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Background: This study aimed to investigate the co-infecting pathogens and lung microbiomes in patients with clinically confirmed 
pulmonary tuberculosis (TB) and explore potential diagnostic biomarkers to differentiate between varied infection patterns.
Methods: We conducted a retrospective cohort study by analyzing 198 bronchoalveolar lavage fluid (BALF) samples collected from 
patients with suspected pulmonary TB. All BALF samples were sequenced using metagenomic next-generation sequencing (mNGS).
Results: A total of 63 pathogens were detected in all samples. The TB group exhibited a higher diversity of pathogens (n=51) than the 
Non-TB group (n=37). The analysis revealed that TB patients had significantly higher pathogen counts (P=0.014), and specific 
microorganisms, such as Mycobacterium tuberculosis complex (MTBC), MTB, Streptococcus infantis, and Campylobacter curvus, 
were significantly enriched. Furthermore, the abundance of MTBC was negatively correlated with hemoglobin levels (R=−0.17, 
P=0.015) and positive correlated with C-reactive protein (CRP) levels (R=0.16, P=0.029). The random forest model combined eight 
differential microbes and five clinical parameters, yielding an area under the curve (AUC) of 0.86 for differentiating TB from Non-TB 
cohorts, whereas subgroup differentiation yielded an AUC of 0.571, demonstrating the potential for targeted diagnostics in pulmonary 
infections.
Conclusion: Our findings highlight the complexity of co-infection patterns in pulmonary TB and emphasize the potential of 
integrating microbial and clinical markers to improve diagnostic accuracy. This study provides valuable insights into the role of the 
lung microbiome in TB and informs future research on targeted therapies for this disease.
Keywords: tuberculosis, bronchoalveolar lavage fluid, lung microbiome, biomarkers, metagenomic next-generation sequencing

Introduction
Tuberculosis (TB), caused by the Mycobacterium tuberculosis (MTB) complex, remains a significant global public health 
challenge and contributes to high morbidity and mortality rates worldwide.1 Historically, TB has been one of the 
deadliest infectious diseases and continues to rank among the leading causes of global infectious mortality.2 Although 
the incidence of TB has gradually declined over the past decade, with mortality rates decreasing by nearly one-third, this 
positive trend has been significantly disrupted by the COVID-19 pandemic.3 In many regions, the pandemic has led to 
a substantial reduction in TB testing and case notifications, resulting in an associated increase in mortality and the 
reversal of global TB control efforts by approximately ten years.4 It was estimated that 10.6 million people are estimated 
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to be infected with TB globally in 2021, corresponding to an incidence rate of 134 cases per 100,000 people.2 The 
diagnosis and treatment of TB are complex and often controversial.5 Numerous studies have reported co-infections with 
various strains of Mycobacterium or other pathogenic species in patients with pulmonary TB.6,7 Given that prompt and 
accurate diagnosis is essential for effective treatment, there is an urgent need for rapid screening and diagnostic methods 
to enhance TB management.

Metagenomic next-generation sequencing (mNGS) has recently emerged as a promising complementary approach and 
has been widely adopted for the diagnosis of various infectious diseases in clinical settings. It offers several advantages, 
including shortened turnaround time, unbiased detection, and semiquantitative assessment, allowing the theoretical 
identification of all pathogens present in a clinical sample. This technique is particularly valuable for detecting rare, 
novel, and atypical etiologies associated with complicated infectious diseases, thus facilitating more precise targeted 
antimicrobial therapy.8,9 Extensive research has demonstrated that mNGS can serve as an important complement to 
traditional etiological diagnostic methods for patients with TB owing to its superior performance.10,11 However, few 
studies have systematically characterized the spectrum of co-infecting pathogens in patients with suspected pulmonary TB.

