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Background: Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder with a complex pathogenesis involving 
genetic predisposition, environmental factors, and immune dysregulation. This study aimed to investigate key differentially expressed 
genes (DEGs) in AD and their association with immune cell infiltration patterns.
Methods: The GSE32924 dataset comprises gene expression data from 25 AD samples and 8 control samples. Differential expression 
analysis was performed using the R package limma. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were conducted using clusterProfiler. Weighted gene co-expression network analysis (WGCNA) was 
employed to identify gene modules. Least Absolute Shrinkage and Selection Operator (LASSO) regression and support vector 
machine-recursive feature elimination (SVM-RFE) algorithms were used to screen hub genes. Immune cell infiltration was evaluated 
using CIBERSORT. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to validate DEG 
expression in peripheral blood samples from AD patients and healthy controls. Potential microRNA (miRNA)-messenger RNA 
(mRNA) and miRNA-long non-coding RNA (lncRNA) interactions were predicted using miRanda and TargetScan tools.
Results: We identified 381 DEGs (217 upregulated, 164 downregulated). GO analysis revealed enrichment in skin barrier formation, 
epidermal development, and inflammatory response. KEGG analysis showed significant involvement of sphingolipid metabolism and 
Toll-like receptor signaling pathways. Five hub genes (ATP6V1A, CLDN23, ECSIT, LRFN5, USP16) were identified. Immune cell 
infiltration demonstrated significant differences in activated dendritic cells (aDCs) and regulatory T cells (Tregs) between AD and 
controls. RT-qPCR confirmed elevated ECSIT and decreased LRFN5 and USP16 expression in AD patients (P < 0.05). A competing 
endogenous RNA (ceRNA) network involving lncRNA-miRNA-mRNA interactions for the key gene ECSIT was also constructed.
Conclusion: ECSIT, LRFN5, and USP16 represent promising diagnostic biomarkers for AD and are involved in immune cell 
infiltration, providing new insights into AD pathogenesis.
Keywords: atopic dermatitis, AD, gene expression analysis, immune cell infiltration, functional enrichment analysis, Mendelian 
randomization analysis

Introduction
Atopic dermatitis, also referred to as atopic eczema, is a prevalent chronic inflammatory skin disorder that affects 
millions worldwide, with particularly high incidence in pediatric populations.1 This multifactorial condition presents 
clinically with hallmark features including xerosis (dry skin), erythema, pruritus (intense itching), and recurrent 
eczematous lesions. The underlying pathogenesis involves a complex interplay of genetic susceptibility, environmental 
triggers, epidermal barrier dysfunction, immune system dysregulation, and altered microbial colonization.2

A pivotal factor in the pathogenesis of atopic dermatitis is compromised skin barrier function, which exacerbates 
cutaneous hypersensitivity to external irritants and allergens.3,4 This impairment is primarily attributed to the down-
regulation of key genes responsible for the biosynthesis of intercellular lipids, such as long-chain fatty acids, as well as 
deficiencies in natural moisturizing factors (NMFs).5,6

Clinical, Cosmetic and Investigational Dermatology 2025:18 1071–1085                               1071
© 2025 Yang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Clinical, Cosmetic and Investigational Dermatology                          

Open Access Full Text Article

Received: 3 December 2024
Accepted: 18 April 2025
Published: 1 May 2025

C
lin

ic
al

, C
os

m
et

ic
 a

nd
 In

ve
st

ig
at

io
na

l D
er

m
at

ol
og

y 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/4.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


The immunopathogenesis of atopic dermatitis is characterized by a predominant Th2-type immune response, 
mediated primarily by IL-4, IL-13, and IL-31 cytokines.7,8 These mediators drive IgE production, promote inflammatory 
cell recruitment, and perpetuate chronic inflammation. Furthermore, Th22 and Th17 immune pathways are upregulated in 
lesional skin, exacerbating epidermal barrier dysfunction and triggering acute disease exacerbations.9

The diagnosis of AD primarily relies on clinical examination and patient history, with treatment aiming to alleviate 
symptoms and restore the skin barrier. While previous therapeutic approaches were limited to topical corticosteroids and 
calcineurin inhibitors, current treatment strategies have undergone significant transformation. Biologics such as dupilu-
mab (anti-IL-4Rα), which selectively inhibits Th2 cytokine signaling and correlates with reduced serum TARC/CCL17 
levels,10 have revolutionized AD management, achieving a 50% improvement in disease severity (EASI-50) in refractory 
cases.11 Janus kinase (JAK) inhibitors (eg, abrocitinib, upadacitinib) are oral small molecules that inhibit the JAK/STAT 
pathway by selectively blocking JAK1.12 However, 30–40% of patients show suboptimal responses, underscoring the 
need for better predictive biomarkers and targeted therapies.13 FDA approvals of tralokinumab (anti-IL-13) and 
lebrikizumab (anti-IL-13Rα1) highlight the shift toward cytokine-specific biologics.14 Emerging multi-omics studies 
have revealed dysregulation of genes involved in epidermal differentiation (FLG, CLDN1) and neuroimmune signaling 
(IL31RA), though their diagnostic utility and mechanistic links with immune infiltration remain unexplored.15 Novel 
biomarkers like serum periostin, TSLP and CCL17/TARC may predict treatment response and disease progression.

