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Introduction: High-dose methotrexate is a typical chemotherapy that is widely used in the treatment of osteosarcoma. However, the 
unique dose-response relationship of methotrexate makes its treatment window relatively narrow, and its clinical use is in a dilemma: 
either the drug concentration in the patient’s body cannot reach the effective concentration level, or adverse reactions may occur due to 
drug overdose. For this circumstance, monitoring and predicting the drug concentration in the patient’s body is well founded and 
necessary. While pharmacokinetic models exist, they often oversimplify patient-specific covariates. This study addresses the unmet 
need for early-exposure prediction through interpretable machine learning, enabling data-driven decisions before toxicity 
manifestation.
Methods: In this article, 68 osteosarcoma patients’ information including demography, administration and assay was gathered. We 
analyzed medical data and selected 10 important features using a random forest, including hydration status, red blood cell distribution 
width coefficient of variation, platelet distribution width, creatinine, γ-glutamyl transferase, large platelet ratio, serum potassium, 
lactate dehydrogenase, weight, and prealbumin. Then, cross-validation and SHAP has been conducted to confirm the robust and 
interpretation of the model.
Results: On this basis, 7 machine learning regression models was built to predict the blood concentration of methotrexate. R2, MSE, 
RMSE, MAE are the evaluation metrics. Finally, LightGBM was selected as the best prediction model with a performance of R2=0.87, 
MSE=0.020, RMSE=0.141, MAE=0.065.
Discussion: This machine learning framework addresses a critical gap in high-dose methotrexate therapeutic monitoring by achieving 
early and personalized blood drug concentration prediction, allowing for personalized dosing of patients based on predicted 
concentrations. The interpretability of SHAP-derived feature importance enhances clinical utility, offering a paradigm shift from 
reactive toxicity management to proactive precision dosing in osteosarcoma therapy.
Keywords: high-dose methotrexate, osteosarcoma, machine learning, blood concentration prediction

Introduction
Osteosarcoma is the most prevalent primary malignant bone tumor in children and adolescents, accounting for approxi-
mately 5% of all childhood cancers.1 It typically manifests in the adolescent decade of life, with a peak incidence 
between the ages of 15 and 19.1 The tumor primarily arises in the metaphysis of long bones, most ordinarily affecting the 
distal femur, proximal tibia, and humerus.2 The aggressive nature of osteosarcoma is attributed to its high proliferation 
rate and ability to metastasize early, often to the lungs.3,4 Existing studies have found that age and race have an impact on 
the incidence rate and survival period of osteosarcoma.5,6 The pathophysiology of osteosarcoma involves complex 
interactions between genetic, epigenetic, and environmental factors. Genetic predispositions, such as mutations in the 
TP53 gene or the RB1 gene associated with hereditary retinoblastoma, significantly increase the risk of developing this 
malignancy.7,8 Moreover, the tumor microenvironment plays a crucial role in tumor progression, influencing cell 
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signaling pathways that regulate tumor growth, invasion, and metastasis.9,10 Despite advancements in surgical techniques 
and multimodal chemotherapy regimens, which typically include agents such as doxorubicin, cisplatin, and high-dose 
methotrexate, the prognosis for patients with metastatic osteosarcoma remains poor.11,12 The five-year survival rate for 
localized osteosarcoma is approximately 70%, but this drops to less than 30% for those with metastatic disease.5,6 The 
heterogeneity of the disease further complicates treatment, as variations in tumor biology can lead to different responses 
to therapy, necessitating individualized treatment strategies.13

