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Abstract: The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received 
extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of 
an “axis” connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, 
renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and 
organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on 
various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering 
multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly 
covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of 
human diseases in the “Gut-Organ” axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell 
death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to 
influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory 
drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Keywords: trimethylamine N-oxide, gut-organ axis, cell death, biomarker, therapeutic strategies

Introduction
The gut is a vital organ of the host. The gut microbiota plays a pivotal role in regulating host metabolism and immune 
responses and is closely associated with various human diseases. Metabolites produced by the gut microbiota serve as 
key mediators between the microbiota and the host, interacting with multiple systems in the body to regulate physio-
logical and pathological functions.1 Trimethylamine N-oxide (TMAO) is a significant metabolite generated from dietary 
components by gut microbes through microbial enzymes (such as trimethylamine lyases). Dietary choline, L-carnitine, 
and betaine are metabolized by gut microbiota, generating trimethylamine (TMA); in the liver, TMA is metabolized by 
the enzyme flavin-containing monooxygenase 3 (FMO3) to produce TMAO, which then enters the bloodstream.2–6 In 
recent years, it has gradually been recognized that TMAO may act as an “axis” connecting the gut and host organs. Its 
research scope has expanded from cardiovascular diseases to other systemic diseases, including pulmonary, kidney, 
neurological, and pancreatic diseases. Elevated plasma TMAO levels are closely associated with the development and 
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progression of various diseases. TMAO is expected to become a potential biomarker for the diagnosis and prognosis 
evaluation of specific diseases.

There is widespread recognition that TMAO causes endothelial cell (EC) dysfunction.7 TMAO can stimulate ECs to 
release nitric oxide (NO), adhesion molecules (ICAM-1, VCAM-1, E-selectin, etc), and interleukin-6 (IL-6) to control 
the adherence of immune cells.8 Additionally, while TMAO affects endothelial barrier function, it can also act on various 
types of cells, including vascular smooth muscle cells, epithelial cells, pancreatic cells, neurons, astrocytes, microglia, 
and oligodendrocytes, thereby exerting broad impacts on numerous human diseases. Notably, TMAO can induce various 
types of cell death, including necrosis and programmed cell death (PCD). Necrosis is a kind of cell death that occurs 
passively. PCD is a manner of cell death actively triggered by internal and external stimuli. Apoptosis is the most 
common form of PCD, and other kinds of PCD include autophagy, pyroptosis, and ferroptosis, among others.9

This paper presents a detailed overview of the biomarker function of TMAO in the “gut-organ” axis, as well as the 
regulation mechanism of TMAO on the “gut-organ” axis, particularly in relation to the crosstalk mechanisms involved in 
cell death. Concisely, we first present the generation, synthesis, and metabolic pathways of TMAO. After applying strict 
criteria for literature screening, we selected clinical trials focused on TMAO to determine its potential as a biomarker for 
specific disorders through the “gut-organ” axis. We also provide a concise overview of the mechanism by which TMAO 
triggers PCD. Ultimately, we offer a summary of some medications that specifically aim to inhibit or regulate the 
generation, synthesis, or metabolism of TMAO. Our review offers new insights into the potential mechanisms of TMAO 
in disease onset and progression while emphasizing its crucial role in health regulation.

Methods
This narrative review included a literature search using the PubMed and Web of Science databases with the keywords: 
“(TMAO OR Trimethylamine N-oxide)” AND (“clinical study” OR “animal model” OR “in vitro study”). We included 
high-quality, peer-reviewed literature over the last 20 years (2004–2024), including cohort studies, randomized controlled 
trials, systematic reviews, meta-analyses, and original research publications. Studies were rejected if they were not in 
English, were duplicates, lacked full-text access, or consisted just of abstracts or comments without empirical data. It is 
essential to emphasize that, in contrast to systematic reviews or meta-analyses, we concentrated on presenting pertinent 
clinical and preclinical data on TMAO to provide complete insights. In Regulation Mechanism of TMAO in the “Gut- 
Organ” Axis: Crosstalk in Cell Death, we retrieved pertinent information about clinical features and the assessment of 
TMAO as a biomarker from chosen clinical trials. Subsequently, we qualitatively discussed the results within the 
literature in a narrative format, emphasizing significant findings to illustrate the potential use of TMAO in predicting, 
diagnosing, or prognosticating human illnesses. In Diverse Therapeutic Strategies Targeting TMAO, we curated the most 
pertinent preclinical and in vitro studies on TMAO, emphasizing findings associated with TMAO-induced cell death to 
deliver a thorough summary of its role in the development and progression of diseases along the “gut-organ (lung, 
pancreas, heart, kidney, and brain)” axis. In Conclusion and Future Directions, we reviewed clinical and preclinical data 
on therapeutic techniques aimed at TMAO, with the objective of elucidating the possible prospects of TMAO-targeted 
interventions in disease therapy.

Source, Synthesis and Metabolism of TMAO
Choline, L-carnitine, betaine, gamma-butyryl betaine in animal-derived foods (eg, red meat, eggs), and ergothione 
derived from mushrooms are critical precursors for the production of TMA.10–13 These compounds are primarily derived 
from the diet and all contain a trimethylamine group. They can be metabolized into TMA in the gut through the action of 
various enzymes in interaction with certain gut microbiota. TMAO, abundant in crustaceans, fish, and other seafood 
products, can also be directly assimilated into the human body through the gastrointestinal tract. Choline is a water- 
soluble nutrient that is essential for human health. Exogenous supplementation is required to attain the necessary choline 
levels for human health. Choline is primarily present in animal-derived foods as free, water-soluble compounds (choline 
phosphate, choline glycerophosphate) and fat-soluble compounds (phosphatidylcholine, sphingomyelin). The phospho-
lipase D enzyme can convert phosphatidylcholine, also referred to as lecithin, into choline. Choline kinase can catalyze 
the conversion of choline to lecithin, and the process is bidirectional between PC and choline.5 Furthermore, the seeds of 

https://doi.org/10.2147/DDDT.S512207                                                                                                                                                                                                                                                                                                                                                                                                                                       Drug Design, Development and Therapy 2025:19 3364

Liu et al                                                                                                                                                                              

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



cruciferous plants contain choline in the form of phenolic cholinesterase. Choline erucate, abundant in cauliflower, is also 
a precursor of TMAO.3,4 Choline TMA-lyase (CutC) catalyzes the production of TMA from choline. It is important to 
note that the choline-TMA conversion process can be substantially influenced by the composition and diversity of the gut 
microbiome, which in turn impacts the production and accumulation of TMAO. L-carnitine is another precursor of TMA 
that is typically obtained from meat (red meat is exceptionally high in L-carnitine) and eggs. The primary function of 
L-carnitine is to transport long-chain fatty acids from the cytoplasm to the mitochondria for β-oxidation, which is 
essential for the body’s energy metabolism.2,6 Two critical enzymes involved in the conversion of L-carnitine to TMA are 
carnitine oxygenase (CntA) and carnitine reductase (CntB).14 Betaine is a choline derivative that is present in both animal 
and plant diets. Choline dehydrogenase and betaine aldehyde dehydrogenase can continuously convert choline to betaine. 
Carnitine dehydrogenase can also catalyze the conversion of L-carnitine to betaine. Betaine is converted to TMA through 
the action of betaine reductase. Ergothione is exclusively obtained through the diet (beans, livestock products, or 
mushrooms) and is converted to TMA by degrading the enzyme ergothionase.5 Briefly, the conversion of dietary 
precursors into TMA involves four enzymatic pathways, including the choline-utilizing TMA lyase system (CutC/D), 
the carnitine Rieske-type oxygenase/reductase system (CntA/B), betaine reductase, and TMAO reductase. Additionally, 
YeaW/X, a system homologous to CntA/B, can also metabolize carnitine, choline, γ-butyrobetaine, and betaine to 
generate TMA.15

In mammals, this process is catalyzed by enzymes encoded by genes such as CntA/B, CutC, and betaine reductase. 
Although less than 1% of gut microbiota possess the genes required for TMA synthesis, these relevant microbial 
communities are still sufficient to drive significant TMA production.16 As a core step in TMAO biosynthesis, the gut 
microbiota plays a pivotal role in regulating the generation and metabolism of TMA. Key microbial groups involved in 
this process include Firmicutes, such as Lachnoclostridium, Clostridium hathewayi, Clostridium asparagiformis, and 
Clostridium sporogenes, as well as Proteobacteria, such as Escherichia coli MS 200-1, Escherichia fergusonii, Proteus 
penneri, Edwardsiella tarda, and Desulfovibrio desulfuricans.17,18 Additionally, other gut microorganisms, including 
Deferribacteraceae, Anaeroplasmataceae, Prevotellaceae, and Enterobacteriaceae, also participate in this process.19–21 

Considering the conserved nature of TMAO metabolism, we posited that fluctuations in TMAO levels throughout many 
illnesses, including cardiovascular, renal, and neurological disorders, are affected by alterations in gut microbiota. The 
gut microbiota significantly contributes to the progression of numerous illnesses and exhibits distinct alterations in 
response to different conditions. However, they may all result in the overexpression of TMAO, which may impact several 
organs.

TMA is absorbed into the liver through passive diffusion. In the liver, it is processed by FMOs, particularly FMO3, to 
create TMAO.22 After its formation, TMAO is excreted from the liver into the bloodstream via specialized transporters. 
ABCB1 (MDR1) and ABCG2 (BCRP), both members of the ATP-binding cassette (ABC) transporter family, play 
a pivotal role in facilitating the diffusion of TMAO.23 Notably, FMO3 is not only highly expressed in the liver but also 
significantly in the lungs, adrenal glands, and aortic tissues.24,25 This indicates the presence of several locations for the 
production of TMAO (Figure 1).