Given the substantial impact of atopic dermatitis on patients’ quality of life, developing novel therapeutic strategies is 
imperative. We hypothesize that key genes driving immune dysregulation in AD can be identified through an integrated 
bioinformatics framework combining WGCNA, machine learning, and Mendelian randomization - an approach distinct 
from previous single-method analyses. This study seeks to elucidate critical genes governing immune dysregulation 
in AD by integrating bioinformatics with experimental validation, further investigating their roles in immune cell 
infiltration, with the ultimate goal of providing clinicians with novel diagnostic and therapeutic insights.

Methods
Data Download
The National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) (https://www.ncbi.nlm.nih. 
gov/geo/) is a publicly accessible database established in 2000, hosting transcriptomic data from various global 
institutions.16 The GSE32924 mRNA expression profile was retrieved from the GEO database for analysis. Data 
normalization and log2 transformation were performed on this dataset, which contains gene expression data from 
25 AD samples and 8 normal control samples, generated using GPL570 [transcript (gene) version].

Differential Expression Analysis
The normalized expression matrix from GSE32924 was used to identify DEGs. Probes were annotated according to the 
dataset’s annotation file, and the R package limma was used to identify DEGs. Genes with an adjusted P-value < 0.05 and 
an absolute fold-change (FDR > 1) were considered DEGs, following established thresholds for transcriptomic 
studies.17,18 Heatmaps, volcano plots, and box plots were generated using the R packages heatmap and ggplot2.

Functional and Pathway Enrichment Analysis
Functional enrichment analysis of DEGs was conducted using the clusterProfiler package in R, with annotations from the 
GO and KEGG databases.19 GO analysis categorized enriched terms into biological processes (BP), cellular components 
(CC), and molecular functions (MF), offering insights into the biological roles of the DEGs. KEGG pathway analysis 
highlighted relevant signaling pathways.

Weighted Gene Co-Expression Network Analysis
WGCNA was conducted to explore gene co-expression networks.20 The analysis environment was set up with necessary 
R packages, and the gene expression matrix and sample information were loaded. Data preprocessing involved log 
transformation, normalization, and exclusion of genes with low variability. Outlier samples were identified and removed, 
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and a similarity network among genes was constructed. The dynamic tree-cutting algorithm (minModuleSize = 
50, deepSplit = 2) was employed to initially partition the modules, followed by merging highly similar modules based 
on module eigengene clustering (with a merging threshold of MEDissThres = 0.25), with module-trait correlations 
visualized in heatmaps. Gene module membership (MM) and gene significance (GS) were calculated, and their relation-
ships were illustrated in scatter plots. GS, MM data, and gene lists for each module were outputted Regression Method to 
Identify Key Genes.21

LASSO Regression Method to Identify Key Genes
Key genes were identified using the glmnet package for LASSO regression. After data preprocessing, the glmnet function 
performed LASSO regression fitting, with parameters set to “binomial” for binary classification and alpha to 1 for L1 
regularization. Cross-validation was conducted using cv.glmnet, and plots for LASSO regression and cross-validation 
were saved as LASSO.pdf and cvfit.pdf. Genes with non-zero LASSO regression coefficients were considered potential 
key genes associated with AD.

SVM-RFE Method to Screen Feature Genes
SVM-RFE was conducted using the e1071, kernlab, and caret packages to screen feature genes. After data preprocessing, 
the rfe function implemented SVM-RFE with cross-validation (cv) and a radial basis kernel function (svmRadial). The 
feature selection results were visualized, with the minimum Root Mean Square Error (RMSE) value marked to indicate 
the optimal number of features.

Immune Cell Infiltration
The CIBERSORT method, using linear support vector regression, was employed to analyze immune cell infiltration in 
22 human immune cell subtypes, comparing AD samples and healthy controls. Immune cells showing significant 
infiltration differences were identified, and correlations between immune cells and key gene expression were assessed 
using the Spearman correlation method.