The microbiota plays an important role in human health and the development of various diseases.12 High-throughput 
sequencing technologies have been applied to characterize human microbiota across different body habitats, including the 
gut,13 oral cavity14 and respiratory tract.15 The lungs and entire lower respiratory tract (LRT) host niche-specific 
microbial communities.12,16 Most lung microbiome studies have relied on 16S rRNA sequencing, which has several 
limitations, including potential amplification bias and inability to detect many microorganisms at the species and strain 
levels.17 Understanding lung microbiomes is essential for the early diagnosis of pulmonary TB, facilitating timely 
treatment, and improving prognosis. Some studies have used mNGS to investigate the respiratory microbiome in 
COVID-19 patients,18 community-acquired pneumonia (CAP) patients19 and people living with HIV.20 Most TB research 
has focused on microbial communities in gut or sputum samples using 16S rRNA sequencing, which provides limited 
information on the bacterial composition. Few studies utilizing mNGS have reported disruption of bronchoalveolar 
lavage fluid (BALF) in TB patients.5,21 However, it remains unclear whether these disruptions correlate with different 
infection patterns. Given that the respiratory microbiome encompasses both commensals and pathogenic organisms, 
integrating pathogen identification with comprehensive microbiome characterization using mNGS could enhance our 
understanding of pulmonary TB.

This retrospective cohort study extensively investigate the co-infected pathogens and lung microbiomes of patients 
clinically confirmed to have pulmonary TB, as well as patient cohorts with different infection patterns. Furthermore, we 
explored potential diagnostic biomarkers that could be used to differentiate between the patient cohorts. This study is the 
first to provide comprehensive information on the lung microbiomes of patients with pulmonary TB based on sensitive 
BALF mNGS compared to those without pulmonary TB, thereby offering valuable insights into the etiology of 
pulmonary infection and informing targeted therapy for patients with pulmonary TB.

Methods
Study Design and Patients
This study retrospectively enrolled patients with suspected pulmonary TB between January 2022 and June 2023 at The 
First People’s Hospital of Yongkang. Suspected pulmonary TB was diagnosed based on clinical manifestations and 
imaging examinations. The results of etiological screening of the enrolled patients were evaluated by a panel of clinical 
experts (including three experienced physicians). The sputum tests for these patients included Ziehl–Neelsen staining 
(AFS), Xpert, and bacterial culture. Given that conventional clinical examinations were unable to provide a definitive 
diagnosis, all enrolled patients underwent electronic bronchoscopy at our hospital. Chest CT scan revealed lesions with 
a brush-like appearance, prompting the collection of BALF for mNGS detection. Infectious diseases are diagnosed on 
the basis of microbiological tests, mNGS results, and clinical review results. Patients were classified into TB and non- 
TB groups based on comprehensive diagnostic criteria. The non-TB groups refer to patients who have not been 
diagnosed with TB. Notably, patients in whom nontuberculous mycobacteria (NTM) were detected, without the 
presence of MTBC, were also classified as non-TB. Combined with the mNGS results, TB groups were sub-divided 
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into only MTB infection (TB) and co-infection with MTB and NTM (TB+NTM) subgroups. Non-TB groups were 
subdivided into NTM infection without MTB infection (NTM) and non-MTB-and-non-NTM infection (Non-TB-NTM) 
subgroups. Patients with incomplete clinical data or without any microbial results, such as smear, culture, PCR, or 
Xpert, were excluded.

Clinical Data
Demographic information, clinical symptoms, laboratory test results, imaging examination results, diagnosis and treat-
ment history, and patient outcomes were collected from the electronic medical records. Laboratory data included white 
blood cells (WBC), hemoglobin (HGB), C-reactive protein (CRP), and procalcitonin (PCT).

Clinical Sample Collection and DNA Extraction
BALF samples were collected from each patient by experienced bronchoscopists through bronchoscopy under 
midazolam anesthesia, following standard operational procedures,22 with the consent of the patient or their parents/ 
guardians. DNA extraction and library preparation from clinical samples were performed using an NGS Automatic 
Library Preparation System (MatriDx Biotech Corp. Hangzhou). DNA quality was assessed using BioAnalyzer 2100 
(Agilent Technologies, Santa Clara, CA, United States) combined with quantitative PCR to measure adapters before 
sequencing.