The Biomarker Role of TMAO in “Gut-Organ” Axis: Clinical Reality
TMAO in Gut-Lung Axis
The gut-lung axis is a bidirectional pathway facilitating interaction between the gut and lungs via symbiotic microbes at 
a distance. Research on the gut-lung axis has revealed intricate interactions between the respiratory and gut microbiota, as 
well as between respiratory and gastrointestinal illnesses. The digestive system and the respiratory tract have a common 
origin in embryonic development. Moreover, in gut microbiota imbalance, the lung becomes the most susceptible organ. The 
process may include bacteria and their metabolites entering the bloodstream, disseminating throughout the body, initiating an 
inflammatory cascade, and culminating in sepsis.26 Wang et al found TMAO to be a possible biomarker for endoplasmic 
reticulum stress (ERS) in lung tissue after mice were given tunicamycin, which caused lung damage.27 Cao et al found that 
changing the gut microbiota, specifically by lowering the production of TMA and TMAO, may help reduce acute lung injury 
caused by sepsis by blocking the nuclear factor-κB signaling pathway.28 Chou et al originated the term “paradox of TMAO.” 
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Researchers found a negative correlation between plasma TMAO levels and cardiovascular mortality in individuals suffering 
from severe sepsis. This indicates that TMAO levels represent the body’s inflammatory condition and nutritional status.29 

The respiratory tract has its own microbiota, and pulmonary inflammation may lead to gut dysbiosis.30 Coronavirus disease 
2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). 
The virus primarily invades the respiratory system but also affects the gastrointestinal tract. SARS-CoV-2 has been detected 
in esophageal, gastric, duodenal, rectal, and fecal samples of COVID-19 patients. The gastrointestinal symptoms in COVID- 
19 patients are mainly manifested as diarrhea, which is associated with a decrease in gut microbiota richness and diversity, 
immune dysregulation, and delayed clearance of SARS-CoV-2.31 TMAO may serve as a potential biomarker for COVID-19, 
aiding in diagnosis, assessment of disease severity, and prognosis. Terruzzi et al noted that the gut microbiota-derived 
metabolites TMAO and lipopolysaccharides, which generate a pro-inflammatory microenvironment, may have a positive 
correlation with the severe risk of COVID-19.32 Marhuenda-Egea et al utilized 1H NMR to analyze urine samples from 
COVID-19 patients, revealing metabolic differences between COVID-19 patients and healthy controls. These differences 
primarily involve energy metabolism (such as glucose, ketone bodies, glycine, creatinine, and citrate), as well as processes 
related to the bacterial microbiota (such as TMAO and formic acid) and detoxification (such as hippuric acid).33 Isabel 
Tristán analyzed 80 serum and urine samples from COVID-19 patients (34 in intensive care and 46 hospitalized) and 
32 healthy controls, identifying various metabolites, including TMAO, that could serve as biomarkers for the diagnosis, 
prognosis and severity assessment of COVID-19.34 Notably, the variation trend of TMAO among COVID-19 patients is not 
entirely consistent across all studies. In a nutshell, TMAO has shown promise within the gut-lung axis, warranting further 
exploration of its function (Figure 2).

TMAO in Gut-Pancreas Axis
The pancreas has two main functions: endocrine and exocrine. The endocrine function is primarily responsible for 
producing and secreting hormones that regulate glucose homeostasis, while the exocrine function focuses on producing 

Figure 1 Schematic representation of TMAO source, synthesis, and excretion. Initially, foods rich in L-carnitine, choline, betaine, ergothioneine, and γ-butyrobetaine, primarily fish, 
meat, eggs, and dairy products, are metabolized into TMA by the gut microbiota and their associated enzymes (Source). Most of the TMA ingested or generated in the gut is swiftly 
absorbed into the portal circulation via passive diffusion across intestinal epithelial cell membranes, subsequently undergoing oxidation to TMAO through the action of FMO3 in the 
liver. TMAO can be directly sourced from fish, shellfish, and marine invertebrates (Synthesis). Finally, TMAO is filtered by the kidneys and excreted via three main pathways: urinary 
excretion, fecal elimination, and respiratory clearance (Excretion). Created in BioRender. Ge, P. (2025) https://BioRender.com/k35g185. 
Abbreviations: TMA, Trimethylamine; TMAO, Trimethylamine-N-oxide; FMO3, Flavin-containing monooxygenase 3.
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and secreting enzymes that facilitate digestion. Pancreatic tissue comprises various cellular and non-cellular components, 
forming a highly organized and complex microenvironment. When cells are stimulated, the dynamic balance of this 
microenvironment may be disrupted, leading to the development and progression of pancreatic diseases, such as diabetes 
and pancreatitis (Figure 2).

Diabetes mellitus (DM) is a class of metabolic diseases marked by elevated blood glucose levels. It is the third largest 
chronic disease in the world, second only to tumors and cardiovascular and cerebrovascular diseases. DM is categorized 
into T1DM, T2DM, gestational DM, and other special types of DM. Among them, T2DM is the most common type, 
accounting for more than 90% of DM patients.35 T2DM is mainly characterized by pancreatic β cell dysfunction, insulin 
resistance leading to glucose metabolism deficiency, and chronic low-grade inflammation.36 Lifestyle, environment, and 
genetics are closely related to the occurrence and development of T2DM.37 Additionally, diet and gut microbiota are also 
significantly associated with T2DM susceptibility.38 Accumulated clinical evidence supports a significant association 
between TMAO and DM (Table 1). A cross-sectional study reported that plasma TMAO levels in T2DM patients were 
higher than in controls.39–41 This concurs with the findings of a previous report.42 A long-term prospective cohort study 
involving 2088 participants found that higher serum TMAO levels were associated with an increased risk of T2DM and 
elevated fasting blood glucose.43 Another meta-analysis also reported that TMAO may be a novel biomarker for DM.44 

However, a cohort study of 892 participants found that plasma TMAO levels were negatively associated with T2DM 
risk.45 Preclinical studies have shown a significant association between TMAO and the onset and progression of 
T2DM.46–48 Mechanistically, TMAO may induce T2DM by inducing pancreatic β-cell dysfunction, chronic inflamma-
tion, oxidative stress, and disrupting glucose and lipid homeostasis.36,49 The latest research indicates that TMAO can 

Figure 2 Application of TMAO in different body fluids as a potential biomarker for human diseases. TMAO levels have been related to various human diseases, such as pulmonary 
diseases (such as COVID-19), pancreatic diseases (such as diabetes mellitus), cardiovascular diseases, kidney diseases, and nervous system diseases, TMAO may serve as a potential 
biomarker for disease risk assessment and progression, underscoring its relevance in clinical settings. Created in BioRender. Ge, P. (2025) https://BioRender.com/f31k885. 
Abbreviations: TMAO, Trimethylamine N-Oxide; TMA, Trimethylamine; FMO, Flavin-containing monooxygenase.
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impair β-cell function and glucose tolerance, and the mechanism may be related to the promotion of β-cell ERS, 
dedifferentiation, and apoptosis.36

In acute pancreatitis, the autodigestion of pancreatic acinar cells and the abnormal activation of pancreatic enzymes 
are the primary pathological features. Yang et al described the damaging effects of TMAO on pancreatic acinar cells.50 

More and more evidence shows that the abnormalities in intercellular communication within the pancreatic microenvir-
onment play a critical role in the pathophysiological response of the pancreas to various stimuli. TMAO may be a key 
mediator in the cross-talk between “endocrine cells and exocrine cells” in the pancreas.

TMAO in Gut-Heart Axis
Cardiovascular disease (CVD), including coronary atherosclerotic heart disease (CHD), heart failure (HF), arrhythmia, 
and cardiomyopathy, is a significant public health problem threatening human life and health. Despite the widespread use 
of secondary prevention drugs for CVD, the residual cardiovascular risk of patients remains high. Recent epidemiological 
evidence shows that the residual cardiovascular risk of CVD patients is closely linked to gut microbiota disturbances. 
Imbalances in the gut microbiota may regulate lipid metabolism by changing the level of bacterial metabolites and then 
induce the occurrence and development of CVD. In 2011, researchers using non-targeted metabolomics methods found 
that TMAO was associated with an increased risk of cardiovascular events in subjects.12 Different groups have 
demonstrated a strong association between TMAO and CVD and CVD-related risk factors in recent years. 
Hypertension is a major risk factor for CVD. Recently, the potential link between TMAO and Hypertension has garnered 
increasing attention. A Mendelian randomization study found a causal relationship between TMAO and its precursors 
and susceptibility to hypertension.51 A meta-analysis study reported that elevated TMAO levels were significantly 
associated with the risk of hypertension in a dose-dependent manner.52 Atrial fibrillation (AF) is not only 
a complication of various cardiovascular diseases but also significantly increases the risk of cardiovascular events. 
A growing number of preclinical and clinical studies have shown that TMAO is associated with AF53–56 (Table 2). 
Compared with AF patients without thrombosis, AF patients with thrombosis had significantly increased circulating 
TMAO levels. Mechanistically, TMAO may accelerate thrombosis by promoting platelet activation, inducing platelet 
hyperreactivity, and platelet aggregation.57,58 Several research groups have previously summarized the role of TMAO in 
the early diagnosis and prognosis assessment of atherosclerosis (AS),12,59–65 CHD,66–76 and HF.77–88 Therefore, we have 
generated Tables 2–4 to complement the latest research findings.

Table 1 The Effects of TMAO on Clinical Behavior and Prognosis in Diabetes

Patient Population Main Findings/Outcomes Sample 
Type

References

1346 newly diagnosed cases of 

T2D and 1348 controls

There was a positive correlation between TMAO and T2D Plasma [40]

15314 participants A positive dose-dependent association between circulating TMAO levels and 

increased diabetes risk

Plasma; 

serum

[41]

133 patients with T2D and 164 

controls

Higher plasma levels of TMAO were evident in patients with T2D than in healthy 

controls.

Plasma [42]

2088 diabetes-free participants Higher serum TMAO was associated with a higher risk of T2D and an increase in 

fasting glucose among middle-aged and older Chinese adults.

Serum [43]

38862 participants TMAO concentrations were associated with six health outcomes, including all- 

cause mortality, cardiovascular mortality, MACE, hypertension, diabetes, and GFR.

Plasma [44]

251 T2D cases and a random 

sample of 694 participants

The plasma concentration of TMAO was inversely associated with the risk of 

developing T2D

Plasma [45]

Abbreviations: TMAO, Trimethylamine N-Oxide; T2D, Type 2 diabetes; MACE, Major adverse cardiovascular events; GFR, Glomerular filtration rate.
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Table 2 The Effects of TMAO on Clinical Behavior and Prognosis in Atrial Fibrillation and Atherosclerosis

Classification of 
Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

Atrial fibrillation 3797 patients with suspected 

stable angina; 3143 elderly 

participants

Plasma TMAO was associated with an improved reclassification 

of incident AF in two independent Norwegian cohorts with 

long-term follow-up.

