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Background: Despite successful recanalization after thrombectomy in patients with acute ischemic stroke, poor prognosis often 
persists. This study aimed to investigate the factors contributing to clinically ineffective reperfusion (CIR), develop and validate 
a machine-learning model to predict CIR, and provide guidance for future clinical treatments.
Methods: We collected data from patients undergoing thrombectomy at Shanghai Fourth People’s Hospital between December 2021 
and June 2024. The clinical variables were compared between the clinically ineffective and effective recanalization groups using 
univariate analysis. Four machine learning models were developed: random forest (RF), support vector machine (SVM), decision tree 
(DT), and k-nearest neighbor (KNN). Model performance was evaluated using receiver operating characteristic (ROC) curves and 
heatmap visualization. The SHAP method rank the feature importance and provided interpretability for the final model.
Results: Among the four machine learning models, the RF model showed the best performance, with an area under the curve (AUC) 
of 0.96 (95% CI: 0.91–1.0), accuracy of 0.93, and specificity of 0.97 on the test dataset. The SHAP algorithm identified the number of 
endovascular thrombectomy (EVT) attempts as the key factor influencing CIR. Based on the RF model, a web-based calculator for 
CIR prediction is available at https://ineffectivereperfusion.shinyapps.io/calculate/. The final model included ten parameters: EVT 
attempts, diabetes mellitus, previous ischemic stroke, National Institutes of Health Stroke Scale (NIHSS score), preoperative infarction 
in the basal ganglia, baseline diastolic blood pressure, clot burden score (CBS)/basilar artery on computed tomography angiography 
(BATMAN) score, stroke cause, collateral grade, and MLS.
Conclusion: We developed and validated the first interpretable machine learning model for CIR prediction after EVT, surpassing 
traditional methods. Our CIR risk prediction platform enables early intervention and personalized treatment. The number of EVT 
attempts has emerged as a key determinant, underscoring the need for optimized procedural timing to improve outcomes.
Keywords: machine learning, clinically ineffective reperfusion, predictive model, acute ischemic stroke, online predictive platform

Introduction
Acute ischemic stroke is caused by the obstruction of cerebral blood vessels, leading to interrupted blood supply, 
hypoxia, and necrosis of brain tissue.1–3 It manifests as acute focal neurological deficits and is associated with high rates 
of disability and mortality.4 Reperfusion therapy is considered the first-line treatment for acute ischemic stroke caused by 
large-vessel occlusion.5 Timely restoration of blood flow to the brain is associated with better clinical outcomes.6,7 
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However, several studies8,9 have shown that patients with acute stroke undergoing thrombectomy often achieve 
recanalization (modified treatment in cerebral infarction (mTICI) grade 2b-3) but fail to attain functional independence 
(modified Rankin scale (mRS) score 0–2). Clinically ineffective reperfusion (CIR) is regarded as a treatment failure 
despite successful vascular recanalization.10 Therefore, there is an urgent need to enhance understanding of CIR- 
associated risk factors and develop effective predictive methods to facilitate personalized diagnostic, treatment, and 
follow-up strategies. Prognostic models based on machine learning methods often outperform traditional statistical 
models in terms of predictive accuracy.11 In this study, we retrospectively analyzed the risk factors for CIR in patients 
undergoing thrombectomy at our cerebrovascular center. We developed the first machine learning model for CIR 
prediction, which demonstrated high accuracy. The SHAP algorithm was used to interpret the model and a web-based 
calculator was developed to facilitate its clinical application.

Methods
Study Design and Population
We collected data from patients with acute ischemic stroke who underwent thrombectomy at Shanghai Fourth People’s 
Hospital between December 2021 and June 2024. The inclusion criteria were: (1) underwent thrombectomy; (2) had 
complete imaging and clinical data; and (3) had complete clinical follow-up information. The exclusion criteria were: (1) 
pre-stroke mRS > 2 due to physical disability, prior history of cancer, or surgery; (2) lack of complete imaging data; and 
(3) loss to follow-up after surgery. The study was conducted with Institutional Review Board approval from the Shanghai 
Fourth Hospital affiliated with Tongji University in China (No: 2024218–001). As this study was retrospective, informed 
consent was waived. The guidelines outlined in the Declaration of Helsinki were followed in this study.