RT-qPCR Validation of Key Genes
To validate bioinformatics findings, blood samples from 3 non-AD patients and 3 AD patients were collected for RT- 
qPCR. This study was approved by the Ethics Committee of Changzhou Children’s Hospital (approval number: 
2023–002), and informed consent was obtained from all participants. Peripheral blood mononuclear cells (PBMCs) 
were isolated, and total RNA was extracted using an RNA Extraction Kit (Fastagene, Shanghai, China). RT-qPCR was 
performed using SYBR Green Real-Time PCR Master Mix (Toyobo, Beijing, China) following the manufacturer’s 
instructions. GAPDH served as the internal control, and the relative mRNA expression levels were calculated by the 
2−ΔΔCt method. Statistical significance was assessed using one-way ANOVA (P < 0.05).

ceRNA Network
miRanda was used for miRNA-mRNA target prediction, incorporating sequence matching and secondary structure to 
predict miRNA-mRNA interactions. Additionally, miRDB was used to provide experimentally supported miRNA-mRNA 
interactions using machine learning algorithms. TargetScan was used to predict miRNA binding sites on lncRNAs. The 
integration of miRanda, miRDB, and TargetScan results enabled the construction of a comprehensive mRNA-miRNA- 
lncRNA ceRNA regulatory network.

Mendelian Randomization
Two-sample Mendelian Randomization (MR) analysis was performed to investigate causal relationships between 731 
immune cell traits and AD.22 MR uses genetic variation as a proxy for risk variation and employs validated instrumental 
variables (IV) to meet three key assumptions for causal inference: (1) exposure is directly related to genetic variation; (2) 
no genetic confounders exist between exposure and outcome; (3) genetic factors do not influence the outcome through 
unrelated channels to exposure. The IV tools (version v1.90) and single nucleotide polymorphisms (SNPs) revised with 
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an LD r² threshold <0.1 within 500 kb were used, with significance threshold set at 5 × 10⁻8. To evaluate IV strength, the 
F-statistic was calculated. This analysis examined 731 immune phenotypes, including relative cell counts, morphological 
parameters, absolute cell counts, and median fluorescence intensity representing surface antigen levels from the GWAS 
catalog (accession numbers GCST0001391 to GCST0002121).

Statistical Analysis
All statistical analyses were conducted using R Statistical Software (version 4.3.3). The significance of fold changes in 
the microarray data was assessed using t-tests. Unless otherwise specified, results with a p-value < 0.05 were considered 
statistically significant.

Results
Differential Analysis of Atopic Dermatitis
To identify DEGs in AD, we analyzed mRNA expression profiles from AD and normal tissue samples in the GEO 
database (GSE32924). Comparison with normal tissues revealed 381 DEGs in AD samples, with 164 genes upregulated 
(log2 FC > 1) and 217 genes downregulated (log2 FC < −1). These DEGs are illustrated in the volcano plot and heatmap 
(Figure 1A and B), clearly showing the overall expression patterns.

To evaluate data consistency within the sample groups, Principal Component Analysis (PCA) was performed. The PCA 
results demonstrated strong reproducibility of data in the GSE32924 dataset, showing a clear separation between samples from 
the AD group and the control group (Figure 1C), indicating robust grouping and reliable data distribution for further analysis.

Enrichment Analysis of Differentially Expressed Genes
Enrichment analysis was conducted to explore the functional roles of DEGs in atopic dermatitis. GO analysis covered 
three main categories: Biological Process, Cellular Component, and Molecular Function. Our findings revealed sig-
nificant enrichment in multiple biological processes associated with skin and immune function, including epidermis 
development, skin development, skin barrier establishment, epidermal cell differentiation, and mitotic nuclear division. 
These processes highlight the genes’ involvement in skin structure and barrier integrity, crucial in AD pathology. Within 
the Cellular Component category, DEGs were significantly enriched in components such as the cornified envelope, 
lysosomal lumen, and endocytic vesicle lumen, which are integral to maintaining skin barrier function and immune 
response. The Molecular Function analysis revealed enrichment in gene sets associated with growth factor receptor 
binding, peptidase regulator activity, and copper ion binding, suggesting roles in cellular signaling and immune 
regulation in AD (Figure 2A).