Plasma [53]

78 patients from the  

AF-RISK study

Higher levels of TMAO are associated with more progressed 

forms of AF.

Plasma [54]

Six studies with 8837 
individuals and 1668 AF 

cases

A significant dose-dependent relationship between increased AF 
risk and circulating TMAO levels

NA [55]

117 consecutive AF patients Elevated serum TMAO levels were predictive of thrombus 

formation in AF patients.

Serum [56]

Atherosclerosis 100 AS individuals and 100 

normal

TMAO was found to be significantly upregulated in the AS-risk 

sera

Serum [65]

1876 subjects undergoing 

selective cardiac evaluations

Elevated levels of fasting choline, TMAO and betaine were dose- 

dependent associated with the risk of CVD

Plasma [12]

316 patients TMAO was significant independent predictors of carotid plaque 

burden.

Plasma [60]

520 hIV-infected and 217 

uninfected patients

In HIV-infected individuals, higher TMAO levels were correlated 

with an enhanced risk of carotid plaques

Plasma [59]

220 subjects The levels of serum TMAO are associated with an increase in 

cIMT

Serum [61]

322 patients with 

atherosclerotic IS and TIA 

and 231 controls

Stroke and TIA patients had significantly lower levels of TMAO 

than the asymptomatic group.

Plasma [62]

817 participants TMAO was not associated with measures of atherosclerosis: 

CAC incidence, CAC progression, or cIMT.

Plasma [63]

264 with carotid artery AS 

and 62 controls

No remarkable association between TMAO and CVD mortality 

was found

Serum [64]

Abbreviations: TMAO, Trimethylamine N-Oxide; TMA, Trimethylamine; AF, Atrial fibrillation; AS, Atherosclerosis; CVD, Cardiovascular disease; HIV, Human 
Immunodeficiency Virus; cIMT, Carotid intima-media thickness; TIA, Transient ischaemic attack; CAC, Coronary artery calcium.

Table 3 The Effects of TMAO on Clinical Behavior and Prognosis in Coronary Atherosclerotic Heart Disease

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

Coronary 

atherosclerotic 
heart disease

275 participants with incident 

CHD and 275 individually 
matched controls

Urinary TMAO, but not its precursors, was correlated with 

a risk of CHD and may accelerate the development of CHD.

Urine [66]

760 healthy women at baseline Long-term changes in plasma TMAO levels are significantly 
associated with the CHD incidence.

Plasma [67]

4007 patients undergoing 
elective coronary angiography

Elevated plasma TMAO levels were associated with an increased 
risk of incident MACE.

Urine; 
plasma

[68]

(Continued)
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Table 3 (Continued). 

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

309 patients with ACS Baseline plasma concentrations of TMAO were associated with 
a higher risk of MACE. The strong positive associations for 

TMAO were attenuated and became insignificant after 

adjustment for eGFR.

Plasma [69]

1424 patients with CAD and 

697 controls

There was a significant association between elevated TMAO 

levels and the incidence of CAD. The incidence of ACS is 
associated with elevated TMAO levels.

Serum [70]

2213 ACS patients Plasma TMAO levels among patients presenting with chest pain 
predict both near- and long-term risks of incident cardiovascular 

events

Plasma [71]

127 patients with ACS who 

underwent PCI

Plasma TMAO concentrations positively associated with 

coronary atherosclerosis in ACS patients.

Plasma [72]

74 diabetic patients and 381 

non-diabetic patients

In diabetes, elevated plasma betaine and TMAO are risk markers 

for secondary cardiovascular events.

Plasma [73]

112 STEMI patients The plasma TMAO levels were significantly increased from the 

acute to chronic phase of STEMI; The higher chronic-phase 

TMAO levels were associated with coronary plaque 
progression.

Plasma [74]

335 with STEMI and 53 healthy 

controls

TMAO levels were higher in STEMI; Elevated plasma TMAO 

levels were associated with higher coronary atherosclerotic load

Plasma [75]

19 prospective studies 

(n=19,256)

Elevated concentration of TMAO was associated with increased 

risks of MACE and all-cause mortality independently of 

traditional risk factors

Serum [76]

Abbreviations: TMAO, Trimethylamine N-Oxide; TMA, Trimethylamine; CHD, Coronary Heart Disease; CHD, Coronary Heart Disease; GFR, Glomerular filtration rate; 
CAD, Coronary artery disease; ACS, Acute coronary syndrome; PCI, Percutaneous Coronary Intervention; STEMI, ST-segment-elevation myocardial infarction.

Table 4 The Effects of TMAO on Clinical Behavior and Prognosis in Heart Failure

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

Heart failure 823 hF patients Elevated levels of TMAO are predictive for mortality 

and CV mortality in HFrEF but not HFpEF patients

NA [77]

112 patients with chronic systolic HF Elevated plasma TMAO, choline and betaine levels are 

each associated with more advanced left ventricular 

diastolic dysfunction and portend poorer long-term 
adverse clinical outcomes in chronic systolic HF.

Plasma [80]

720 stable subjects with HF High TMAO levels are observed in patients with HF 
and elevated TMAO levels portend higher long-term 

mortality risk independent of traditional risk factors

Plasma [81]

155 consecutive patients with CHF, 100 

patients with stable CAD without HF and 

33 matched healthy individuals

TMAO levels were elevated in patients with HF and 

associated with NYHA class, ischaemic aetiology and 

adverse outcomes.

Plasma [82]

(Continued)
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The value of TMAO in CVD is multifaceted. On the one hand, TMAO is a potential diagnostic marker for CVD, 
including atherosclerosis, coronary artery disease, and acute coronary syndrome. However, circulating TMAO levels are 
dynamically variable and are tightly regulated by diet, gut microbiome composition, liver enzyme activity, and renal 
excretion. Therefore, more sophisticated clinical studies are still needed to confirm the value of TMAO in diagnosing 
CVD. In addition, Additionally, given TMAO’s critical role in the development and progression of CVD, it is 
significantly associated with adverse events. Follow-up detection of circulating TMAO levels is helpful in screening 
out high-risk populations. However, existing clinical studies are mostly single-center and subject to racial limitations. 
Future studies should include larger and more ethnic groups of patients. Based on previous data, lowering plasma TMAO 
levels may reduce adverse outcomes of CVD. Targeting TMAO is a potential strategy for CVD therapy.

TMAO in Gut-Kidney Axis
Chronic kidney disease (CKD) is a progressive form of kidney structural damage and loss of function. The early clinical 
symptoms of CKD are not obvious, and the renal function gradually deteriorates in the later stage and eventually 
develops into uremia, that is, end-stage renal disease (ESRD). Advanced age, hypertension, dyslipidemia, and diabetes 
are recognized risk factors for CKD (Table 5). The “gut-kidney” axis plays a crucial role in the pathogenesis of kidney 
diseases.89 TMAO, as a metabolite derived from gut microbiota, may be a critical mediator in the “gut-kidney” axis.90 In 
recent years, increased TMAO levels have been found to be a novel risk factor and early diagnosis biomarker for CKD.91 

Compared to healthy individuals, CKD patients’ TMAO levels significantly increased in blood and urine.92–94 TMAO 
levels are also significantly associated with several measures of renal function.95–98 Mechanistically, in the absence of 
impaired kidney function, more than 95% of TMAO in the human body is excreted through renal tubules or glomerular 
filtration,99,100 suggesting a potential mechanism for elevated circulating TMAO levels when renal function is impaired. 
GFR is an important indicator of renal function. Studies have found a strong negative correlation between plasma TMAO 
levels and measured GFR (mGFR) in patients with CKD.93,101 Stubbs et al also described a negative correlation between 

Table 4 (Continued). 

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

972 patients with AHF TMAO levels associate with poor prognosis at 1 year 
and strongly associate with renal dysfunction in 

patients with AHF.

Plasma [83]

1087 patients with acute HF TMAO levels in patients with acute HF differed by 

ethnicity.

NA [84]

2234 patients with CHF Elevated levels of circulating TMAO were associated 

with adverse outcomes (mortality and/or HF 

hospitalisation).

Plasma [85]

146 patients with the primary diagnosis of 

HFpEF

Elevated TMAO levels were independently associated 

with an increase in composite endpoints of 
readmission for HF and cardiac death in patients with 

HFpEF.

Plasma [86]

118 patients with HFpEF,38 patients with 

HFrEF and 40 controls

Elevated circulating levels of TMAO may be useful in 

the risk stratification of HFpEF. The combined use of 

BNP and TMAO may be useful in patients with HFpEF.

NA [87]

57 control participants and 61 patients 

with HFpEF

TMAO level was highly associated with HFpEF risk. 

The level of TMAO was correlated with BUN, 
creatinine, and NT-proBNP.