Assessment of Study Outcomes
CIR was defined as a postoperative mTICI grade ≥ 2b and an mRS score > 2 at three months post-discharge. Imaging 
results were independently assessed by two senior neurosurgeons, both blinded to the predictor information. In cases of 
disagreement, a third blinded neurosurgeon was consulted, and the final decision was reached by consensus.

Variables Selection
Initially, univariate analysis was conducted to identify statistically significant variables. 22 statistically significant 
parameters were identified. Using the Lasso algorithm, we further reduced these to 16 parameters, followed by 
mRMR selection to obtain the top 10 statistically significant variables, which were subsequently included in the machine 
learning models.

Model Development, Validation and Performance Evaluation
We optimized the hyperparameters of random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and 
decision tree (DT) machine learning models using a grid search with five-fold cross-validation. The hyperparameters were 
selected based on the highest area under the curve (AUC) score obtained on the validation set. The ranges of hyperparameters 
tested for each model are as follows: RF: n_estimators (50, 100, 200), max_depth (5, 10, 20), min_samples_split (2, 5, 10), 
min_samples_leaf (1, 2, 4), max_features (“sqrt”, “log2”); SVM: C (0.1, 1, 10, 100), kernel (“linear”, “rbf”, “poly”, 
“sigmoid”), gamma (“scale”, “auto”, 0.01, 0.1, 1), degree (for “poly”, 2, 3, 4); KNN: n_neighbors (3, 5, 7, 10), weights 
(“uniform”, “distance”), metric (“euclidean”, “manhattan”, “minkowski”); DT: criterion (“gini”, “entropy”), max_depth (5, 
10, 20), min_samples_split (2, 5, 10), min_samples_leaf (1, 2, 4). Th four machine learning models—RF, SVM, DT, and KNN 
—were applied to predict CIR risk in patients with ischemic stroke undergoing thrombectomy, and all data were randomly 
split into training (70%) and testing (30%) sets. The training set was used to construct the models and the test set was used to 
evaluate them. Model performance was assessed using multiple metrics, including the receiver operating characteristic (ROC) 
curve, negative predictive value (NPV), positive predictive value (PPV), sensitivity, specificity, accuracy, and F1 score, and 
the best predictive model was selected based on its performance in the testing dataset. A heat map was used to analyze the 
performance of the optimal model.
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Model Explanation
The SHAP algorithm addresses interpretability challenges posed by the black-box nature of machine learning models. It 
ranks the importance of input parameters and explains the model’s final outputs. By quantifying the contribution of each 
parameter across individual samples, the SHAP algorithm enhances model interpretability and transparency.

Developing an Online CIR Risk-Prediction Platform
To facilitate clinical applications, we integrated the optimal model into a Shiny-based web platform to develop an online 
calculator. The calculator provides the predicted probability of CIR by inputting the relevant parameters of the patients 
undergoing thrombectomy.

Results
Baseline Clinical Information
A total of 177 patients who underwent thrombectomy were included in this study, 60 of whom were classified as having 
CIR 3 months postoperatively. The clinical characteristics of the patients are summarized in Table 1. Significant 
differences were observed in several clinical features between the clinically effective reperfusion and clinically ineffec
tive reperfusion groups. Patients in the CIR group, compared to the non-CIR group, tended to be older (78 vs 71 y) and 

Table 1 Baseline Characteristics of Patients with Effective and Ineffective Reperfusion

Clinically Effective  
Reperfusion(n=117)

Clinically Ineffective  
Reperfusion(n=60)

