; XGB, eXtreme gradient boosting; LGBM, Light gradient boosting; MLP, Multi-layer perceptron;
KNN, K-nearest neighbors; RF, Random forest; SVM, Support vector machine; ROC, Receiver operating characteristic;
AUC, Area under the ROC; PRC, Precision-recall curve; DCA, Decision curve analysis; HL, Hosmer-Lemeshow; PPV,
Positive predictive value; NPV, Negative predictive value.
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