Plasma [88]

Abbreviations: TMAO, Trimethylamine N-Oxide; HF, Heart failure; CHF, Chronic heart failure; AF, Atrial fibrillation; HFpEF, HF with preserved ejection fraction; BUN, 
Blood urea nitrogen; BNP, B-type natriuretic peptide; HFrEF, HF with reduced ejection fraction.
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serum TMAO concentration and estimated GFR (eGFR).102 In patients with CKD, elevated TMAO levels accelerate the 
decline of renal function and affect long-term survival.94 Consistent with the above findings, Wang et al’s study also 
suggested that increased TMAO levels are a crucial risk factor for decreased renal function in CKD patients.103

It is well known that the incidence of adverse cardiovascular events increases with the progression of CKD.106 The 
deterioration of renal function is the main reason for accelerating the occurrence and development of adverse cardiovascular 
events in patients with CKD.107 TMAO is a potential risk factor for cardiovascular complications in patients with CKD.25,102 

A meta-analysis reported that increased circulating TMAO levels were closely associated with an increased risk of all-cause 
mortality in patients with CKD.104 In CKD patients undergoing coronary angiography, TMAO is an independent predictor of 
coronary atherosclerotic burden and can also predict long-term mortality. A study of 1232 hemodialysis patients revealed no 
significant variation in TMAO levels between white and black individuals. Whites had 2-fold higher TMAO levels, which were 
strongly related to cardiac death, first cardiovascular event, and all-cause mortality. However, no significant association was seen 
among blacks.105 Mechanistically, on the one hand, TMAO may promote cardiac remodeling in hemodialysis patients by 
accelerating myocardial fibrosis and myocardial hypertrophy. On the other hand, TMAO may increase the incidence of adverse 
cardiovascular events in hemodialysis patients by increasing visceral fat.108 Notably, in patients undergoing peritoneal dialysis, 
researchers also identified a significant correlation between elevated serum TMAO levels and an increased risk of cardiovascular 

Table 5 The Effects of TMAO on Clinical Behavior and Prognosis in Kidney Disease

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

Chronic kidney 

disease

32 control participants and 32 

patients with CKD

Patients with CKD had obviously higher TMAO concentrations 

than healthy subjects

Plasma [92]

80 controls and 179 CKD 3–5 

patients

CKD patients had higher TMAO levels than controls and the 

levels rose with decreasing renal function

Serum [93]

521 stable subjects with CKD Plasma TMAO levels are both elevated in patients with CKD and 

portend poorer long-term survival

Plasma [94]

30 clinically diagnosed 

patients with uraemia and 
30 healthy controls

TMAO was positively related to the renal dysfunction of CKD 

patients

Plasma [97]

1741 adult Europeans Kidney function is the main modifiable factor consistently 
regulating fasting serum TMAO concentrations and TMAO 

adversely impacts eGFR.

Plasma [98]

124 controls, CKD, and 

hemodialysis patients

Elevation of TMAO levels in CKD is mostly related to the 

decrease of mGFR

Plasma [101]

104 patients in the CKD 

cohort

Serum TMAO concentrations demonstrated a strong inverse 

association with eGFR. Serum TMAO concentrations increased 

with advancing CKD stage, with median concentrations in dialysis- 
dependent patients with ESRD ~30-fold higher than in controls.

Serum [102]

10564 participants Higher plasma TMAO levels associated with higher risk of 
incident CKD and greater rate of kidney function decline

Plasma [103]

21 studies involving 15,637 
individuals

Increased circulating TMAO concentrations increase the risk of 
all-cause mortality in non-dialysis and non-black dialysis CKD 

patients.

NA [104]

1232 (white, 431 and black, 

801) HEMO Study patients

TMAO is associated with cardiovascular morbidity and mortality 

in HEMO patients although the effects differ by race.

Serum [105]

Abbreviations: TMAO, Trimethylamine N-Oxide; CKD, Chronic kidney disease; GFR, Glomerular filtration rate; ESRD, End-stage chronic renal disease; HEMO, 
Hemodialysis.
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disease-related mortality. However, no significant association was found between TMAO level and mortality in peritoneal 
dialysis patients.109

Overall, there is a close association between TMAO and renal function, CKD, and cardiovascular outcomes in patients with 
CKD. Specifically, the levels of TMAO exhibit dynamic changes at different stages of CKD patients.97 In the early stages of 
CKD, circulating TMAO levels are relatively low because kidney function has not yet been significantly impaired. As CKD 
progresses, the TMAO levels in patients gradually increase. This may be related to decreased renal function, leading to reduced 
excretion of TMAO, along with alterations in the composition and metabolic function of the gut microbiota. In addition, elevated 
TMAO levels are closely associated with an increased risk of cardiovascular disease in CKD patients, possibly due to TMAO 
enhancing platelet reactivity and amplifying endothelial inflammatory responses, thereby increasing the risk of thrombosis. In 
conclusion, TMAO levels hold promise as a potential biomarker for predicting CKD progression and the risk of associated 
complications.

TMAO in Gut-Brain Axis
The “gut-brain” axis has progressively become a research hotspot. This bidirectional, stable axis connects the gut with 
the central nervous system. TMAO exists in human blood circulation and cerebrospinal fluid (CSF)110–112 and serves as 
a critical mediator in the “gut-brain” axis. Studies have found that high levels of TMAO have damaging effects on the 
neurovascular unit.113–115 “Neurovascular unit (NVU)” consists of three fundamental units: vascular cells, glial cells, and 
neurons, as well as the extracellular matrix in the cerebrovascular system. NVU emphasizes the interdependent symbiotic 
relationship between brain cells and cerebrovascular in terms of development, structure, and function, as well as the 
importance of cell-to-cell interactions in maintaining normal brain function and facilitating brain repair after injury. 
Dysfunction within NVU may lead to the onset and progression of various pathological reactions in the brain.116–118 

Deng et al found that TMAO may induce neuroinflammation and neuronal apoptosis, leading to NVU dysfunction, which 
in turn exacerbates cognitive impairment and neuropathological changes in vascular dementia rats.119 Blood-brain barrier 
(BBB) disruption and white matter lesions are precursor events of neurological disorders. White matter primarily consists 
of myelinated nerve fibers and glial cells responsible for producing myelin sheaths. Oligodendrocytes are the cells in the 
central nervous system that form myelin sheaths. Myelin sheath surrounds myelin nerve fibers, acts as electrical 
insulation, and provides structural protection. It is crucial for maintaining physiological functions such as neuronal 
nutritional metabolism and information processing.120 Cell pyroptosis is also involved in oligodendrocyte damage and 
inflammatory demyelination.121,122 Ji et al found that oral administration of TMAO significantly exacerbated demyelina-
tion in spontaneously hypertensive rats, with the underlying mechanism possibly related to TMAO-induced pyroptosis of 
oligodendrocytes and inflammation.123 TMAO may influence the crosstalk of different cells in the NVU and participate 
in the occurrence and development of neurological disorders. This offers a potential direction for the study of the gut- 
brain axis in neurological diseases.

The potential of TMAO in the early diagnosis, disease monitoring, and prognosis assessment of neurological 
disorders is equally noteworthy. Plasma TMAO levels accumulate with age. As is well known, aging is a significant 
risk factor for cognitive deterioration. Therefore, Alzheimer’s disease (AD), characterized by cognitive impairment and 
memory loss, is inevitably influenced by the accumulation of TMAO. Moreover, TMAO can cross the BBB. Compared 
with healthy volunteers, CSF TMAO levels in AD patients were also significantly increased. Multiple clinical studies 
have repeatedly demonstrated a significant causal association between high plasma and CSF levels of TMAO and 
cognitive decline110,111,115,124–126 (Table 6).

As a common neurodegenerative disease, the onset and progression of Parkinson’s disease (PD) are closely related to 
dysbiosis of the gut microbiota. Gut microbiota-related metabolites (especially TMAO) may be the key mediators that 
mediate the changes in brain structure and function of PD mediated by gut microbiota.130,131 On the one hand, TMAO is 
intimately linked to PD risk factors such as metabolic syndrome and cardiovascular disease.132,133 On the other hand, 
TMAO can directly promote alpha-synuclein folding and aggregation, neuroinflammation, mitochondrial dysfunction, 
and neuronal injury.134–136 Clinical studies have reported that compared with healthy controls, plasma, CSF, and saliva 
TMAO levels in PD patients are significantly elevated.127–129
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Stroke seriously affects human health and quality of life.137 Among them, ischemic stroke (IS) is the most common 
type, mainly manifested as brain parenchyma injury, neuroinflammation, and immune response caused by middle 
cerebral artery occlusion in the affected area.138 IS is primarily associated with neuronal excitotoxicity, oxidative stress, 
neuroinflammation, apoptosis, mitochondrial damage, amyloid production, and tau protein dysfunction.139–143 

Accumulated evidence emphasizes the critical role of gut microbiota and metabolic disorders in the occurrence, 
development, prognosis, and rehabilitation of stroke.144,145 Mechanistically, TMAO may mediate the occurrence and 
development of stroke by promoting endothelial dysfunction,7 inflammatory response,146 oxidative stress, and lipid 
metabolism disorders.147 Additionally, multiple clinical studies have reported the associations between plasma TMAO 
levels and their dynamic changes and stroke risk, severity, and long-term adverse outcomes.148–152 Additional studies 
have revealed a nonlinear dose-dependent relationship between circulating TMAO concentrations and stroke risk.153–155

Regulation Mechanism of TMAO in the “Gut-Organ” Axis: Crosstalk in 
Cell Death
Cell death is usually divided into two types: accidental cell death and regulated cell death (RCD). RCD includes 
apoptosis, regulatory necrosis, autophagy-dependent cell death, pyroptosis, ferroptosis, etc.

Table 6 The Effects of TMAO on Clinical Behavior and Prognosis in Nervous System Disease

Classification 
of Diseases

Patient Population Main Findings/Outcomes Sample 
Type

References

58 subjects The first evidence that TMAO can be assessed in 

human CSF

CSF [110]

Nervous 

system disease

40 individuals with Alzheimer’s clinical 

syndrome, 35 individuals with MCI, and 

335 individuals cognitively-unimpaired

CSF TMAO is higher in individuals with MCI and AD 

dementia compared to cognitively-unimpaired 

individuals.

CSF [111]

290 patients with diagnostic lumbar 
punctures

CSF TMAO levels were positively correlated with 
serum TMAO levels.

Serum; 
CSF

[112]

Alzheimer’s 
disease

22 young or 103 middle-aged to older 
adults

Plasma TMAO is inversely related to cognitive 
function in middle-aged to older adults.

Plasma [115]

256 patients with acute ischemic stroke Increasing plasma level of TMAO may be associated 
with PSCI.

Plasma [124]

20 AD, 10 MCI, and 29 Control patients TMAO may be useful for diagnosing and distinguishing 
MCI and AD from cognitively healthy controls

Urine [125]

Older, community-based US adults There was no significant association between 
circulating levels of TMAO itself, or three of its 

dietary precursor nutrients - carnitine, choline, and 

betaine - with cognitive health later in life

Plasma [126]

Parkinson’s 

disease

76 with PD and 37 controls The concentration of TMAO in the saliva of the PD 

group was higher than that of the control group

Saliva [127]

18 with PD and 9 controls The concentration of plasma TMAO increased in the 

entire PD group, potentially as a result of lower 
EGFR levels in this group.