P value

Male mean 66(56.4%) 28(46.67%) 0.219

Age(years) median (IQR) 71(66–78) 78(68–86) 0.002

Previous ischemic stroke 14(11.97%) 35(58.33%) <0.001

Diabetes mellitus 14(11.97%) 45(75%) <0.001

Hypertension 64(54.7%) 40(66.67%) 0.126

Atrial fibrillation 50(42.74%) 43(71.67%) <0.001

Hyperlipidemia 16(13.68%) 8(13.33%) <0.001

Coronary heart disease 15(12.82%) 13(21.67%) 0.127

Smoking 5(4.27%) 6(10%) 0.135

Drinking 20(17.09%) 15(25%) 0.211

NIHSS score median (IQR) 10(3–14) 15(10–22) <0.001

Baseline SBP (mmHg) median (IQR) 135(122–149) 145(138–151.25) 0.001

Baseline DBP (mmHg) Median (IQR) 78(69–85) 87(82.75–88.25) <0.001

ASPECTS/pc-ASPECT median (IQR) 8(6–10) 8(7–9) 0.904

Serum glucose (mmol/l) median (IQR) 6.4(5.5–7.6) 7.95(6.1–9.8) <0.001

Cause of stroke <0.001

Cardioembolic 42(35.90%) 34(56.67%)

Intracranial atherosclerosis 57(48.72%) 6(10%)

Undetermined 18(15.38%) 20(33.3%)

(Continued)
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Table 1 (Continued). 

Clinically Effective  
Reperfusion(n=117)

Clinically Ineffective  
Reperfusion(n=60)

P value

Location of intracranial artery occlusion 0.427

ICA 29(24.79%) 18(30%)

MCA 74(63.25%) 32(53.33%)

VBDA 14(11.97%) 10(16.67%)

Postoperative anticoagulation or antiplatelet therapy 0.03

Anticoagulation 21(17.95%) 9(15%)

Antiplatelet 30(25.64%) 5(20%)

None 62(52.99%) 44(73.33%)

Both 4(3.42%) 2(3.33%)

Thrombolysis 48(41.03%) 18(30%) 0.151

General anaesthesia 71(60.68%) 37(61.67%) 0.899

Preoperative infarction involving the basal ganglia area 44(37.61%) 48(80%) <0.001

Cerebral atrophy 87(74.36%) 51(85%) 0.106

Postoperative mTICI 0.219

2b 17(14.53%) 15(25%)

2c 27(23.08%) 11(18.33%)

3 73(62.39%) 34(56.67%)

EVT operative times 1(1–2) 5(3.75–5.25) <0.001

Collateral grade <0.001

0–1 21(17.95%) 38(63.33%)

2 28(23.93%) 11(18.33%)

3–4 68(58.12%) 11(18.33%)

Infarct core volume(mL) 11(0–42) 27.5(7–76.5) 0.001

Large infarct core 11(9.4%) 13(21.67%) 0.024

CBS/BATMAN 0.001

0–4 39(33.33%) 36(60%)

5–7 40(34.19%) 18(30%)

8–9 38(32.48%) 6(10%)

Mismatch (mL) 63(38–115) 71(32.25–112.75) 0.906

Tmax>10s(mL) 32(9–73.8) 56(20.5–95.25) 0.064

Tmax>8s(mL) 54(18–101) 84(27.75–125) 0.089

Tmax>6s(mL) 94(50–146.5) 115.5(52.75–176) 0.108

(Continued)
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were more likely to have a history of previous ischemic stroke, diabetes mellitus, atrial fibrillation, and hyperlipidemia. 
They also had higher NIHSS scores (15 vs 10), systolic blood pressure (145 vs 135 mm Hg), diastolic blood pressure 
(DBP: 87 vs 78 mm Hg), serum glucose levels (7.95 vs 6.4 mmol/L), endovascular thrombectomy (EVT) attempts (5 
vs 1), infarct core volumes (27.5 vs 11 mL), hypoperfusion intensity ratios (0.5 vs 0.4), door-to-magnetic resonance 
imaging (MRI) times (48 vs 42 min), and door-to-puncture times (48.5 vs 36 min). Additionally, collateral grades and 
clot burden scores (CBS) were significantly lower in the CIR group than in the clinically effective reperfusion group, and 
patients with cardioembolic stroke or those not receiving postoperative anticoagulant or antiplatelet therapy were more 
likely to experience CIR (p < 0.05).