Metagenomic Next-Generation Sequencing
Qualified DNA libraries were pooled and sequenced on an Illumina NextSeq500 system (50 bp single-end; San Diego, 
CA, United States). To control the quality of each sequencing run, a negative control and positive control were conducted 
in parallel (Supplemental Methods). Pathogen identification followed the data-filtering criteria established by MatriDx 
Biotechnology Co. Ltd.

Statistical Analysis
All collected data were statistically analyzed using the R package. Categorical variables, shown as frequencies and 
percentages, were compared using the Fisher’s exact test. Continuous measurement data following a normal distribution 
are shown as the mean (standard deviation) or mean (standard error), and non-normal distribution is shown as the median 
(range). Differences and significance between groups were calculated using Student’s t-test (for normally distributed 
data) and Wilcoxon rank-sum test or Kruskal–Wallis test (for non-normally distributed data). The data were visualized 
using R software (version 4.2.1) (Supplemental Methods).

Results
Demographics and Clinical Characteristics of Patients
A total of 264 BALF samples were collected from patients with suspected pulmonary TB for this study (Figure 1A). Of 
these, 48 had incomplete clinical data, and 18 lacked microbial results (cultures, PCR, or Xpert), leaving 198 patients in 
the study, including 87 clinically confirmed TB cases (TB, n=87) and 111 Non-TB cases (Non-TB, n=111). Among the 
87 TB patients, the positive rates for smear, culture, Xpert, and X-rays were as follows: 8 (9.20%), 30 (34.48%), 31 
(35.63%), and 65 (74.71%), respectively. The four subgroups, TB, TB+NTM, NTM, and Non-TB-NTM, have 76, 11, 21, 
and 90 cases, respectively. Among the 198 patients, 93 (47.0%) were females and 105 (53.0%) were males, with 
a median age of 44.50 (IQR: 27.00–60.75) years. There were statistically significant differences in patient age between 
the two groups (P=0.011) (Table 1) and the four subgroups (P=0.028) (Table 2). Although no significant differences were 
observed in WBC, HGB, and PCT between the two groups, CRP levels (P=0.017) were significantly higher in the TB 
group than in the Non-TB group. However, the laboratory findings of the four subgroups showed no significant 
differences.
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Spectrum Signature of Pathogenic in Patients with Suspected Pulmonary Infection 
Identified Through mNGS
A total of 63 pathogenic species were detected across all enrolled samples, including bacteria (n=19), fungi (n=18), 
viruses (n=6), MTB (n=5), and NTM (n=15) (Figure 1B, Supplementary Table 1). Although 22 shared pathogens were 
detected between the TB and Non-TB groups, a more diverse spectrum of pathogens was found in the non-TB patients 
(n=46) than in the TB patients (n=39) (Figure 1E, Supplementary Figure 1A). Only six shared pathogens were identified 
among the four subgroups, and a broader spectrum was observed in the Non-TB-NTM subgroup (n=35) (Figure 1E, 
Supplementary Figure 1B). Among all patients, 37 (19%) were free of any identified pathogens, including 13 and 24 
cases in the TB and Non-TB groups (Supplementary Figure 2A–C). Of the 161 cases with confirmed pathogens, 67 
(34%) were classified as mono-infections caused by a single type of pathogen (bacterial, fungal, viral, MTB, or NTM), 
whereas 94 (47%) were classified as co-infections caused by at least two microbial taxa (Supplementary Figure 2A). 
mNGS identified MTB in 45 of 74 TB cases with confirmed pathogens, including 13 (15%) as sole TB infections and 32 
(37%) as co-infections with other pathogens. Additionally, the results indicated that TB is often co-infected with bacterial 

Figure 1 Continued.
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species or at least two species (Supplementary Figure 2B). Among the 87 cases with confirmed pathogens in the Non-TB 
group, 41 (37%) were found to be mono-infections and 46 (41%) cases were categorized as mixed infections 
(Supplementary Figure 2C).