CSF; 

Plasma

[128]

60 patients with PD and 30 healthy 
controls

Plasma TMAO levels were elevated in patients with 
PD and correlated with disease severity and motor 

symptom progression

CSF; 
Plasma

[129]

Abbreviations: TMAO, Trimethylamine N-Oxide; AD, Alzheimer’s disease; MCI, Mild cognitive impairment; CSF, Cerebrospinal fluid; PD, Parkinson’s disease; PSCI, Post- 
stroke cognitive impairment; IS, Ischemic stroke; AIS, Acute ischemic stroke; GFR, Glomerular filtration rate.
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TMAO and Apoptosis
Apoptosis is a natural, non-inflammatory, programmed form of cell death. TMAO-induced apoptosis is closely related to 
ERS and mitochondrial dysfunction.156 The unfolded protein response (UPR) helps to re-establish endoplasmic reticulum 
(ER) homeostasis and promote cell survival. Moderate ERS can play a protective role through UPR. If ERS persists and 
does not alleviate, UPR will induce apoptosis.157 In the mitochondrial pathway, disruption of the outer mitochondrial 
membrane integrity can lead to mitochondrial outer membrane permeabilization (MOMP). MOMP plays a critical role in 
the mechanism of disease development by contributing to mitochondrial dysfunction. On the one hand, the occurrence of 
MOMP will lead to the release of apoptosis-related proteins into the cytoplasm, thus causing the opening of the 
mitochondrial permeability transition pore, which in turn results in the disruption of mitochondrial respiration, matrix 
swelling, and rupture of the mitochondrial outer membrane, thereby inducing apoptosis. On the other hand, cytochrome 
C released during MOMP can activate the caspase cascade and rapidly lead to apoptosis. Preclinical studies have 
demonstrated that TMAO can induce apoptosis in various target cells, such as human aortic vascular smooth muscle 
cells,158 pancreatic acinous cells, renal tubular epithelial cells,159 human aortic endothelial cells,160,161 and neurons,119 

contributing to the development and progression of cardiovascular, renal, neurological, and pancreatic diseases.
Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein located in the ER, 

consisting of an ER lumen domain and a cytoplasmic protein kinase domain. PERK-eukaryotic initiation factor 2 alpha 
(eIF2α), inositol-requiring enzyme 1 alpha (IRE1α)-X-box binding protein 1 (XBP1), and activating transcription factor 
6 alpha (ATF6α) serve as key proteinS involved in ERS-related signaling pathways. Several studies have demonstrated 
that TMAO can stabilize protein metabolism, thereby reducing PERK activity and alleviating ER stress.162 TMAO may 
accelerate the progression or rupture of abdominal aortic aneurysm by inducing VSMC apoptosis through the activation 
of PERK-mediated UPR. Yang et al found that TMAO may promote pancreatic acinous cell apoptosis by inducing 
sustained oxidative stress and regulating the IRE1α/XBP-1 pathway. Additionally, TMAO may exacerbate the severity of 
CKD in rats by promoting renal tubular epithelial cell apoptosis through the activation of the ASK1-JNK pathway. 
Mitochondria are important components of cell metabolism, and the changes in mitochondrial outer membrane perme-
ability are closely related to apoptosis. The accumulation of TMAO is a potential irritant to mitochondrial dysfunction. 
Studies have found that TMAO can significantly reduce the number of mitochondria, membrane potential, and ATP 
content of oocytes in polycystic ovary syndrome rat models, thus accelerating the apoptosis of oocytes.163 TMAO in 
circulation seems to never stop at all in its assault on vascular endothelial cells.164–167 In addition to direct damaging 
effects, TMAO-stimulated exosomes released by hepatocytes also play a crucial role in vascular inflammation and 
endothelial dysfunction.168 Liu et al demonstrated that exosomes released by TMAO-stimulated hepatocytes can promote 
HAEC apoptosis, inhibit cell migration, and endothelium-dependent vasodilation.160 It is noteworthy that TMAO’s role 
is not a one-way street. It also has an anti-apoptotic effect. In 2009, it was reported that TMAO degraded misfolded 
G98R mutant CRYAA by activating the ubiquitin-proteasome pathway, alleviating ERS and apoptosis of human lens 
epithelial B3 cells induced by aggregated G98R CrYAA.169 High concentrations of TMAO can promote the proliferation 
of human colon cancer cells, but have no significant effect on apoptosis.170 We speculate that the above differences are 
related to TMAO dosage and cell type heterogeneity, but there is currently no direct evidence to prove this. Figure 3 
illustrates the regulatory pathways of TMAO-induced cell apoptosis in different cell types.

TMAO and Autophagy
Autophagy is a cellular self-degradation process, which is an important process for cells to cope with nutritional stress. 
Under the regulation of autophagy-associated genes (ATG), misfolded or aggregated proteins and damaged organelles are 
removed and recycled by lysosomes or mitochondria to preserve cellular homeostasis.171,172 Moderate autophagy is 
a degradation system that maintains cellular homeostasis,173 and cells can achieve renewal and avoid death through basal 
levels of autophagy. However, during cell growth and development, autophagy acts as a double-edged sword. Insufficient 
autophagy may lead to the accumulation of toxic proteins and damaged organelles, affecting normal cell function.174 

Conversely, excessive autophagy can result in the erroneous engulfment of essential proteins or normal organelles such 
as mitochondria.175 Insufficient and excessive autophagy are detrimental to cell viability and may cause cell apoptosis.176 
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In addition to non-selective autophagy induced under starvation conditions, researchers have found that cells can also 
target the degradation of damaged or redundant organelles, protein aggregates, and invading pathogens for selective 
autophagy. Selective autophagy includes mitophagy, endoplasmic reticulum autophagy, proteasome autophagy, ribosome 
autophagy, etc.177

Recent studies have found that the interactions between gut microbiota and their metabolites, especially TMAO, and 
autophagy not only regulate intestinal epithelial function and gut homeostasis but also play a role in regulating 
physiological functions in distant organs. Epithelial cells, ECs, and vascular smooth muscle cells (VSMCs) in multiple 
organ systems may be the primary targets of TMAO-induced autophagy-dependent cell death. In this process, mTOR and 
ATG16L1 may serve as vital regulatory factors. Kidney stone is a common urological disorder, which can cause renal 
insufficiency, atrophy kidney, and empyema. Calcium oxalate is the major component in the formation of kidney stones, 
causing tubular epithelial injury. A recent research discovered that serum TMAO levels were significantly higher in 
hyperoxaluria mice. Exogenous TMAO administration exacerbated kidney stones and inflammation in mice. 

Figure 3 Mechanisms of TMAO inducing cell Apoptosis. The mechanisms through which TMAO induces cell apoptosis via the endoplasmic reticulum (ER) and 
mitochondrial pathways. TMAO induces ER stress, activating the PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways, leading to apoptosis, inflammation, and vascular injury. 
Additionally, TMAO-induced apoptosis may result from reduced SERCA activity and disrupted calcium homeostasis. It also promotes mitochondrial reactive oxygen species 
(mtROS) production and activates NLRP3 inflammasomes, which upregulate IL-1β and further drive apoptosis. TMAO triggers apoptosis by activating the ASK-JNK and 
SIRT1 pathways. Conversely, TMAO may inhibit apoptosis by mitigating aggregation and ER stress caused by G98R αA-crystallin. Created in BioRender. Ge, P. (2025) https:// 
BioRender.com/t03q624. 
Abbreviations: TMAO, Trimethylamine-N-oxide; ERS, Endoplasmic reticulum stress; PERK, RNA-dependent protein kinase-like endoplasmic reticulum kinase; eIF2α, 
Eukaryotic translation initiation factor 2 subunit-α; ATF4, Activating transcription factor 4; CHOP, C/EBP homologous protein; IRE1α, Inositol-requiring enzyme 1α; XBP1, 
X-box binding protein 1; GRP78, Glucose-regulated protein 78; UPR, Unfolded protein response; Serca2, Sarco/endoplasmic reticulum ATPase type 2; ROS, Reactive oxygen 
species; NLRP3, Nod-like receptor family pyrin domain containing 3; ASC, Apoptosis-associated speck-like protein; IL-1β, Interleukin 1β; SIRT1, Sirtuin 1; JNK, C-Jun 
N-terminal kinase; ASK, Apoptosis signal-regulating kinase; MMP, Mitochondrial membrane permeabilization; LncRNA, Long non-coding RNA; NEAT1, Nuclear enriched 
abundant transcript 1; STAT3, Signal transducer and activator of transcription 3.
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Mechanistically, TMAO may promote autophagy-dependent cell death in human renal proximal tubular epithelial cells 
by activating the PERK/ROS pathway, thereby aggravating calcium oxalate crystal deposition and kidney injury.178 

Additionally, Yue et al found that TMAO can inhibit autophagy in colonic epithelial cells, thereby exacerbating 
inflammatory bowel disease. The mechanism may be related to inhibiting ATG16L1-mediated autophagy of normal 
colon epithelial cells, promoting ROS accumulation and NLRP3 inflammasome assembly.179

TMAO mediates the onset and progression of CVD through its interaction with autophagy. Intervention in vascular 
remodeling is an important strategy to prevent and alleviate atherosclerosis.180 Vascular remodeling refers to a series of 
structural and functional abnormalities in the vascular wall, including the proliferation, migration, and apoptosis of cells 
within the vessel wall, and changes in the matrix components. The phenotypic transformation of VSMCs and vascular 
ECs plays a significant role in vascular remodeling. Early vascular remodeling is an adaptive protective mechanism, and 
vascular remodeling during decompensation can promote the progression of atherosclerosis and the occurrence of 
complications. Moderate activation of VSMC autophagy can significantly alleviate the atherosclerosis process induced 
by statins or cholesterol.181,182 PIK/AKT/mTOR signaling pathway is involved in the formation of autophagosomes.183 

Studies have shown that TMAO can inhibit oxidative low-density lipoprotein (ox-LDL)-induced VSMC autophagy by 
activating the PIK/AKT/mTOR signaling pathway, thereby aggravating atherosclerosis.184 Besides VSMCs, the autop-
hagy of ECs is also closely associated with the occurrence of atherosclerosis.185 Once ECs are damaged, various 
pathophysiological changes, such as thrombosis, inflammation, and excessive proliferation of smooth muscle cells, 
will be induced.186 Studies have shown that ox-LDL may exacerbate atherosclerosis by inhibiting HUVEC autophagy 
through the activation of the PI3K/AKT/mTOR signaling pathway.183 Hong et al found that TMAO may promote 
neointimal hyperplasia after balloon injury by activating Beclin1-mediated autophagy flow abnormality (the conversion 
of autophagosomes to autolysosomes).187 It should be emphasized that moderate autophagy is a positive process in 
combating atherosclerosis. However, excessive stress or overactive autophagy can still lead to autophagy-related cell 
death in VSMCs, negatively affecting the cells.188 In conclusion, the complex mechanisms involving TMAO, autophagy, 
and the crosstalk between ECs and VSMCs in the progression of atherosclerosis still require further research. The 
regulatory mechanisms of TMAO-induced autophagy in different cells are shown in Figure 4.