Selection of Predictor Variables
We employed the mRMR and LASSO algorithms for feature selection (Figure 1). Based on the univariate analysis, 22 
statistically significant parameters were identified. Using the LASSO algorithm, we further reduced these to 16 
parameters, followed by mRMR selection to obtain the top 10 statistically significant variables, which were subsequently 

Table 1 (Continued). 

Clinically Effective  
Reperfusion(n=117)

Clinically Ineffective  
Reperfusion(n=60)

P value

Tmax>4s(mL) 174(118–243) 187(126.75–328) 0.203

HIR 0.4(0.1–0.5) 0.5(0.275–0.6) 0.032

MLS(cm) 0.21(0.16–0.27) 0.24(0.17–0.37) 0.014

Door to CT time(min) 14(11–20) 16(12–23.25) 0.121

Door to MRI time(min) 42(32–53) 48(37–64.25) 0.013

Door to puncture time(min) 88(70–106) 98(79.5–131.25) 0.026

Puncture to recanalization time(min) 36(24–57) 48.5(31.5–75.25) 0.006

Abbreviations: *ASPECTS, Alberta Stroke Program Early CT Score; CBS, Clot Burden Score; NIHSS, National Institutes of Health Stroke 
Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; mTICI, modified Thrombolysis In Cerebral Infarction; ICA, internal carotid 
artery; BATMAN, basilar artery on computed tomography angiography score; MLS, MLS, Maximal midline shift.

Figure 1 Feature selection. (a) CV,10-fold cross-validation. (b) Lasso, Least absolute shrinkage and selection operator. (c) mRMR, max-relevance and min-redundancy.
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included in the machine learning models (RF, DT, SVM, and KNN). The importance score for each variable was 
calculated and visualized using a bar plot.

Model Construction and Performance Evaluation
We utilized 10-fold internal cross-validation to construct four machine learning models. The RF model demonstrated the 
best performance, achieving an AUC of 0.96 (95% CI: 0.91–1.0), accuracy of 0.93, and specificity of 0.97 in the test 
dataset (Figure 2 and Table 2).

Heatmap Analysis of RF Model Variables
A heatmap was generated to illustrate the performance of the RF model in predicting CIR risk after thrombectomy 
(Figure 3). Different colors represented the actual values of clinical characteristics across patients. The heatmap analysis 
showed that the RF model accurately distinguished between the CIR and clinically effective reperfusion groups, 
demonstrating its excellent classification ability and potential utility in managing high-risk thrombectomy patients.

Model Explanation
The SHAP algorithm was used to evaluate the importance of each variable in the RF model and its contribution to the 
final prediction (Figure 4). The bar plot emphasized that EVT attempts, with the highest SHAP value (Figure 4b), were 

Figure 2 Performance of machine learning model. (a)RF-model (auc=0.96,95% CI=0.91–1.0). (b)DT-model (auc=0.93,95% CI=0.86–1.0). (c)SVM-model (auc=0.89,95% 
CI=0.80–0.98). (d)KNN-model (auc=0.92,95% CI=0.83–1.0).
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the most significant risk factors for CIR. Collateral grade (Figure 4b) was identified as the most critical imaging 
parameter for predicting CIR.

An Online CIR Risk-Prediction Platform
As shown in Figure 5, an online CIR risk-prediction platform was developed based on the optimal model to predict the 
probability of CIR three months after discharge in patients following thrombectomy. By inputting the ten required 
parameters, the web calculator (at the following link: https://ineffectivereperfusion.shinyapps.io/calculate/.automatically) 
outputs the predicted probability of CIR.

Figure 3 Variable heatmap of the random forest (RF)model predicting clinically ineffective reperfusion (CIR) in patients with thrombectomy. Each row represents a variable 
and each column reflects a sample, with colors indicating the variables’ value. The legend represents the different values ranges of each variable, including CIR(1), EVT times, 
Diabetes mellitus(1), PIS (Previous ischemic stroke,1), PIIBGA (Preoperative infarction involving the basal ganglia area,1), CBS/BATMAN (Clot burden score/Basilar Artery 
on Computed Tomography Angiography score,1:0–4;2:5–7,3:8–10), Cause of stroke(Toast) (1:Large-Artery Atheorothrombosis, LAA;2:Cardioembolism;3:Undetermined 
Etiology), Collateral grade(ASITN)(1:0–1, 2:2, 3:3–4), MLS (Maximal midline shift), RF predicted value. Color gradients indicate the value ranges of variables, and categorical 
variables are represented by different colors for categories.