Pathogen counts (the number of different pathogenic species detected) and pathogen burden (the quantity of 
pathogens, measured using Reads Per Million, RPM) in each sample from different groups and subgroups were 
analyzed. Interestingly, the pathogen counts in the TB group were significantly higher than those in the Non-TB group 
(P=0.014), despite no significant difference in pathogen burden (Figure 1C). In terms of pathogen counts among the 

Figure 1 Profile and characteristics of pathogens identified in patients from different cohorts based on mNGS. (A) Flowchart of patients enrolled in this study. (B) 
Overview and distribution of pathogenic in different cohorts. The heatmap shows the abundance of the different pathogens (bacteria, fungi, viruses, MTB and NTM) with 
log10-transformed RPM of pathogens were applied. Group names, subgroup names and microbial taxonomy are indicated by color bars at the bottom. The barplot on the 
top shows the total counts of pathogens in each sample from the different groups, and the barplot on the right shows the total frequency of each pathogen found in all 
samples. (C) Comparison of the counts and burdens of pathogens in patients with or without MTB infections. Differences between groups were assessed using Wilcox-test. 
(D) Comparison of the counts and burdens of pathogens in patients from different subgroups. Differences between groups were assessed using Wilcox-test. (E) Venn 
diagram and Upset plot show the shared and unique pathogenic in the two groups and the four subgroups, respectively. (F) Co-occurrence network of pathogenic species 
among patients with or without MTB infections. (G) Co-occurrence network of pathogenic species among patients from different subgroups. Pathogenic species with r>0.3 
and p value<0.05 were selected. Node size indicates the abundance (log10-transformed RPM) of species and node color indicates the different taxonomy. The color of 
connections was used to distinguish the different microbial interactions, where red represents significantly positive interactions between species and blue represents 
significantly negative interactions.The thickness of connections is proportional to the strengthen of correlations (cor*0.75).

Table 1 Demographic and Clinical Characteristics of Patients in Different Groups

Characteristics Overall(N=198) TB(N=87) Non-TB(N=111) P-value

Demographics

Agea 44.50 [27.00, 60.75] 35.00 [23.00, 59.50] 49.00 [35.00, 61.00] 0.011

Genderb

Female 93 (47.0) 41 (47.1) 52 (46.8) >0.999

Male 105 (53.0) 46 (52.9) 59 (53.2)

(Continued)
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four subgroups, the TB+NTM subgroup exhibited significantly higher counts than both the TB subgroup (P<0.01) and 
Non-TB-NTM (P<0.01) subgroups (Figure 1D). Compared with the Non-TB-NTM subgroup, pathogen counts in the 
NTM subgroup were significantly higher (P<0.01). Conversely, the pathogen burden was significantly higher in the 
TB+NTM subgroup than in the Non-TB-NTM subgroup (P<0.01) (Figure 1D). As expected, the MTBC and MTB 
were predominant in patients with TB (Supplementary Figure 3A). In contrast, Human betaherpesvirus 7 and 
Escherichia coli were the most abundant species in the Non-TB group. Consistently, MTBC and MTB were 
predominant in the TB and TB+NTM subgroups. The most dominant species in the NTM subgroup included 
Escherichia coli, Staphylococcus aureus and Mycobacteroides chelonae, whereas Human betaherpesvirus 7, 
Klebsiella pneumoniae, and Escherichia coli were predominant in the Non-TB-NTM subgroup (Supplementary 
Figure 3B).

Spearman correlation analysis was performed to compare the co-occurrence network of pathogens between the 
groups and subgroups. The results showed significant positive correlations among the pathogens in the different patient 
cohorts. After excluding microbial species with correlations less than 0.3 or P values greater than 0.05, 36 interaction 
nodes and 98 connections were retained in the TB group, while 37 interaction nodes and 76 connections were retained 
in the Non-TB group. This indicates a more complex correlation among the pathogens in the TB group. Moreover, 
a strong correlation was observed between the MTB and NTM species in the TB group (Figure 1F, Supplementary 
Table 2). Among different subgroups, 21 interaction nodes and 40 connections were retained in the different 

Table 1 (Continued). 