TMAO and Pyroptosis
ECs form the lumen of capillaries, arteries, and veins via tight junctions between cellular and matrix components. 
Originally considered an inactive resting layer, the endothelium disseminates throughout the circulatory system. ECs are 
crucial in the physiological regulation of vascular homeostasis. Pathophysiological processes such as vascular perme-
ability, vasomotor tone, vascular growth, inflammation and immunology, coagulation homeostasis, and low-density 
lipoprotein oxidation are all under the control of the endothelium. ECs keep blood vessels in balance by releasing 
substances that narrow and widen blood vessels through autocrine, endocrine, and paracrine pathways. This includes the 
secretion of nitric oxide for vasodilation and endothelin-1 for vasoconstriction, which modulates vascular tension and 
diameter, directly influencing the balance of oxygen supply to meet tissue metabolic demands.189 The barrier function 
constitutes the fundamental role of ECs. The endothelium acts as a selective permeability barrier, controlling the steady 
movement of blood cell parts and different macromolecules across the vascular wall. This is made easier by the surface 
glycocalyx, intercellular junctions, and the basement membrane working together.190 EC damage or death is the main 
cause of illness. It can cause vasomotor imbalance, inflammatory responses, oxidative stress, and fat buildup, and it is 
strongly linked to the prevalence of diseases in many body systems.191 Researchers have recognized blood flow shear 
stress, cytokines, reactive oxygen species, pathogen-associated molecular patterns, and injury-associated molecular 
patterns as elements that trigger EC inflammation and dysfunction.192 Ongoing research on gut microbiota indicates 
that TMAO may play a crucial role in the stimulation of EC inflammation (Especially pyroptosis).

Pyroptosis is a pro-inflammatory programmed cell death that can be induced by exogenous microbial infection and 
endogenous injury-related signals. The key event in pyroptosis is the cleavage of gasdermin proteins by caspases. The 
gasdermin proteins share similar N-terminal and C-terminal domain structures, where the C-terminal domain acts as an 
inhibitory domain, restraining the activity of the N-terminal domain. However, not all gasdermin proteins can be cleaved 
by caspases. GSDMD and GSDME are the most extensively studied proteins in the gasdermin family. The linker region 

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S512207                                                                                                                                                                                                                                                                                                                                                                                                   3377

Liu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



of GSDMD is cleaved by inflammatory caspases, releasing its active N-terminal domain. This N-terminal domain of 
GSDMD can be transported to the cell membrane, assembling into pore structures that release IL-1β and IL-18, leading 
to excessive inflammation and cell death.193 Additionally, caspase-3 cleaves GSDME at its linker region, releasing an 
N-terminal fragment that activates pyroptosis through a mechanism similar to that of the GSDMD N-terminal domain. 
Pyroptosis was initially discovered in immune cells, but subsequent studies have shown that other cell types, including 
epithelial and endothelial cells, can also undergo pyroptosis.194 Pyroptosis of renal parenchymal cells is considered 
a critical event exacerbating kidney injury. Yi et al found that TMAO aggravated high glucose-induced pyroptosis in 
human renal proximal tubular epithelial cells.195 Endothelial cell pyroptosis is a critical triggering event for vascular 
dysfunction.196,197 TMAO contributes to the onset and progression of atherosclerosis by inducing ECs pyroptosis. 
Mitochondria serve as the powerhouse and energy metabolism center of the cell, playing a pivotal role in sustaining 
cellular homeostasis and proper function. When mitochondrial homeostasis and integrity are compromised, it can lead to 
excessive production of ROS.198 ROS is a critical molecule that triggers pyroptosis.199 Succinate dehydrogenase complex 
subunit B (SDHB) is a subunit of the succinate dehydrogenase (SDH) family. A recent study showed that TMAO may 
induce atherosclerosis by upregulating the expression of SDHB in ECs, promoting the destruction of mitochondrial 
structure and function, and excessive production of ROS, accelerating the process of cell pyroptosis.164 Acetaldehyde 

Figure 4 Mechanisms of TMAO inducing autophagic cell death. TMAO upregulates Beclin1, a key regulator of autophagy, but this overexpression impairs autophagic flux, 
disrupting the normal degradation and recycling processes within the cell. Additionally, TMAO promotes autophagy inhibition by activating the PI3K/AKT/mTOR signaling pathway, 
a well-known negative regulator of autophagy. TMAO also triggers the PERK/ROS pathway, which paradoxically enhances autophagy, suggesting a complex role for TMAO in 
modulating autophagic processes. Furthermore, TMAO significantly suppresses the expression of ATG16L1, a critical component of autophagosome formation. This suppression 
prevents the proper multimerization of the ATG16L1-ATG5-ATG12 complex, further inhibiting autophagy and contributing to cellular dysfunction. These mechanisms highlight 
TMAO’s dual role in enhancing and impairing autophagy, ultimately leading to autophagic cell death. Created in BioRender. Ge, P. (2025) https://BioRender.com/i74e270. 
Abbreviations: TMAO, Trimethylamine-N-oxide; PI3K, Phosphoinositide 3-kinases; AKT, Protein kinase B; mTOR, Mammalian target of rapamycin; ERS, Endoplasmic 
reticulum stress; PERK, RNA-dependent protein kinase-like endoplasmic reticulum kinase; eIF2α, Eukaryotic translation initiation factor 2 subunit-α; ATF4, Activating 
transcription factor 4; LC3, Light chain 3; ROS, Reactive oxygen species; ATG, Autophagy-related gene.
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dehydrogenase 2 (ALDH2) is a nuclear-encoded aldehyde oxidase present in the mitochondrial matrix.200 It has been 
found to play a protective role in various organ injuries.201–204 ALDH2 can inhibit the activation of NLRP3 inflamma-
some by reducing the excessive accumulation of mitochondrial ROS (mtROS) and total intracellular ROS, thereby 
mitigating high glucose-induced pyroptosis in cardiomyocytes. A study has found that TMAO may induce pyroptosis in 
HUVECs by inhibiting ALDH2 activity, which subsequently activates the ROS/NLRP3/GSDMD pathway.205 Recently, 
researchers have found a non-classical pathway of pyroptosis mediated by caspase-3 and gasdermin E (GSDME) in 
human primary cells and tumor cells.206–208 Although Caspase-3 is a pro-apoptotic caspase, existing evidence shows that 
after treatment with chemotherapy drugs, GSDME can be cleaved and activated by caspase-3, leading to 
pyroptosis.209,210 Another study reported that TMAO may induce endothelial progenitor cell pyroptosis through the 
Bax/caspase-3/GSDME pathway in vitro, thus participating in endothelial dysfunction. Figure 5 summarizes the 
regulatory mechanisms of TMAO-induced pyroptosis in various cells.

TMAO and Ferroptosis
Ferroptosis is a form of PCD characterized by iron dependency and lipid peroxidation, which primarily involves three 
pathways: iron metabolism, lipid metabolism, and antioxidant system. Iron and oxygen are fundamental drivers of 
metabolism. Iron metabolism disorders trigger the Fenton reaction and induce ROS production, an inevitable byproduct. 
The sustained accumulation of ROS and the ROS-induced buildup of lipid peroxides further compromises the integrity of 
the plasma membrane, and ultimately, the cell will die due to ferroptosis. Therefore, Ferroptosis can be considered as 
a byproduct of cellular metabolism. Currently, evidence directly linking TMAO to ferroptosis is limited. Wang et al 
found that in diabetic myocardial ischemia-reperfusion injury (DIR) rats, TMAO promoted the ferroptosis of DIR 
cardiocytes by up-regulating the expression of ALB, PPARG and HMOX1 (ferroptosis related genes).211 TMAO is 
closely related to excessive oxidative stress within cells. Luo et al found that TMAO may inhibit the expression of 
nuclear factor E2-related factor 2 (Nrf2), HO-1, and glutathione peroxidase 4 (GPX4), resulting in the overproduction of 
ROS and the reduction of SOD activity, thus promoting oxidative stress.212 Similarly, Cristina Gonzalez-Correa et al 

Figure 5 Mechanisms of TMAO inducing cell pyroptosis. ROS plays a crucial role in activating the NLRP3 inflammasome, which subsequently triggers Caspase-1-dependent 
pyroptosis. TMAO can directly induces excessive ROS production and indirectly enhances ROS generation by activating the SDHB pathway and inhibiting the ADLH2 
pathway, ultimately triggering cell pyroptosis. Furthermore, TMAO may also induce cell pyroptosis through the Bax/caspase-3/GSDME pathway, highlighting the multifaceted 
roles of TMAO in mediating inflammatory cell death. Created in BioRender. Ge, P. (2025) https://BioRender.com/i00w506. 
Abbreviations: TMAO, Trimethylamine-N-oxide; ROS, Reactive oxygen species; NLRP3, Nod-like receptor family pyrin domain containing 3; ASC, Apoptosis-associated 
speck-like protein; GSDMD, Gasdermin D; GSDME, Gasdermin E; NEK7, (NIMA)-related kinase 7.
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found that in a mouse model of systemic lupus erythematosus, TMAO may induce elevated NADPH oxidase activity and 
vascular endothelial oxidative stress by inhibiting Nrf2-mediated antioxidant defense mechanism.213 GPX4 is a negative 
ferroptosis regulator, playing a critical role in converting lipid hydroperoxides to non-toxic lipids.214 In CKD, TMAO 
may induce ferroptosis-related changes in renal tubular epithelial cells, including increased MDA and iron levels, 
excessive ROS accumulation, reduced GSH, and decreased GPX4 protein levels.215 Nrf2 is a key transcription factor 
that regulates cellular redox homeostasis and inflammatory response. In many chronic diseases, activation of Nrf2 
signaling can also protect cells from ferroptosis.216 Additionally, levels of the anabolic reductant NADPH are biomarkers 
of ferroptosis sensitivity.217 It can be seen that TMAO may participate in iron death by regulating the expression of 
ferroptosis-related genes and inducing oxidative stress (Figure 6).