Figure 1 Identification of DEGs in Atopic Dermatitis. (A) The volcano plot displays the expression of DEGs between atopic dermatitis and normal samples. (B) The 
heatmap illustrates the top 50 upregulated DEGs and top 50 downregulated DEGs. (C) The PCA plot demonstrates clear separation between atopic dermatitis and normal 
groups.
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KEGG pathway enrichment analysis further highlighted several pathways implicated in AD, including sphingolipid 
metabolism, cell cycle, NOD-like receptor signaling pathway, arachidonic acid metabolism, and Toll-like receptor 
signaling pathway (Figure 2B). Additional pathways, such as apoptosis, ABC transporters, and cytokine-cytokine 
receptor interactions, underscore the complex interplay of immune response, metabolic regulation, and cell cycle 
processes in AD onset and progression. Collectively, these enriched pathways provide insight into the underlying 
molecular mechanisms of immune response and barrier dysfunction in AD, offering potential targets for therapeutic 
intervention.

Construction of Weighted Gene Co-Expression Network
Using the WGCNA package in R, we constructed a scale-free co-expression network to explore gene modules associated 
with AD and healthy samples. The optimal soft-threshold power was determined to be 10, achieving a scale-free 
topology index of 0.85, which ensured good network connectivity and reliability (Figure 3A and B).

The clustering dendrogram reveals the hierarchical clustering of genes into 11 distinct modules (Figure 3C). Among 
these, the MEbrown module exhibited a strong positive correlation with AD (correlation coefficient = 0.77), while the 
MEgrey module displayed a strong negative correlation (correlation coefficient = −0.74), both with high statistical 
significance (p-value = 1e-07). These results, visualized in the heatmap (Figure 3D), highlight the correlations between 
gene modules and traits of normal and AD-affected tissues. The strong association of MEbrown and MEgrey with AD 
suggests that the genes within these modules may play essential roles in AD pathogenesis.

The MEbrown module, containing 749 genes, was identified as the primary module associated with AD. Further 
analysis of the overlap between DEGs and genes in MEbrown revealed 223 intersecting genes, as shown in Figure 3E. 
These intersecting genes are potential candidates for further investigation into their specific functions and mechanisms 
in AD, advancing our understanding of disease etiology and identifying potential therapeutic targets.

Figure 2 Functional Enrichment Analysis of DEGs. (A) GO analysis of DEGs. The top 10 functional enrichments in BP, CC, and MF analyses. (B) KEGG analysis of DEGs. 
Abbreviations: NOD-like, Nucleotide-binding oligomerization domain -like; ABC transporters, ATP-binding cassette transporters.
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Selection of Feature Genes Through LASSO and SVM-RFE Algorithms
Two machine learning algorithms, LASSO regression and SVM-RFE, were employed to identify key feature genes 
associated with atopic dermatitis from the pool of candidate genes. In the LASSO analysis, 10 feature genes were 
selected, as shown in Figure 4A and B. The SVM-RFE analysis identified 28 feature genes with a relative importance 
score above 0.25 (Figure 4C). The intersection of genes selected by both algorithms yielded 5 core feature genes: 
ATP6V1A, CLDN23, ECSIT, LRFN5, and USP16 (Figure 4D). These five genes represent potential biomarkers or 
therapeutic targets due to their consistent identification as key features by both methods, indicating their relevance to 
atopic dermatitis pathogenesis.

Diagnostic Performance of Feature Genes in Predicting Atopic Dermatitis
In this study, we identified significant differences in the expression of key genes by comparing the gene expression 
profiles of the control and AD groups. The expression levels and statistical analysis results of key genes are shown in 
Table 1. Specifically, the expression levels of LRFN5, CLDN23, ATP6V1A, and USP16 were significantly lower in 
the AD group compared to the control group, whereas ECSIT exhibited significantly higher expression in the AD group 
by statistical analyses with P-values < 0.05 (Figure 5A–E). To assess the diagnostic potential of these genes, Receiver 

Figure 3 WGCNA Analysis and Identification of Candidate Hub Genes. (A) The soft-threshold power for WGCNA. (B) The average connectivity for WGCNA. (C) The 
clustering dendrogram for WGCNA. (D) The Module-trait heatmap displays the correlation of each gene module with AD and normal states. (E) The Venn diagram 
demonstrates the interaction between DEGs and genes in the MEbrown module, with 223 genes shared.
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Operating Characteristic (ROC) curves were generated. The Area Under the Curve (AUC) values, which range from 0.5 
to 1.0, reflect the diagnostic accuracy of each gene, with higher AUC values indicating better diagnostic performance. 
The ROC analysis of the five core feature genes showed AUC values greater than 0.8, indicating high accuracy in 
distinguishing AD from control samples: LRFN5 (AUC=0.825), ECSIT (AUC=0.880), CLDN23 (AUC=0.810), 
ATP6V1A (AUC=0.925), and USP16 (AUC=0.895) (Figure 5F–J). These findings suggest that ATP6V1A, CLDN23, 

Figure 4 Machine Learning Algorithms for Feature Genes. (A) The penalty plot of the LASSO model, with error bars representing standard error. (B) The LASSO plot 
shows the shrinkage of parameter coefficient sizes as the k penalty value increases. (C) The error rate confidence interval of the random forest model. (D) The interaction 
between the LASSO and random forest algorithms.