Characteristics Overall(N=198) TB(N=87) Non-TB(N=111) P-value

Laboratory examination

WBC (*109/L)a 5.72 [4.34, 7.10] 5.59 [4.46, 6.54] 5.91 [4.30, 7.38] 0.475

HGB (g/L)c 131.38 (19.25) 128.74 (18.25) 133.45 (19.84) 0.087

CRP (ng/mL)a 0.50 [0.50, 5.24] 1.10 [0.50, 15.62] 0.50 [0.50, 2.62] 0.017

PCT (ng/mL)a 0.03 [0.01, 0.05] 0.02 [0.01, 0.05] 0.03 [0.01, 0.05] 0.705

Notes: aData were presented as median [IQR]. bData were presented as frequency (%). cData were presented as means (SD). 
Abbreviations: WBC, White blood cells; HGB, Hemoglobin; CRP, C-reactive protein; PCT, Procalcitonin.

Table 2 Demographic and Clinical Characteristics of Patients in Different Subgroups

Characteristics Overall(N=198) TB(N=76) NTM(N=21) TB+NTM(N=11) Non-TB-NTM(N=90) P-value

Demographics

Agea 44.50 [27.00, 60.75] 31.00 [22.75, 58.25] 50.00 [35.00, 59.00] 55.00 [36.00, 63.00] 49.00 [35.25, 61.00] 0.028

Genderb

Female 93 (47.0) 38 (50.0) 11 (52.4) 3 (27.3) 41 (45.6) 0.510

Male 105 (53.0) 38 (50.0) 10 (47.6) 8 (72.7) 49 (54.4)

Laboratory examination

WBC (*109L)a 5.72 [4.34, 7.10] 5.62 [4.56, 6.62] 5.92 [3.68, 6.99] 4.54 [4.09, 6.19] 5.91 [4.31, 7.82] 0.638

HGB (g/L)c 131.38 (19.25) 127.59 (18.44) 128.76 (21.18) 136.64 (15.38) 134.54 (19.47) 0.085

CRP (ng/mL)a 0.50 [0.50, 5.24] 1.45 [0.50, 14.84] 0.50 [0.50, 3.34] 0.92 [0.50, 25.95] 0.50 [0.50, 2.34] 0.113

PCT (ng/mL)a 0.03 [0.01, 0.05] 0.02 [0.01, 0.05] 0.03 [0.01, 0.04] 0.04 [0.02, 0.07] 0.02 [0.01, 0.06] 0.410

Notes: aData were presented as median [IQR]. bData were presented as frequency (%). cData were presented as means (SD). 
Abbreviations: WBC, White blood cells; HGB, Hemoglobin; CRP, C-reactive protein; PCT, Procalcitonin.
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subgroups, the TB subgroup retained 21 interaction nodes and 40 connections, the NTM subgroup had 19 nodes and 70 
connections, the TB+NTM subgroup included 27 nodes and 78 connections, and the Non-TB-NTM subgroup 
contained 29 nodes and 50 connections. These results indicate that the TB+NTM and Non-TB-NTM subgroups 
were more diverse and complex, with significant positive correlations, particularly in the TB+NTM subgroup. 
(Figure 1G, Supplementary Table 3).

Microbial Composition and Diversity of the Lower Respiratory Tract in Patients with 
Suspected Pulmonary Infection Identified Through mNGS
The composition and diversity of microorganisms in BALF samples from different patient cohorts were explored. After 
filtering out microbial species with low frequency (overall less than 10%), 261 microorganisms at the species level (235 
bacteria, 20 fungi, and 6 viruses) were included for further analyses. The heatmap in Figure 2A displays the top 50 
bacterial species, along with all fungal and viral species detected in the BALF samples from different groups and 
subgroups. Prevotella melaninogenica, Streptococcus mitis, and Prevotella jejuni were the most frequent bacterial 
species in all samples, whereas Malassezia restricta and Human betaherpesvirus 7 were the most prevalent fungal and 
viral species, respectively (Figure 2A, Supplementary Table 4). A high proportion of microbial species (89.7%) were 
shared between TB and Non-TB groups. However, 20 species were uniquely observed in the TB group and seven species 
were uniquely found in the Non-TB group (Figure 2B). Similarly, a substantial number of shared species (n=202) was 
identified across all subgroups, with fewer unique species observed in the various subgroups (Figure 2C). However, both 
alpha and beta diversity indices were not significantly different between the groups (Supplementary Figure 4A and B) 
and subgroups (Supplementary Figure 4C and D).