In conclusion, within the “gut-organ” axis, TMAO is closely associated with the pathological changes of various 
chronic diseases by regulating processes such as apoptosis, pyroptosis, abnormal autophagy, and ferroptosis. Although 
current research has unveiled multiple mechanisms by which TMAO affects cellular function, its specific roles in 
different tissues and pathological conditions require further investigation.

Diverse Therapeutic Strategies Targeting TMAO
Probiotics, Prebiotics, and Antibiotics
The role of probiotics in reducing TMAO levels has been in the spotlight, shining brightly over the past decade.218 

Currently, the most common probiotics include Lactobacillus and Bifidobacterium. Lactobacillus and Bifidobacterium 
exhibit anti-inflammatory, antioxidant, anti-thrombotic, and endothelial protective effects.219 They can prevent and cure 
illnesses, such as atherosclerosis,220 cardiovascular diseases,221 kidney diseases,222 and metabolic syndrome.223 Existing 
studies have indicated that probiotics, including Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus 

Figure 6 Mechanisms of TMAO inducing cell ferroptosis. TMAO promotes ferroptosis through two major pathways: Modulation of the GSH/GPX4 axis–TMAO inhibits system 
Xc−, leading to reduced GSH synthesis and impaired GPX4 activity. Dysregulation of iron metabolism–TMAO alters the expression of key iron-related proteins (eg, TRF-1, FPN-1, 
and FTH-1) and suppresses the NRF2 signaling pathway, exacerbating iron accumulation and lipid peroxidation. Created in BioRender. Ge, P. (2025) https://BioRender.com/upipqo4. 
Abbreviations: TMAO, Trimethylamine-N-oxide; SLC7A11, solute carrier family 7 member 11; GSH, glutathione; GPX4, Glutathione peroxidase 4; GSSG, Glutathione 
disulfide; TFR1, Transferrin receptor protein 1; TF, Transferrin; HO-1, Haem oxygenase-1; NRF2, Nuclear factor-erythroid 2-related factor 2; FPN, Ferroportin; FTH1, 
Ferritin heavy chain 1; ROS, Reactive oxygen species; STEAP3, Six-transmembrane epithelial antigen of the prostate 3; DMT1, Divalent metal transporter 1; NCOA4, nuclear 
receptor coactivator 4.
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amylovorus, Enterobacter aerogenes, Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium lactis, 
Bifidobacterium breve, Bifidobacterium animalis, and Lactobacillus casei, have a certain downregulatory effect on 
circulating TMAO levels. Table 7 shows the direct or indirect regulatory effects of probiotics on circulating TMAO 
level.222,224–233 Notably, probiotics can be utilized to modify the gut microbiota targeting TMAO, but the impact of 

Table 7 The Regulatory Effects of Probiotics on Circulating TMAO Level

Therapy Results Mechanism References

Probiotic Bifidobacterium 
Longum Subsp. 

Longum BL21

Decreased the TMAO level Regulating structure of the gut microbiota. [222]

Lactobacillus 

plantarum ZDY04

Decreased TMAO in serum and TMA in the 

cecum

Regulating structure of the gut microbiota [224]

Lactobacillus 

amylovorus 

LAM1345

Decreased the TMAO level Regulating structure of the gut microbiota [225]

Lpb. plantarum 

LP1145

Enterobacter 

aerogenes ZDY01

Decreased TMAO in serum and TMA in the 

cecum

Remodeling Gut Microbiota [226]

Utilizing cecal TMA as a nutrient, not by 

changing the expression of hepatic FMO3 and 

the composition of gut microbiota.

[227]

Lactobacillus 

rhamnosus GG

Decreased the TMAO level Regulating structure of the gut microbiota [228]

Decreased the TMAO level Regulating structure of the gut microbiota [230]

Lactobacillus 
rhamnosus L34

Decreased the TMAO level Regulating structure of the gut microbiota [229]

Lactobacillus 

acidophilus NCFM

Decreased the TMAO level Regulating structure of the gut microbiota [231]

Bifidobacterium 

lactis Bi-07

Bifidobacterium 

animalis subsp. 

lactis F1-3-2

Decreased TMAO and TMA in serum and 

TMA in the cecum

Regulating structure of the gut microbiota [232]

Lactobacillus casei 

Shirota

Not affect levels of TMAO Regulating structure of the gut microbiota [233]

Prebiotic Arabinoxylan 

oligosaccharides

There was a small, albeit significant 

decreasing effect of AXOS on serum TMAO

NA [234]

Resveratrol Decreased the TMAO level Suppressing commensal microbial TMA 

production via gut microbiota remodeling

[235]

Inulin-Type 

Fructans

It is not sufficient to reduce plasma TMAO 

levels, but it improves the gut microbiome 
composition.

NA [236]

Inulin Reduction in plasma TMAO level and 
TMAO-to-TMA ratio

Regulating structure of the gut microbiota [237]

Abbreviations: TMAO, Trimethylamine N-Oxide; TMA, Trimethylamine; FMO3, Flavin-containing monooxygenase 3.
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different strains on TMAO levels varies. The effect of probiotics on TMAO is strain-dependent, and the specific outcome 
is determined by the influence of the particular strain on TMAO metabolism, and not all probiotics exhibit this effect. 
Therefore, further large-scale clinical studies are needed to provide strong evidence that specific probiotic strains can 
target TMAO metabolism and improve disease outcomes.

Prebiotics are a class of non-digestible food ingredients that exerting positive effects on host health.238 Prebiotic 
compounds include oligosaccharides, fructooligosaccharides, galactooligosaccharides, beta-glucans, and inulin. Recent 
research has also revealed that prebiotics may have the potential to regulate TMAO levels, thus improving related 
diseases234–237 (Table 7).

Probiotics and prebiotics have shown great potential in targeting TMAO production. Nevertheless, this field continues 
to encounter numerous challenges, such as the need to identify safe and effective probiotic strains to ensure that they can 
significantly reduce TMAO levels. Concurrently, it is also necessary to determine the optimal dosage, duration, and 
frequency of probiotic and prebiotic administration.

Antibiotics are the most potent agents for inhibiting the production of TMAO. In pediatric patients with trimethy-
laminuria (FMO3 deficiency), the use of metronidazole, amoxicillin, and neomycin can partially inhibit the conversion of 
choline to TMA, with neomycin being the most effective, followed by amoxicillin, and metronidazole being the weakest 
effective among them.239 It is worth noting that using antibiotics to target TMAO for disease treatment belongs to 
a strategy of “Pyrrhic victory.” Briefly, the use of broad-spectrum antibiotics such as ciprofloxacin and metronidazole 
almost completely suppress TMAO levels. However, once antibiotics are discontinued, TMAO levels rise again within 
a month. The combination of vancomycin, neomycin sulfate, metronidazole, ampicillin, and other broad-spectrum 
antibiotics can alleviate choline-induced atherosclerosis in mice, and the mechanism may be related to the inhibition 
of choline conversion to TMA, the reduction of TMAO levels, and the inhibition of macrophage foaming. However, 
long-term use of antibiotics may lead to the emergence of drug-resistant strains and the depletion of beneficial bacteria.12 

Hence, the rational use of antibiotics, combined with probiotics and prebiotics, or the exploitation of new intervention 
strategies, should be important directions for future research.

Clinical Compounds
Antidiabetic drugs (such as metformin and Empagliflozin), antiplatelet drugs (such as aspirin and clopidogrel), as well as 
statins (such as atorvastatin and rosuvastatin) have been shown to target TMAO to exert therapeutic effects. Metformin 
has been shown to reduce TMA and TMAO levels by remodeling gut microbiota.240 Notably, empagliflozin, unexpect-
edly gives rise to a rapid and significant elevate in TMAO levels in patients with AMI.241 Low-dose aspirin mitigates 
platelet hyperreactivity linked to high TMAO and may decrease TMAO’s dependence on choline.57 Clopidogrel 
resistance is associated with elevated TMAO levels, as shown by Ge et al, who found that dietary choline and TMAO 
inhibit the metabolic activation of clopidogrel via the NOX/ROS/Nrf2/CES1 pathway.242 Statins not only significantly 
improve blood lipid levels but also influence gut microbiota and the production of its metabolite, TMAO. A meta- 
analysis involving 244 subjects showed a significant reduction in plasma TMAO levels after statin treatment.242 Two 
independent cohort studies found that patients with dyslipidemia experienced a decrease in plasma TMAO levels after 
initiating statin treatment, but TMAO levels returned to baseline after a four-week discontinuation of the medication.243 

In patients with atherosclerotic cardiovascular disease, rosuvastatin not only significantly reduced blood lipids but also 
decreased TMAO levels. Additionally, research also observed a significant elevation in the levels of TMAO precursors 
during rosuvastatin treatment.244 Therefore, a complex regulatory mechanism may underlie the modulation of TMAO 
metabolism by statins, necessitating further research to clarify the precise pathways involved and their clinical implica-
tions (Table 8).

Natural Products
Natural products, including alkaloids, polyphenols, and flavonoids, exhibit various biological activities, such as anti- 
inflammatory, antitumor, and anti-oxidative stress effects, providing highly valuable lead compounds for new drug 
research and development. Studies indicate that the bioactivity of natural products may be closely related to their 
biotransformation by the gut microbiota. Additionally, compared to antibiotics and other drugs, natural products not only 
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inhibit harmful bacteria but also enhance the abundance of certain beneficial bacteria, thereby improving disease 
conditions. In this section, we summarize the research progress on various natural products that regulate gut microbiota 
composition and structure, reduce TMAO levels, and ultimately improve disease outcomes (Table 8).