Table 1 Expression Levels and Statistical Analysis Results of Key Genes in Control 
and AD Groups

Gene Mean_Control Mean_AD p-Value AUC Cl_Lower Cl_Upper

ATP6V1A 8.92 6.73 0.00011 0.925 0.82 1
CLDN23 5.28 3.59 7.21E-08 0.81 0.63 0.95

ECSIT 7.53 8.78 0.0001 0.88 0.75 0.985

LRFN5 5.56 3.47 0.0000278 0.825 0.64 0.97
USP16 10.91 9.7 3.77E-08 0.895 0.76 0.985

Abbreviations: AD, Atopic dermatitis; AUC, Area Under the Curve; CI, Confidence Interval.
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ECSIT, LRFN5, and USP16 could serve as valuable biomarkers for diagnosing atopic dermatitis and may also be 
promising therapeutic targets for future treatments.

Immune Cell Infiltration in Atopic Dermatitis
Recent studies highlight the significant role of immune cell infiltration in the pathogenesis of atopic dermatitis.23–25 We 
analyzed immune cell profiles between AD and control groups. Our findings revealed an increased proportion of 
activated dendritic cells and neutrophils in the AD group (Figure 6A), suggesting heightened immune activation and 
a potential role in disease progression. These shifts in immune cell populations point to the critical involvement of 
immune surveillance and inflammatory responses in AD.

Further investigation into the correlation between the five key genes (ECSIT, LRFN5, USP16, ATP6V1A, and CLDN23) 
and various immune cell types revealed distinct patterns. ATP6V1A was positively correlated with CD4 memory-activated 
cells and neutrophils, while CLDN23 and ECSIT exhibited positive correlations with naive B cells and helper T cells. LRFN5 
and USP16 showed unique relationships across multiple T cell and myeloid cell subtypes (Figure 6B).

Figure 5 Diagnostic performance of Key Genes. (A–E) The expression of the feature genes LRFN5, CLDN23, ATP6V1A, USP16 and ECSIT in atopic dermatitis and healthy 
cohorts. (F–J) ROC curves of Key Genes.

Figure 6 Immune Infiltration Analysis. (A) The comparison of the number of different immune cell types between the control group (blue bars) and the AD group (yellow 
bars). (B) The heatmap showing the correlation between ATP6V1A, CLDN23, ECSIT, LRFN5 and USP16 genes and various immune cell types. (C) The scatter plot 
displaying the expression levels of the ECSIT gene in different immune cell types (* p < 0.05, **P<0.01). 
Abbreviations: NK cells, Natural Killer cells; Macrophages M0/M1/M2, Non-activated/Classically activated/Alternatively activated macrophages; aDCs, Activated dendritic 
cells; iDCs, Immature dendritic cells; pDCs, Plasmacytoid dendritic cells; APC, Antigen-presenting cell; CCR, Chemokine receptor; HLA, Human leukocyte antigen; MHC, 
Major histocompatibility complex; Tfh, Follicular helper T cells; Th1/Th2, Type 1/Type 2 helper T cells; TIL, Tumor-infiltrating lymphocytes; IFN, Interferon.
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Additionally, we observed the impact of ECSIT expression on immune cell subtype activities. In samples with elevated 
ECSIT expression, there was a significant increase in glycolytic cells, M1 macrophages, pro-inflammatory cells, monocytes, 
and neutrophils, with the most pronounced differences in M1 macrophages and pro-inflammatory cells (Figure 6C). These 
results suggest that higher ECSIT expression may exacerbate inflammation by promoting the activation of specific immune 
cell populations, which could contribute to the chronic inflammation seen in atopic dermatitis.

RT-PCR Validation of Key Genes
We performed RT-qPCR to validate the mRNA expression of core genes identified through bioinformatics analysis in 
blood samples from patients with and without atopic dermatitis. All experimental parameters, from primer design 
(Table 2) to reaction optimization (Table 3), have been systematically documented. The results demonstrated significant 
differences in the expression levels of LRFN5, ECSIT, and USP16 between the AD and control groups (Figure 7A–C), 
aligning with the findings from microarray data. However, no statistically significant differences were found for 
ATP6V1A and CLDN23 between the two groups (Figure 7D and E).