Table 2 AUC, Sensitivity, Specificity, Accuracy, F1 Score, PPV and NPV of mL Model

Model AUC(95% CI) Sensitivity Specificity Accuracy F1 score PPV NPV

RF 0.96,0.91–1.0 0.84 0.97 0.93 0.89 0.94 0.92

DT 0.93,0.86–1.0 0.95 0.91 0.93 0.9 0.86 0.97

SVM 0.89,0.80–0.98 0.84 0.86 0.85 0.8 0.76 0.91

KNN 0.92,0.83–1.0 0.94 0.86 0.89 0.86 0.78 0.97
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Discussion
Timely thrombectomy and complete vascular recanalization are often associated with improved prognosis in patients 
with acute ischemic stroke; however, complete vascular recanalization does not always guarantee favorable clinical 
outcomes, as numerous factors influence prognosis.12–16 This study retrospectively analyzed the clinical parameters of 
patients with acute ischemic stroke treated at our cerebrovascular center, identified the risk factors for clinical CIR, and 
developed the first machine learning model for CIR prediction, aiding in personalized treatment planning for future 
patients.

This study identified 22 risk factors for CIR, with the number of EVT attempts being the most critical. Following 
acute ischemic stroke, a higher number of thrombectomy attempts during standard procedures increases the likelihood of 

Figure 4 RF model explanation using the Shapley Additive exPlanation (SHAP) method. (a) SHAP dot plot: Points farther from the centerline indicate higher SHAP values, 
suggesting an increased probability of CIR. Each point represents the SHAP value of a parameter, with red indicating higher values and blue indicating lower values. The 
clustering of points reflects parameter density. (b) SHAP bar plot: This bar plot illustrates the contribution of each parameter to the model and ranks them in descending 
order of importance.

Figure 5 An online CIR risk-prediction platform was developed to predict the probability of CIR three months after discharge in patients following thrombectomy.
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CIR, a finding corroborated by other studies.17 Procedure durations exceeding 60 min and more than three thrombectomy 
attempts are significant contributors to CIR, emphasizing the importance of achieving first-pass recanalization.18,19 Our 
study demonstrated that CIR is associated with infarction location, with preoperative infarction involving the basal 
ganglia identified as a significant risk factor. Patients with ischemic stroke who did not have preoperative infarction in the 
basal ganglia area were more likely to achieve favorable postoperative outcomes. Previous studies20,21 have shown that 
core infarct volume is associated with prognosis, a finding supported by our results. Larger core infarcts were associated 
with worse prognosis; however, the presence of a large infarct alone was not predictive of outcomes, possibly due to the 
study’s threshold of 80 mL for defining large infarcts. Our findings do not support the conclusion that larger core infarcts 
are unrelated to prognosis. This study incorporated four temporal parameters, of which three (door-to-MRI time, door-to- 
puncture time, and puncture-to-recanalization time) demonstrated statistically significant associations with patient out
comes. Our findings indicate that shorter time to diagnostic imaging, earlier surgical intervention, and more rapid 
vascular recanalization are consistently associated with a more favorable prognosis. Indeed, when patients experience 
acute cerebral infarction, neurons immediately begin to undergo cell death due to ischemia and hypoxia.22 However, 
timely vascular recanalization effectively salvages endangered brain tissue within the ischemic penumbra and signifi
cantly mitigates the degree of neurological functional impairment, thereby improving long-term patient outcomes.23

Previous studies have reported that even with successful recanalization, a subset of patients with acute ischemic 
stroke caused by distal medium vessel occlusion (DMVO) may experience poor outcomes or mortality.24,25 In this study, 
among 106 patients with middle cerebral artery (MCA) occlusion, 32 (30.2%) exhibited clinically ineffective reperfusion 
(CIR), a proportion higher than that reported in the literature.