Microbial Species with Differential Abundance and Their Correlation with Clinical 
Parameters of Patients from Different Cohorts
To identify microbes that were significantly enriched in different groups and subgroups, linear discriminant analysis 
effect size (LEfSe) analysis was conducted. Several microbes, including MTBC, MTB, Streptococcus infantis and 
Campylobacter curvus, were significantly abundant in the TB group, whereas Corynebacterium striatum, 
Staphylococcus epidermidis, and Ralstonia mannitolilytica were significantly enriched in the Non-TB group 
(Figure 3A). When comparing the different subgroups, only four microorganisms were identified as significantly 
enriched: one in the TB+NTM subgroup and three in the NTM subgroup (Figure 3B). Specifically, Mycobacterium 
canettii was enriched in the TB+NTM subgroup, whereas Bacteroides zoogleoformans, Campylobacter curvus and 
Enterobacter cloacae complex were found to be significantly abundant in the NTM subgroup. To further investigate 
the correlation between key microbial species in BALF and clinical characteristics, a correlation analysis was performed 
using Spearman’s rank-based test. Interestingly, the abundance of MTBC was significantly negatively correlated with the 
level of HGB (R=−0.17, P=0.015), whereas it exhibited a significant positive correlation with the level of CRP (R=0.16, 
P=0.029) (Figure 3C, Supplementary Figure 5 and Supplementary Table 5). However, no significant differences were 
observed between the four key microbes screened from different subgroups and their clinical indices (Figure 3D, 
Supplementary Table 6).

Random Forest-Based Classification Model for Screening Potential Biomarkers
A random forest model was constructed based on differential microorganisms and potential clinical indices. Ten-fold 
cross-validation was employed, with a training-to-testing set ratio of 3:1. A combination of eight differential micro-
organisms derived from the LEfSe results and all five clinical parameters was selected for the random forest classification 
model to differentiate between the TB and Non-TB cohorts. The importance of the 13 features mentioned above was 
ranked based on the mean decrease in accuracy, as shown in Figure 3E. The top four important features were MTBC, 
Campylobacter curvus, MTB and age. We further assessed the diagnostic performance of the classifiers based on eight 
species combined with five clinical indices using the ROC curves (Figure 3F). The results indicated that the current 
classifier demonstrated satisfactory diagnostic performance, with an AUC of 0.86, a specificity of 81.2%, and 
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a sensitivity of 78.6%. A combination of four differential microbes based on the LEfSe results and all five clinical 
parameters was selected for the random forest classification model to differentiate the different patient subgroups. As 
shown in Figure 3G, Campylobacter curvus, age, Mycobacterium canettii and CRP level were ranked as the four most 
important variables based on the mean decrease in accuracy. Similarly, the diagnostic performance of the classifiers based 

Figure 2 Overview and distribution of microbial species in BALF samples from patients in different cohorts. (A) The heatmap shows the abundance of the top 50 bacteria, 
all fungi and all viruses species, with log10-transformed RPM of microbes were applied. Group names, subgroup names and microbial taxonomy are indicated by color bars 
on the right. The barplot on the top shows the total counts of microbes in each sample from the different groups, and the barplot on the right shows the total frequency of 
each microbe found in all samples. (B) Venn diagram shows the shared and unique pathogenic in the two groups. (C) Upset plot shows the shared and unique pathogenic in 
the four subgroups.
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Figure 3 Predictive model for Mycobacterium tuberculosis infection based on microbial species and clinical parameters. (A) Microbial species with differential abundance 
between TB and Non-TB groups identified through LEfSe analysis with the thresholds of log10 LDA score≥2 and P value<0.05. (B) Microbial species with differential 
abundance between different subgroups identified through LEfSe analysis with the thresholds of log10 LDA score≥2 and P value<0.05. (C) Spearman correlation analysis of 
differential microbes between groups and clinical parameters of patients. (D) Spearman correlation analysis of differential microbes between subgroups and clinical 
parameters of patients. Orange values indicate species were positively correlated with clinical data, while blue ones indicate the species were negatively correlated with 
clinical data. Significant correlations are denoted with asterisks, where * represents P<0.05, ** represents P<0.01 and *** represents P<0.001. (E) Random forest-based 
classification model and contribution of differential microbial species and clinical parameters between groups were ranked by mean decrease accuracy. (F) Random forest- 
based classification model and contribution of differential microbial species and clinical parameters between subgroups were ranked by mean decrease accuracy. (G) 
Receiver operating characteristic curve (ROC) of random forest model for classifying different groups. (H) Receiver operating characteristic curve (ROC) of random forest 
model for classifying different subgroups.
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on the nine species combined with the five clinical indices was evaluated using the ROC curves (Figure 3H). The results 
showed that the current classification model was effective in distinguishing the different patient subgroups, with an 
average AUC of 0.571.