Alkaloids are nitrogenous secondary metabolites found in plants, exhibiting diverse biological activity. Berberine may 
reduce the risk of thrombosis and improve atherosclerosis by modulating the gut microbiota, inhibiting CutC enzyme 

Table 8 Other Drugs Regulating TMAO Levels and Their Mechanisms

Therapy Results Mechanism References

Clinical 
compounds

Metformin Decreased the TMAO level Inhibiting bacterial TMA production [240]

Empagliflozin TMAO levels increased significantly over time following 
myocardial infarction, with a greater increase in people 

receiving Empagliflozin therapy compared to those on placebo

NA [241]

Aspirin Attenuated the degree of TMAO elevation Reduced choline partially [57]

Statin Decreased the TMAO level NA [243]

Rosuvastatin Decreased the TMAO level NA [244]

Natural 
products

Berberine Reduced serum TMA and TMAO levels Altering gut microbiota composition, 
microbiome functionality, and cutC/ 

cntA gene abundance.

[245]

Decreased the TMAO level Inhibiting the CutC enzyme [246]

Decreased the levels of TMA and TMAO in faeces and blood Inhibiting the activity of enzyme CutC 
and FMO of the gut microbiota

[247]

Trigonelline Reduced serum TMA and TMAO levels Affecting choline metabolism 
intestinal flora

[248]

Mangiferin Alleviated TMAO-induced atherogenesis Anti-inflammatory, cholesterol- 
lowering, and gut microbial 

modulatory activities

[249]

Curcumin Inhibited TMAO synthesis Remodeling Gut Microbiota [250]

Docosahexaenoic 
acid-acylated 

curcumin

Decreased the TMAO level Regulating structure of the gut 
microbiota

[251]

Resveratrol Decreased TMAO and increased hepatic bile acid Suppressed commensal microbial 
TMA production via gut microbiota 

remodeling

[235]

Blueberry Decreased the TMAO level Regulated structure of the gut 
microbiota

[252]

Taurine Taurine alleviated TMAO-induced atherosclerosis Taurine regulated bile acid 
metabolism

[253]

Asparagus extract 
(AE)

Alleviated TMAO-induced endothelial dysfunction AE reversed the NEAT1/MAPK/ 
Circadian rhythms pathway induced 

by TMAO

[254]

Decaisnea insignis 
Seed Oil

Decreased TMAO production Regulated structure of the gut 
microbiota

[255]

Sandalwood seed 
oil

Decreased TMAO production Altered intestinal microbiota 
composition

[256]

Perilla frutescens L. Perilla frutescens L. alleviated TMAO-induced apoptosis in the 
renal tubule

Inhibited ASK1-JNK phosphorylation [159]

Abbreviations: TMAO, Trimethylamine N-Oxide; TMA, Trimethylamine; FMO3, Flavin-containing monooxygenase 3.

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S512207                                                                                                                                                                                                                                                                                                                                                                                                   3383

Liu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



activity and decreasing TMAO production.245–247 Additionally, it protects hypertensive mice by remodeling gut micro-
biota and preventing TMAO-induced endothelial dysfunction.161 Trigonelline may exert anti-atherosclerotic effects by 
inhibiting Citrobacter freundii and the activity of FMO3 and blocking the choline-TMA-TMAO metabolic pathway.248 

Curcumin (Cur) is a natural polyphenolic compound derived from the rhizome of plants such as Curcuma longa 
L. (turmeric), which has anti-inflammatory, antioxidant, anti-apoptosis, and anti-cancer effects.257 The concentration of 
Cur in plasma is relatively low, it is significantly higher in the gut.258 Studies have shown that curcumin can reduce 
TMAO production by regulate the abundance, diversity, and composition of gut microbiota, thereby regulating macro-
phage polarization and mitigating cadmium-induced atherosclerosis in mice.250 Docosahexaenoic acid is a n-3 long-chain 
polyunsaturated fatty acid widely found in Marine animals. Shi and his team recombined DHA and Cur, and demon-
strated that DHA-acylated Cur diesters significantly improved cisplatin-induced acute kidney injury in mice compared to 
a single DHA or Cur treatment group. The mechanism is linked to the regulation of gut microbiota and inhibition of LPS 
and TMAO-induced PI3K/AKT/NF-κB signaling pathways.251 Additionally, Resveratrol (RSV), Polyphenol extracts of 
hickory nut and Mangiferin can regulate the diversity of gut microbiota, promote the metabolism of TMA, decrease 
TMAO levels, thus alleviates TMAO-induced atherosclerosis.249,259 Taurine is a natural sulfur-containing amino acid. 
Numerous preclinical studies have reported the pharmacological activities of taurine, such as anti-inflammatory, anti- 
oxidative stress, anti-depression, hepatoprotective, and anti-tumor. Supplementing with taurine can help prevent aging, 
mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases, and neurological disorders. Yang et al 
showed that taurine may alleviate atherosclerosis by inhibiting TMAO. Specifically, taurine significantly reduced 
TMAO-induced atherosclerosis lesions and chronic inflammation in mice, and the mechanism may be related to 
increasing the ratio of conjugated bile acids to unconjugated bile acids in the serum.253

Satheesh et al reported that the effects of a moderate blueberry (rather than strawberry) diet on TMAO were not mediated 
by metabolic changes (TMAO levels in the circulation can be reduced without changing choline or TMA). The sequencing 
results showed that blueberry significantly increased the abundance of bacterial taxa negatively correlated with circulating 
TMA/TMAO, suggesting that it may affect TMAO synthesis by affecting the composition of gut microbiota.252 Further 
analysis of freeze-dried blueberries and strawberries revealed a significant increase in phenolic compounds, particularly 
chlorogenic acid, which may be a critical factor in blueberries’ inhibition of TMAO production. Asparagus contains various 
phytochemicals, including polyphenols, saponins, asparagusic acid, and alkaloids, which have anti-inflammatory, antibacter-
ial, antioxidant, neuroprotective, anti-anxiety and anti-asthmatic properties. In vitro experiments have demonstrated that 
asparagus extract can alleviate TMAO-induced endothelial dysfunction, and the mechanism may be related to improving the 
TMAO-induced decrease in EC proliferation and regulating the molecular circadian clock controlled by NEAT1 and MAPK 
signaling pathways.254 Other natural plants or plant-derived chemical compounds have likewise been demonstrated to reduce 
plasma TMAO levels and alleviate TMAO-induced tissue and organ damage. Commelina communis L., a plant widely 
distributed in tropical regions, is used in its dried aerial part known as Yazhicao (Commelina communis L., YZC). YZC has 
been shown to improve metabolic function, reshape and regulate gut microbiota, reduce TMAO synthesis, and inhibit 
NLRP3 inflammasome activation, thereby ameliorating LPS-induced lung inflammation and injury in septic ALI mice.28 In 
addition, Decaisnea insignis seed oil mitigated liver dysfunction in L-carnitine-fed mice, potentially by modulating the 
composition of the gut microbiota, reducing the abundance of Firmicutes, Proteobacteria, and Erysipelotrichaceae, as well as 
the proportions of Lactobacillus and Akkermansia, thereby preventing TMAO generation.255 Similarly, Sandalwood seed oil 
has been shown to improve insulin resistance in rats induced by a high fat/high sugar diet, with mechanisms related to 
changes in gut microbiota composition and the production of microbial metabolites (including TMAO).256

Conclusion and Future Directions
TMAO may drive the cross-talk between inflammatory response and oxidative stress by mediating cell “death” (including 
apoptosis, pyroptosis, autophagy, and ferroptosis, etc) and then induce pathological processes such as foam cell activation, 
massive secretion of cytokines and adhesion molecules, overaccumulation of ROS, enhanced platelet reactivity and abnormal 
vascular tone regulation. It is deeply involved in the pathogenesis and progression of diseases across the “gut-organ” axis 
pulmonary diseases, including cardiovascular diseases (such as atherosclerosis, heart failure, and hypertension), renal 
diseases, neurodegenerative disorders, and metabolic diseases, including diabetes. As a risk factor for various chronic 
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diseases, the detection of TMAO and related metabolites can provide a potential basis for the prevention, diagnosis, and 
treatment of cardiovascular diseases, kidney diseases, neurological diseases, and metabolic diseases. We recommend 
incorporating TMAO and its related metabolites into routine health examinations. Additionally, this paper also summarized 
a variety of measures to intervene in related diseases by targeting the reduction of TMAO levels, including probiotics, 
prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet agents, hypoglycemic agents, lipid-lowering drugs, Chinese 
herbal monomers, herbal extracts, and formulas. The above strategies may lower the circulating TMAO levels by targeting 
gut microbiota, inhibiting the activity of TMA/TMAO production and conversion-related enzymes, and intervening in 
downstream effects, thereby providing a theoretical basis for the clinical treatment of TMAO-related diseases.

Notably, there are still many limitations in current research on TMAO. On the one hand, TMAO levels are 
dynamically changing in human circulation (this physiological concentration range is also controversial) and are strictly 
regulated by factors such as age, diet, gut microbiota composition, hepatic enzyme activity, as well as liver and kidney 
function. In the early diagnosis and prognosis evaluation of various human diseases, the specificity and sensitivity of 
TMAO have constantly been challenged. Moreover, different tissues and organs have varying tolerance thresholds for 
TMAO, and further clarification is still required on whether the dynamic fluctuations of TMAO exert beneficial roles or 
detrimental effects in human organs. Second, although numerous observational studies have shown causal associations 
between TMAO and cardiovascular, kidney, neurological, and metabolic diseases, due to the inherent limitations of 
statistical methods (bias due to confounding factors and reverse causality), and the causal relationship between TMAO 
and human diseases still requires validation through multicenter, multi-ethnic randomized controlled trials. Finally, the 
pathological process of endothelial cell dysfunction induced by TMAO may be regulated by various forms of cell death, 
yet the specific mechanism of this process is still unclear. To provide a more thorough theoretical foundation for treating 
disorders associated to TMAO, larger-scale clinical trials are needed to validate TMAO’s potential as a biomarker for 
various diseases along the “gut-organ” axis. In-depth mechanistic studies are also required to fully understand the 
interactions between TMAO, cell death, and the “gut-organ” axis.
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