High-dose methotrexate (HD-MTX) is a cornerstone of osteosarcoma treatment, leveraging its mechanism as a potent 
inhibitor of dihydrofolate reductase to disrupt nucleotide synthesis and inhibit rapidly proliferating tumor cells.14–17 The 
standard dosing regimen for HD-MTX typically ranges from 8 to 12 g/m², administered alongside other chemotherapeutic 
agents to maximize therapeutic efficacy.18–20 This multi-agent approach enhances the likelihood of achieving complete 
remission and reducing the risk of recurrence.21,22 While HD-MTX is effective, it is associated with significant toxicities, 
including nephrotoxicity, mucositis, and myelosuppression.23 The risk of adverse effects necessitates rigorous monitoring of 
drug concentrations, particularly due to the steep dose-response relationship associated with methotrexate. Therapeutic drug 
monitoring (TDM) is critical to optimizing dosing, as individualized adjustments can help maintain drug concentrations 
within the therapeutic window while minimizing toxicity.24 Recent studies suggest that TDM for HD-MTX can improve 
patient outcomes by enabling dose modifications based on real-time pharmacokinetic data. However, traditional pharmaco-
kinetic (PK) approaches often rely on population averages, which may not accurately reflect individual patient variability.25 

In addition, the success of the application of PK model largely depends on the accuracy and comprehensiveness of the model 
parameters, but the acquisition of model parameters is limited by biochemical analysis methods and is usually difficult.26 

This limitation underscores the need for innovative strategies to enhance the precision of dosing.
The integration of machine learning (ML) in oncology and pharmaceuticals represents a transformative approach to 

personalizing treatment strategies.27,28 Machine learning algorithms can analyze complex datasets to identify patterns and 
predict patient responses to therapies, significantly impacting clinical decision-making.29 In the context of osteosarcoma, 
ML has demonstrated utility in predicting treatment responses, identifying biomarkers for disease progression, and 
improving patient stratification based on the likelihood of therapeutic success.30–33 For instance, advanced ML techni-
ques such as support vector machines, random forests, and deep learning algorithms have been utilized to predict overall 
survival and treatment responses to drugs by analyzing diverse clinical, genomic, and proteomic data.34,35 In terms of 
TDM, the concentration of drugs and their metabolites in plasma/serum can better predict the clinical severity and 
potential outcomes of cases compared to assumed intake and time.36 There have been machine learning studies on 
predicting blood drug concentrations of several types of drugs, including anticoagulants, antipsychotics, antiepileptics, 
antibiotics, and immunosuppressants.37–41 These models can process vast amounts of information, identifying subtle 
interactions and correlations that traditional statistical methods might overlook. As a result, ML algorithms can provide 
clinicians with actionable insights that enhance patient management, tailoring treatments to individual needs. Moreover, 
ML’s application extends to pharmacokinetics, where it can improve predictions of drug concentrations and patient 
responses.42 This capability is particularly critical in oncology, where the therapeutic index of chemotherapeutic agents is 
often narrow, making accurate dosing essential for maximizing efficacy while minimizing toxicity. To our knowledge, 
there is currently limited research on high-dose methotrexate related machine learning.

This study aims to identify the factors that significantly influence methotrexate (MTX) blood concentration through 
medical data and machine learning methods, and to develop a predictive regression model for MTX blood concentration 
in osteosarcoma patients receiving high-dose chemotherapy to assist clinical decision-making.

Method
Patients
This retrospective study included data from osteosarcoma patients who received the high-dose methotrexate regimen at 
the Liaoning Provincial Cancer Hospital between July 2020 and August 2022. The study protocol and plan were in 
compliance with the ethical review standards of Liaoning Provincial Cancer Hospital (Approval Number: KT20240320).
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Inclusion criteria were: (1) a definitive diagnosis of osteosarcoma based on clinical presentation, imaging, and 
pathological examination; (2) receiving HD-MTX as a monotherapy in cycles; (3) no gender restrictions and at least 
one completed chemotherapy cycle; (4) monitoring of methotrexate blood concentrations during chemotherapy; (5) pre- 
and post-chemotherapy blood tests, including complete blood count and liver/kidney function tests; (6) general good 
health, with normal liver and kidney function indicators. Exclusion criteria were: (1) patients who did not complete the 
planned HD-MTX chemotherapy; (2) patients with pleural or peritoneal effusion; (3) patients with poor postoperative 
wound healing; (4) patients with incomplete data on blood drug concentrations or clinical records. Based on clinical 
guidelines and previous literature, this study defined delayed methotrexate elimination as C24h ≥ 10 μmol·L⁻¹, C48h ≥ 
1 μmol·L⁻¹, and C72h ≥ 0.1 μmol·L⁻¹.