Causal Relationship Between Atopic Dermatitis and Immune Cells
Atopic dermatitis is a complex chronic inflammatory skin condition influenced by genetic and environmental factors, 
with immune cells playing a pivotal role. Using Mendelian randomization analysis, we identified several immune cells 
and their markers significantly associated with an increased risk of AD. For example, elevated percentages of CD25hi % 
T cells, basophil %CD33dim HLA DR− CD66b−, naive DN (CD4−CD8−) AC, and CD40 expression on monocytes were 
all linked to an increased risk of AD. In contrast, a decreased risk of AD was associated with CD28− DN (CD4−CD8−) 

Table 2 Primer Sequences Used for RT-qPCR Validation of Candidate Genes in AD

Gene Forward Primer (5’→3’) Reverse Primer (5’→3’) Product Size (bp)

GAPDH CCACTCCTCCACCTTTGACGC TGTTGGTGTAAGCCAAATTGGTTGT 98
ECSIT ATGAACGTCAACCCTTCCC GGCGTCTCTTCCACTTCTAC 192

LRFN5 GACCTGTGCTTCTCCTCCAC CTTTGCACCTCAGTGTTGCC 146

USP16 CGGGGCATTACACTGCCTAT CGCTGATGTGAAACCACTGC 126
CLDN23 ATCCCGGTGTCTGGTACAACCACTTC CCACTCCACTTGGATGGTGCTGACG 249

ATP6V1A CCAGTTACATCTGCCACTCTTG ATTTCCTTAGCTTTCGTCCTCA 188

Notes: GAPDH was used as internal control. 
Abbreviation: bp, base pairs.

Table 3 Optimization Procedures for RT-qPCR Gene Analysis

Step Description Reagents/Instruments Parameters/Details

RNA 

Extraction

1. Cell lysis with Trizol, chloroform phase 

separation.

Trizol, Chloroform, 

Isopropanol, Ethanol

Centrifugation: 12,000 rpm, 4°C for 20 min 

(chloroform step).

2. RNA precipitation with isopropanol and 
ethanol washing.

RNA dissolved in DEPC-treated water.

RNA Reverse 

Transcription

1. RNA denaturation at 65°C for 5 min. ReverTra Ace qPCR RT Kit 

(TOYOBO)

Reaction system: 10 μL (2 μL RNA, 2 μL 5×RT 

Buffer, 0.5 μL RT Enzyme Mix, etc.).
2. Reverse transcription at 37°C for 15 min. Enzyme inactivation at 98°C for 5 min.

qPCR Setup 1. Primer design using Primer5 software. SYBR Green Realtime PCR 

Master Mix (TOYOBO)

Each sample tested in triplicate (60 μL total 

volume per gene).
2. Reaction mix: 20 μL per well (6 μL cDNA, 

1.2 μL each primer, 30 μL SYBR).

QuantStudio 1.5 (Thermo) Amplification program: 95°C for 10 min; 40 

cycles of 95°C/15s, 60°C/30s.

Melting Curve 
Analysis

Post-amplification analysis from 60°C to 95°C. Single peak confirmation for specific 
amplification.

Abbreviations: DEPC, diethyl pyrocarbonate; RT, Reverse Transcription; cDNA, Complementary DNA; SYBR, SYBR Green I fluorescent dye; rpm, Revolutions per minute.
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%DN (Figure 8). These findings suggest critical immune cell-based mechanisms underlying AD pathogenesis, providing 
potential targets for diagnosis and treatment of the disease.

ceRNA Network
In the ceRNA network, non-coding RNAs such as miRNAs and lncRNAs interact to regulate gene expression through 
molecular competition. ECSIT emerged as a central player in the AD-related ceRNA network. Specifically, ECSIT 
interacts with miRNAs such as hsa-miR-1181 and hsa-miR-1205, which in turn connect to lncRNAs like RP11-469N6.1 
and RP3-470B24.5 (Figure 9). This complex interaction suggests that ECSIT might regulate immune responses and 
inflammatory processes by modulating the activity of miRNAs and lncRNAs, which can control the expression of 

Figure 7 RT-PCR validation of the key gene relative mRNA expression between AD and normal controls. All experiments were performed in triplicate and results were 
presented as M ± SD (* p < 0.05, ***P<0.001). (A–C) ECSIT gene was significantly higher in AD group, while LRFN5 and USP16 genes were lower in AD group than in 
healthy group in the blood samples. (D-E) ATP6V1A and CLDN23 gene in AD patients had no significant difference compared with the healthy group in the blood samples. 
Abbreviation: ns, non significant.
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inflammation-related genes. Furthermore, lncRNAs may act as “molecular sponges”, absorbing miRNAs to prevent the 
suppression of other mRNA targets, thus refining the network of gene regulation in AD.