Consistent with prior findings,26,27 our results demonstrated that endovascular thrombectomy yielded better outcomes 
in patients with low baseline NIHSS scores compared to those with higher scores. Notably, the CIR group had 
significantly higher NIHSS scores (mean ± SD: XX ± XX) than the clinically effective reperfusion group (XX ± XX, 
P < 0.05), suggesting that the severity of initial neurological deficits may influence reperfusion efficacy.

Previous studies have successfully developed and validated early mortality prediction models for patients with acute 
ischemic stroke undergoing EVT, demonstrating the significance of machine learning algorithms in predicting 
outcomes.28 These findings align with our hypothesis that precise predictive tools can effectively optimize stroke 
treatment strategies and significantly improve patient survival rates.

Based on 10 CIR-related parameters, we developed four machine learning models, with the RF model achieving the 
highest AUC, accuracy, and specificity. Random forest29,30 is an ensemble learning algorithm that constructs multiple 
decision trees and aggregates their votes to complete classification tasks. Each tree is trained on different subsets of data 
(via bootstrap sampling) and random feature subsets, reducing overfitting and improving generalization. The RF 
algorithm captures nonlinear relationships within data, making it well-suited for handling complex datasets. The DT 
model31 also performed well (AUC: 0.93, accuracy: 93%), but its lower specificity (91%) suggests a slightly higher false 
positive rate, likely due to its tendency to overfit. The SVM model32 had the lowest AUC (0.89) and accuracy (85%), 
potentially owing to its sensitivity to hyperparameter tuning and small sample size. The KNN model33 achieved moderate 
performance (AUC: 0.92), but its lower specificity (86%) suggests that it may be more affected by high-dimensional data 
and noise. RF emerged as the most suitable model for CIR prediction, balancing sensitivity (0.84) and specificity (0.97) 
while minimizing false positives and false negatives. The ensemble nature of RF makes it more robust than DT, whereas 
its automatic feature selection enhances generalization, addressing the limitations observed in SVM and KNN.

To enhance the model interpretability, we employed the SHAP algorithm.34,35 SHAP, based on game theory, 
calculates the marginal contributions of features to prediction outcomes, ensuring consistent and locally accurate 
explanations. It quantifies feature importance and interactions, revealing the decision-making logic of the predictive 
model. Finally, we developed an online CIR risk prediction platform using the RF model. By entering ten key 
parameters, clinicians can obtain the predicted probability of the 3-month CIR for patients undergoing EVT. This can 
assist in risk stratification, prognosis estimation, and treatment discussions with patients and their families. We recognize 
that there may be potential barriers to implementation, including clinical workflow integration, for which the calculator 
needs to be seamlessly embedded into electronic health records for real-time access, and data privacy and security, to 
ensure compliance with healthcare data protection regulations.
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Our study yielded valuable findings, but it has several limitations. First, our study may be subject to bias from 
unmeasured confounders because not all relevant clinical variables were included in the analysis. Factors such as 
comorbidities, prior stroke history, and detailed neuroimaging biomarkers might have influenced the predictive model, 
but were not fully accounted for. Future studies should incorporate a more comprehensive set of variables to enhance the 
model accuracy. Second, owing to the relatively small sample size, our model may be prone to overfitting, meaning it 
might perform well on the training data but generalize poorly to independent datasets. Cross-validation techniques have 
been applied to mitigate this problem. Finally, the limited sample size may have affected the statistical power, making 
some subgroup comparisons less reliable. Future studies with larger multicenter datasets are required to validate the 
model’s performance across different patient populations.

Conclusion
This study identified the risk factors associated with CIR, highlighting the number of EVT attempts as the most critical 
determinant. We developed the first machine-learning model to accurately predict CIR. Furthermore, a CIR risk- 
prediction platform was built based on the RF model, enhancing the clinical utility and value.

Abbreviations
AUC, area under the curve; BATMAN, basilar artery on computed tomography angiography; CBS, clot burden score; 
CIR, clinically ineffective reperfusion; DT, decision tree; EVT, endovascular thrombectomy; KNN, k-nearest neighbor; 
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