Before chemotherapy, patients underwent hydration and alkalization (fluid intake ≥ 3000 mL) 24 hours prior to the 
chemotherapy. On the day of chemotherapy, methotrexate was administered based on the patient’ s body surface area 
(BSA) using 5% glucose injection and the corresponding dose of methotrexate, infused over a period of at least 6 hours. 
Electrocardiogram and pulse oximetry monitoring were conducted for 8 hours, during which methotrexate blood 
concentrations, urine output, and urine pH levels were monitored to enable the implementation of calcium folinate 
(CF) rescue therapy.

Baseline Information
This retrospective study included data from 68 cases of osteosarcoma patients. The mean age of the enrolled patients was 
17.88 ± 7.03 years (range: 7–47 years). Among the patients, 53 were male (77.94%), and 51 patients received 
preoperative chemotherapy. The hydration volume ranged from 4072.50 to 4722.00 mL. According to the diagnostic 
records, 70.59% of the tumors were located in the femur, which is consistent with the distribution of osteosarcoma in the 
Chinese population. A total of 82 variables were collected, and the data distribution did not follow a normal distribution. 
Twelve variables with more than 50% missing data were excluded, and the remaining missing values were imputed using 
the median. The demographic and clinical data of the patients are shown in the Table 1.

Table 1 The Basic Characteristics of Patients

Variables Median (IQR)/n(%)

Age 16.50 (14.00–21.00)

Height 174.00 (163.75–178.50)
Weight 63.50 (50.75–84.50)

BSA 1.73 (1.53–2.02)

Dosage 12.00 (12.00–12.00)
Hydration 4307.00 (4072.50–4722.00)

UrineVolume 3000.00 (2775.00–3200.00)

ALT 23.50 (15.00–50.25)
AST 24.00 (19.00–30.47)

AST:ALT 0.91 (0.56–1.29)

ALP 120.00 (91.00–183.50)
GGT 26.50 (17.75–53.25)

RBP 28.00 (24.75–30.25)

PA 245.00 (211.00–284.00)
TP 70.30 (68.60–75.30)

ALB 45.55 (42.88–47.95)

GLB 26.05 (23.58–28.60)
ALB:GLB 1.75 (1.57–1.97)

TBIL 7.20 (5.28–9.73)

DBIL 1.83 (1.38–2.44)
IBIL 5.26 (3.75–7.57)

(Continued)
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Table 1 (Continued). 

Variables Median (IQR)/n(%)

DBIL:IBIL 0.35 (0.26–0.50)

CHE 8134.50 (7143.51–9407.85)
CG 2.14 (1.67–2.73)

CYSC 0.97 (0.82–1.07)

Urea 4.30 (3.80–4.95)
CREA 45.00 (40.45–62.16)

CO2 23.70 (22.80–26.25)

GLU 4.91 (4.82–5.17)
K 4.20 (4.00–4.40)

Na 140.00 (139.00–141.00)

Cl 102.00 (101.00–104.00)
CA-M 2.34 (2.28–2.41)

P-M 1.36 (1.23–1.56)

MG-M 0.78 (0.74–0.81)
CK 61.00 (52.50–66.25)

CKMB 13.50 (11.75–16.00)

LDH 194.00 (185.50–213.25)
WBC 5.64 (4.47–7.29)

NEUT 3.36 (2.67–4.63)
LYMPH 1.48 (1.17–2.02)

DHXB 0.40 (0.32–0.47)

EOS# 0.11 (0.06–0.20)
BAS# 0.02 (0.01–0.03)

NEUT% 63.00 (55.90–68.53)