Discussion
Atopic dermatitis is a chronic inflammatory skin disease that severely impacts the quality of life for millions of 
individuals globally.26,27 It typically manifests in childhood and may persist into adulthood, causing symptoms such as 
intense itching, skin erythema, and inflammation. The pathogenesis of AD is multifactorial, involving genetic predis-
position, environmental triggers, immune dysregulation, and skin barrier dysfunction. While the exact cause remains 
unclear, there is significant evidence that immune responses, particularly involving T cells, and interactions with the 
microbiome and environmental factors, play crucial roles in AD development and progression.21,22,27

To investigate the underlying mechanisms of AD, we identified DEGs associated with AD and performed enrichment 
analysis, which highlighted key biological processes and signaling pathways involved in the disease, such as skin barrier 
dysfunction, immune responses, and lipid metabolism. GO analysis underscored biological processes related to skin 
barrier establishment, epidermal cell differentiation, and cornified envelope organization—findings that align with AD’s 
hallmark compromised barrier function. Significant enrichment in cellular components like lysosomes and endocytic 
vesicles suggests an essential role of intracellular transport and degradation in AD pathophysiology, while molecular 
functions such as growth factor receptor binding and copper ion binding imply a potential regulatory role of cell 
signaling and metal ions in inflammation. KEGG pathway analysis further revealed significant alterations in pathways 
central to AD, including sphingolipid and arachidonic acid metabolism, which are integral to lipid metabolism and the 
generation of inflammatory mediators.28 The observed changes in cell cycle and NOD-like receptor signaling pathways 
further underscore a disrupted balance of cell proliferation and immune response regulation in AD.29 Additionally, 
significant enrichment of viral carcinogenesis and hepatitis C pathways might reflect the high sensitivity of AD patients 
to external infections and corresponding immune responses.30

Figure 8 Forest Plot Showing the Causal Relationship between Immune Cell Characteristics and Atopic Dermatitis. 
Abbreviations: nsnp, Number of Single Nucleotide Polymorphisms; pval, P-value; OR, Odds Ratio; CI, Confidence Interval; hi/dim, High/diminished expression; HLA DR, 
Human Leukocyte Antigen DR; DN, Double negative; AC, Absolute count; CCR2, C-C chemokine receptor type 2.

Figure 9 ceRNA Network of ECSIT Gene-Associated lncRNAs and miRNAs.
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Using WGCNA and LASSO regression, to pinpoint critical genes related to AD, we identified five genes— 
ATP6V1A, CLDN23, ECSIT, LRFN5, and USP16—most strongly associated with AD. Notably, ECSIT was upregulated, 
while LRFN5 and USP16 were downregulated, a pattern confirmed through RT-qPCR in blood samples from AD 
patients. In contrast, ATP6V1A and CLDN23 showed no significant expression changes, suggesting they may be less 
central in AD pathogenesis. ROC curve analysis of these genes indicated high diagnostic value (AUC > 0.8), highlighting 
their potential as biomarkers.

Immune cell infiltration and activation are critical events in the pathology of AD, profoundly affecting the disease 
phenotype and clinical progression.31 Notably, the significant increase in activated dendritic cells and neutrophils in the AD 
group underscored the direct impact of AD on the activity of key cells in the immune system. This change not only reflected 
enhanced immune response but also likely influenced the regulation of the inflammatory response.32 Specifically, the 
activation state of dendritic cells suggested their central role in antigen presentation and initiating T-cell-mediated immune 
responses, while neutrophil increases align with the inflammatory nature of acute AD.33 Furthermore, correlation analysis 
between ECSIT, LRFN5, Uarious immune cells suggested that these genes influence immune cell function in distinct ways. 
ECSIT, for instance, was significantly associated with M1 macrophages and pro-inflammatory cells, suggesting a pro- 
inflammatory role that may worsen AD pathology.34,35 In contrast, antigen-presenting cell subgroups did not show significant 
expression differences, suggesting that more targeted strategies might be needed to regulate this process in AD treatment.36 

Additionally, the significant activation of glycolytic cells and M1 macrophages in relation to high ECSIT expression 
highlighted the potential role of metabolic pathways in regulating immune cell functions.37 This metabolic reprogramming 
might be a way for inflammatory cells to adapt to the rapid response demands, providing a biological basis for disease 
chronicity and tissue damage.38 LRFN5 and USP16 exhibited unique correlation patterns across multiple T cell and myeloid 
cell subtypes. LRFN5 is involved in nerve and immune cell signaling, which may be activated in chronic inflammatory states, 
potentially affecting immune cell responses to inflammation.39 USP16 is involved in the activation and proliferation of T cells 
by regulating ubiquitination levels, especially deubiquitination of calcineurin A (CNA). In the case of an abnormal immune 
system, loss of function of USP16 may lead to limited proliferation of T cells, making them less responsive to inflammatory 
diseases.40 The key roles of USP16 in immunomodulatory and inflammatory signaling pathways suggest that it may influence 
the pathophysiological mechanisms of AD, especially in regulating skin barrier function or inflammatory response.