Discussion
To our knowledge, this is the first study to comprehensively investigate the spectrum of co-infectious pathogens in 
patients with suspected TB. Using mNGS technology, we identified 5 kinds of MTB in patients diagnosed with 
pulmonary TB. Previous report confirmed that the 16S rRNA gene sequencing approach lacks sensitivity for detecting 
NTM in culture-positive respiratory samples.23 Furthermore, mNGS effectively identifies various NTM species, a task 
that is often challenging using culture-based methods. Our study revealed that TB patients were frequently co-infected 
with NTM and other pathogenic bacteria, fungi, and virus species. Previous studies utilizing mNGS have highlighted its 
unique advantages in identifying pulmonary TB along with other co-infections, including Staphylococcus aureus, 
Pseudomonas aeruginosa, Human herpesvirus, Cryptococcus neoformans and Candida albicans.7,24 Moreover, we 
observed an instance of mixed MTB infection, including co-infection with different strains or Mycobacterium Avium 
complex (MAC).6 Generally, MTB and NTM exhibit similar clinical manifestations, complicating the differential 
diagnosis. The most abundant species identified in Non-TB-NTM subgroups were Human betaherpesvirus 7, 
Klebsiella pneumoniae, and Escherichia coli. Human betaherpesvirus 7 is a common virus that can cause latent 
infections and may contribute to immune dysregulation, particularly in immunocompromised individuals.25 Klebsiella 
pneumoniae, an opportunistic pathogen, is known for causing a wide range of infections, including pneumonia, which 
can complicate TB diagnosis and treatment due to similar clinical manifestations.26 Escherichia coli, while primarily 
associated with gastrointestinal infections, can also cause respiratory infections, especially in immunocompromised 
patients.27 In TB patients, the presence of these pathogens can exacerbate the clinical course and complicate treatment. 
For instance, Klebsiella pneumoniae is known for its ability to evade the host immune system through various virulence 
factors, such as capsules and siderophores, which enhance its pathogenicity.26 The pathogen spectrum in patients was 
more diverse and complex, with co-infected patients showing stronger associations between pathogens. We propose that 
these findings may be linked to an increased risk of opportunistic infections resulting from immune dysfunction in TB 
patients, particularly among those co-infected with NTM. Further validation of this hypothesis will require additional 
clinical data.28

Dysbiosis of lung microbiota may play a significant role in the pathophysiological processes associated with TB. 
Research on TB-associated lung microbiota is still in its infancy, in contrast to the extensively studied gut microbiota 
in patients with TB patients.29 This study used mNGS to evaluate the lung microbiota across different cohorts of 
patients with suspected pulmonary TB. Our aim was to identify variations in the composition and diversity of 
microbial communities in patients with or without TB as well as among patients with different infection patterns. 
BALF samples were selected for analysis to accurately reflect the lung microbiota, BALF samples were selected for 
analyses.30 Our findings revealed that different patient cohorts predominantly shared similar lung microbial species, 
with the most frequently identified being Prevotella melaninogenica, Streptococcus mitis, Prevotella jejuni, and 
Veillonella parvula. Notably, Prevotella and Veillonella spp. are known to produce short-chain fatty acids, enhance 
immune responses, and suppress inflammation at other mucosal sites.31 Although previous studies have reported 
significant differences in the alpha and beta diversities of microbial communities in the respiratory tract of patients 
with TB compared to healthy individuals,29,32 our results did not align, revealing no significant differences in 
microbial diversity. Variations in study outcomes may be attributed to differences in populations, experimental 
protocols, geographic factors, sample size, and sample types (eg, BALF versus sputum), as well as differences in 
the study cohorts used for comparison.