LYMPH% 26.95 (20.93–33.50)
MONO% 7.20 (5.50–8.30)

EOS% 2.10 (1.18–3.00)

BAS% 0.40 (0.20–0.53)
RBC 4.63 (4.30–5.00)

HGB 136.50 (123.75–149.25)

HCT 41.30 (37.77–44.98)
MCV 88.75 (85.38–91.22)

MCH 29.25 (27.98–30.42)

MCHC 331.00 (326.00–336.00)
RDW-CV 14.00 (13.00–15.70)

RDW-SD 44.65 (40.48–49.83)

PLT 260.00 (220.50–312.50)
MPV 8.90 (8.60–9.53)

PDW 16.00 (15.70–16.10)

PCT_PLT 0.24 (0.20–0.28)
PLCC 52.00 (42.00–64.50)

P-LCR 19.50 (16.88–22.73)

pH 6.00 (5.00–6.00)
SG 1.02 (1.01–1.02)

uCREA 8.80 (8.80–17.60)

C48 0.65 (0.46–0.80)
Sex_male 53 (77.94%)

Sex_female 15 (22.06%)

Diagnosis_femur 48 (70.59%)
Diagnosis_tibia 10 (14.71%)

(Continued)
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Data Processing
Data on methotrexate (MTX) patients were extracted from the hospital information system. A total of 80 variables were 
collected, including basic patient information such as gender, age, weight, height, and body surface area; medication 
information such as MTX dosage, chemotherapy regimen, and tumor type; and physiological data including serum 
creatinine level (SCR) and serum alanine aminotransferase level (ALT), etc. Specific indicators are shown in the Table 1.

The dataset was split into training and testing sets in an 8:2 ratio (Table 2). Normality was tested using the Shapiro– 
Wilk test. For variables that followed a normal distribution, a t-test was used; for variables that did not follow a normal 
distribution, the Mann–Whitney U-test was employed. For categorical variables, the Chi-square (χ²) test was used to 
assess associations.

Missing data were handled according to the extent of the missingness. Variables with a missing rate greater than 50% 
were excluded, while variables with a missing rate of less than 50% were imputed using the median value. This is 
determined by the skewed distribution of the data. Categorical variables were processed using one-hot encoding to 
address feature discretization issues and to expand the feature space. Ultimately, 68 variables were retained for further 
analysis.

Due to limitations in incidence rates and sample collection, the amount of available data was relatively small. To 
address this issue, we employed the k-Nearest Neighbor (k-NN) algorithm for data augmentation to facilitate predictive 
modeling. Using the k-NN method, set the parameter ‘num_neighbors’ to 3, which means selecting 3 nearest neighbors 
for interpolation for each target sample. k-NN does not make assumptions about data distribution, making it suitable for 
datasets with various distribution forms. The algorithm works by measuring distances between different feature values 
and is relatively simple in concept. For specific populations, k-NN can generate synthetic data similar to the original 
samples, thereby supplementing the sample size for modeling purposes. The tools and libraries used for data processing 
and modeling are shown in Table 3.

Variable Selection
Based on the processed methotrexate (MTX) patient medical data, the random forest algorithm was applied to identify 
key variables from multiple influencing factors. Initially, we attempted data transformations to optimize the data structure 

Table 1 (Continued). 

Variables Median (IQR)/n(%)

Diagnosis_humerus 9 (13.24%)

Diagnosis_ulna 1 (1.47%)
Chemotherapy_postoperative 50 (73.53%)

Chemotherapy_preoperative 18 (26.47%)