The central role of ECSIT in AD was further supported by our construction of a ceRNA network, where ECSIT was found 
to interact with various miRNAs and long non-coding RNAs. These interactions suggest that ECSIT may influence gene 
expression regulation in immune responses, contributing to AD pathogenesis. Specifically, the involvement of ECSIT in the 
activation of M1 macrophages and pro-inflammatory cells suggests that it might exacerbate inflammation, while the regulatory 
interactions with miRNAs and lncRNAs highlight the complexity of gene expression regulation in AD.

Through Mendelian randomization, we further explored the causal relationships between immune cell markers 
and AD. An increase in CD28− DN (CD4−CD8−) %DN was associated with a reduced AD risk, indicating that this 
subgroup might play a protective role in regulating immune responses, maintaining immune tolerance, or skin barrier 
function.41 This finding offers new insights into the immune regulation of AD and suggests potential therapeutic 
targets.42,43 These results provide important clues for the immunopathological mechanisms of AD and highlight the 
significance of intervention strategies targeting specific immune cells and molecular markers for AD prevention and 
treatment. Further research should aim to elucidate the specific mechanisms of these immune markers in AD and how 
they interact with other genetic and environmental factors to lead to disease onset and progression.

Notably, while our study focused on intrinsic genetic and immune drivers of AD, environmental factors (eg, microbial 
colonization, pollution) likely modulate the activity of key genes. For instance, mitochondrial dysfunction mediated by 
ECSIT may exacerbate inflammation under high oxidative stress conditions or pollutant exposure,44 while psychosocial 
stress could impair LRFN5-dependent neuro-immune homeostasis.45 Our study identifies USP16 as a critical regulator of 
T-cell activation, its interaction with microbiome-derived metabolites (eg, butyrate) remains unexplored. Recent evidence 
shows that butyrate enhances deubiquitinase activity, suggesting a potential mechanism by which the microbiome 
modulates USP16 function.46 Future studies integrating exposome data and multi-omics profiling are needed to dissect 
these interactions. Despite this limitation, our findings provide a foundational framework for understanding AD patho-
genesis, independent of environmental confounders.
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In terms of treatment, immune-targeted therapies, such as biologics (eg, dupilumab) and JAK inhibitors, have 
revolutionized AD management by targeting key cytokine pathways involved in the disease.47–50 However, as AD is 
a heterogeneous disease, individualized treatment approaches are crucial, with ongoing efforts to identify additional 
molecular targets and combination therapies to improve outcomes. Notably, our identification of ECSIT as a novel pro- 
inflammatory regulator in AD aligns with emerging evidence on mitochondrial dysfunction in chronic inflammation.51

While our study offers novel insights into the pathophysiology of atopic dermatitis and identifies potential diagnostic 
biomarkers, we recognize the necessity for future validation in larger cohorts. Expanding the sample size in future 
research would enhance the statistical robustness and generalizability of our results. To address this, we prioritized 
multicenter collaboration to expand our sample size and plan to incorporate additional independent datasets in subsequent 
studies to validate both the expression patterns and diagnostic efficacy of the key candidate genes. Furthermore, stratified 
studies among populations with different factors such as gender and age are crucial for assessing the consistency and 
applicability of our research findings across diverse demographic groups.

Additionally, while our findings highlight specific immune cell subsets and genes that may play pivotal roles in atopic 
dermatitis, further investigation is required to elucidate their precise mechanisms in disease progression. The potential 
involvement of immune cell infiltration in central genes also merits deeper exploration. Future planned experiments 
include functional analyses (eg, gene knockdown/overexpression in cell cultures) and in vivo experiments (AD Mouse 
models) to further clarify the roles and mechanisms of these genes. Addressing these limitations will strengthen the 
clinical relevance and translational potential of the biomarkers and therapeutic targets identified in this study.

Conclusion
In conclusion, this study identifies ECSIT, LRFN5, and USP16 as pivotal biomarkers linking immune dysregulation 
to AD pathogenesis. The upregulation of ECSIT and its association with M1 macrophages underscore its role as 
a potential therapeutic target for chronic inflammation. While our findings are mechanistically robust, future studies 
must validate these genes in diverse populations and integrate environmental exposome data to achieve personalized AD 
management.
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