Although the overall microbial composition and diversity did not exhibit significant alterations, specific microorgan-
isms were selectively enriched in different patient groups, as determined by LEfSe analysis. The MTBC, MTB, 
Streptococcus infantis and Campylobacter curvus were significantly more abundant in the TB group. Conversely, 
Corynebacterium striatum, Staphylococcus epidermidis, Ralstonia mannitolilytica and Mycoplasma hominis were sig-
nificantly enriched in the Non-TB group. In addition to MTB, the most abundant species in patients with TB include 
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Streptococcus infantis and Campylobacter curvus. In contrast, the enriched microbes in patients were primarily 
commensal microorganisms, which may have the potential to become opportunistic pathogens. Ralstonia spp. are 
aerobic, gram-negative, non-fermenting bacteria that constitute part of the normal microbiota of the oral and upper 
respiratory tracts but are increasingly recognized as opportunistic pathogens in the lower respiratory tract.29 Subgroup 
comparisons showed that the TB+NTM subgroup was enriched in Mycobacterium canettii, whereas the NTM subgroup 
showed higher levels of Bacteroides zoogleoformans, Campylobacter curvus and Enterobacter cloacae complex. 
However, the underlying mechanisms for the prevalence of these species with different infection patterns warrant further 
investigation.

Our analysis revealed that the abundance of the MTBC was significantly negatively correlated with HGB levels, 
whereas it was significantly positively correlated with CRP levels. TB is a chronic infectious disease characterized by 
elevated levels of inflammatory markers that may lead to metabolic defects that increase HGB consumption.5 Low HGB 
levels are often associated with anemia, which can increase susceptibility to infections, including TB, by impairing 
immune function.33,34 Thus, our findings suggest that anemia may be a risk factor for TB. Biomarkers represent an 
emerging area of research in the diagnosis and treatment. A recent investigation employed a random forest model for 
feature selection and biomarker screening in patients with lung cancer based on microbial profiles identified through 
mNGS.35 To further evaluate the diagnostic performance of specific microbes in patients with TB, we constructed 
random forest classifiers using these differential microbial species, in conjunction with five clinical indices identified as 
potential biomarkers. The classification model demonstrated promising diagnostic capabilities for pulmonary TB, 
achieving an AUC≥0.8. Previous studies have employed random forest screening to predict biomarkers for TB and 
have reported similar diagnostic performance.13

Nevertheless, several limitations must be considered in the present study. First, healthy lung microbiota were not 
included, as obtaining BALF samples from healthy individuals poses significant challenges. Future investigations should 
aim to recruit healthy volunteers for BALF sampling to facilitate comparative analysis of the lung microbiota. Second, 
this was a retrospective single-center study with a relatively small cohort of patients. Future research should include 
a larger sample size from diverse regions of China to validate our findings further. Third, our study did not include 
a longitudinal analysis of TB patients. Analyzing the lung microbiota and immune response of patients with TB 
throughout the treatment course would likely provide valuable insights into the dynamics of the lung microbiome during 
infection and the effects of various treatment modalities.

Conclusion
Our findings highlight the complexity of co-infection patterns in pulmonary TB and emphasize the potential of 
integrating microbial and clinical markers to improve diagnostic accuracy. This study provides valuable insights into 
the role of the lung microbiome in TB and informs future research on targeted therapies for this disease. In conclusion, 
the present study identified differences in the pathogen spectra and specific microbial species between TB and Non-TB 
patients. Several differential lung microbes and clinical parameters, such as MTBC, MTB, Streptococcus infantis, and 
Campylobacter curvus, may serve as potential biomarkers to distinguish patients with TB from those without TB. These 
findings may enhance the diagnosis and management of both TB and Non-TB patients, thereby improving clinical 
outcomes.
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