Table 2 Partition of the Dataset

No Feature Train Median (IQR) Test Median (IQR) P-value

1 Hydration 4273.58(4077.3, 4614.06) 4328.84(4113.37, 4765.61) 0.05

2 RDW_CV 14.37(13.0, 15.56) 14.00(13.0, 15.11) 0.13
3 PLCC 53.08(45.04, 63.67) 50.70(42.11, 60.89) 0.06

4 CREA 46.22(41.4, 57.4) 47.67(41.95, 58.02) 0.46

5 GGT 28.71(20.0, 53.0) 24.32(18.66, 48.46) 0.05
6 P_LCR 19.67(17.0, 21.81) 19.05(16.39, 22.0) 0.34

7 K 4.00(3.86, 4.0) 4.00(3.64, 4.0) 0.10

8 LDH 194.00(182.12, 220.0) 194.00(185.74, 214.35) 0.72
9 Weight 66.96(53.61, 83.0) 61.50(53.74, 85.36) 0.55

10 PA 245.94(216.69, 283.54) 247.04(223.13, 283.41) 0.68
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and improve training performance. However, after comparison, we found that transformations such as logarithmic 
transformation and Cox transformation adversely affected the model’s ability to assess the variables. Therefore, after 
careful consideration, the original data was used for variable selection.

Next, all variables were incorporated into the random forest model for fitting, and the variables were ranked according 
to their importance. The model’s performance was evaluated using several metrics, including R², mean absolute error 
(MAE), and root mean-squared error (RMSE). The coefficient of determination (R²) is a measure of the proportion of 
variance explained by the model, with values ranging from 0 to 1; the higher the value, the better the model’s fit. Mean- 
squared error (MSE) represents the average of the squared differences between predicted and actual values, and the 
square root of MSE yields RMSE. RMSE is sensitive to outliers due to the squaring of errors, making it especially useful 
for assessing model performance when the target variable does not follow a normal distribution. MAE measures the 
average of the absolute differences between predicted and actual values. To optimize the model, a visualization of the 
relationship between the number of features and the evaluation metrics (R2, MAE, RMSE) was performed to select the 
appropriate number of features.

In the formula, yi represents the true value, ŷi represents the predicted value, and �y represents the average value.

Exploratory Data Analysis
The process of feature selection in the random forest model is illustrated in the Figure 1. It can be observed that the 
inclusion of features significantly improved the model’s fit and reduced the error at the initial stage. However, as the 
number of features continued to increase, the performance enhancement became gradual and eventually plateaued, 
reaching a threshold. Although the model achieved relatively accurate predictions with just seven features, we con-
servatively selected ten features for further model construction, taking into account various evaluation metrics, previous 
literature, and clinical considerations. The ten features selected by the random forest model include: hydration value, red 
blood cell distribution width coefficient of variation (RDW-CV), platelet distribution width (PDW), creatinine (CREA), 
γ-glutamyl transferase (GGT), large platelet ratio (PLCC), serum potassium (K), lactate dehydrogenase (LDH), body 
weight, and prealbumin (PA).

Table 3 Tools and Library Used in Research

Function Libraries and Modules Version

Programming Python 3.10.13
Data processing Pandas 2.1.1

Numpy 1.24.3

Visualization Matplotlib 3.7.2
Machine learning Scikit-learn 1.3.0

Xgboost 1.7.3

Lightgbm 4.3.0
Interpretability Shap 0.46.0
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Figure 1 Number of features and random forest performance.
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Model Building
Using the predictor variables filtered through random forest, seven machine learning regression models were constructed 
and analyzed. Prior to model construction, the k-Nearest Neighbor (k-NN) method was applied to generate synthetic 
samples to address the issue of insufficient sample size. The algorithms evaluated in the study included extreme gradient 
boosting (XGBoost), random forest, gradient boosting regression, light gradient boosting machine (LightGBM), elastic 
net regression, ridge regression, and least absolute shrinkage and selection operator (Lasso).

Model selection was conducted using 5-fold cross-validation and performance metrics discussed in section Variable 
Selection. Cross-validation was used to test the robustness of the models, while predictive capability was assessed using 
evaluation metrics. The ideal predictive model should exhibit a high R², along with low MAE, MSE, and RMSE.

Clinical Interpretation
Feature importance reflects the contribution of each variable in the model. Therefore, we used the best-performing model 
to calculate the importance scores of the features and rank them accordingly. Shapley Additive exPlanation (SHAP) is 
a method that calculates the marginal contribution of features to the model’s output, with the advantages of local 
accuracy and global consistency.43 This enables SHAP to not only precisely explain individual prediction variables but 
also to identify features that contribute similarly to the model. Moreover, if the model undergoes changes, the importance 
of features (SHAP values) in predictions remains unchanged. This consistency ensures the stability and reliability of 
SHAP. Therefore, we employed SHAP to visualize the influence of these important variables and provide interpretability 
for the selected model, addressing the “black-box” issue often associated with machine learning models.

Result
Model Performance
By utilizing the ten important features, and after performing cross-validation and comprehensive comparison, we selected 
LightGBM as the final predictive model due to its lowest mean-squared error (MSE) and the best generalization ability 
(Table 4). The final LightGBM model achieved an impressive performance with R² = 0.87, MAE = 0.065, MSE=0.020, 
and RMSE = 0.141, making it the most effective model for predicting MTX blood concentrations. This suggests that the 
model exhibits excellent predictive power and generalization capability. It is worth noting that although the gradient 
boosting model performed slightly worse in cross-validation compared to LightGBM, it still outperformed other models 
in both the training and testing sets. This indicates that while the gradient boosting model has superior predictive ability, 
its generalization performance is slightly weaker. With a larger dataset in the future, this limitation may be addressed. 
Additionally, the three boosting algorithms (LightGBM, XGBoost, AdaBoost) showed similar performance, while the 
extended linear regression models (Lasso, Ridge, and ElasticNet) did not perform as well.

Clinical Interpretation
In the Figure 2, the vertically arranged features are sorted by their influence, from top to bottom, with the feature impact 
ranked from strong to weak. The features, in order of their influence on the final result, are: Weight, RDW-CV, LDH, PA, 
P-LCR, GGT, CREA, Hydration, Serum Potassium, and PLCC. The wider the color area, the greater the influence of that 

Table 4 Performance of 7 Machine Learning Models

Model CV MSE (Mean±Std) R2 MAE MSE RMSE

Gradient Boosting 0.018±0.006 0.88 0.062 0.020 0.140

Random Forest 0.024±0.006 0.82 0.078 0.028 0.168
XGBoost 0.016±0.004 0.87 0.067 0.021 0.145

LightGBM 0.015±0.003 0.87 0.065 0.020 0.141

ElasticNet 0.138±0.036 0.13 0.260 0.138 0.372
Ridge 0.134±0.026 0.11 0.276 0.141 0.376

Lasso 0.154±0.039 0.08 0.276 0.147 0.383
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feature on the final result. As observed, Weight, RDW-CV, and LDH have the largest color areas, indicating their 
significant impact on the prediction. The color intensity reflects the values of the features: red indicates higher feature 
values, blue indicates lower feature values, and purple represents values closer to the mean. The horizontal axis 
represents the SHAP values, which show the magnitude of each feature’s impact on the model’s prediction. The further 
a point is from the central zero line, the larger the effect of the feature on the model’s output. Positive SHAP values 
indicate a positive influence, while negative SHAP values indicate a negative influence. For instance: For lower Weight, 
RDW-CV, LDH, PA, GGT, and Hydration, the model tends to output higher drug concentration values. Conversely, for 
P-LCR, CREA, K, and PLCC, the model’s output is more aligned with the input values—as these features increase, the 
predicted drug concentration increases accordingly.

Discussion
In this study, 7 machine learning models was developed to predict the methotrexate blood concentration in osteosarcoma 
patients following chemotherapy. The variable selection process was conducted using a random forest algorithm, and the 
predictive performance of linear models and boosting models was compared. Ultimately, the LightGBM model was 
selected, yielding a prediction model with an R² of 0.87. Additionally, models based on boosting algorithms, including 
XGBoost, LightBoost, and gradient boosting, demonstrated strong predictive performance across various metrics. In 
contrast, linear algorithms such as Lasso, Ridge, and ElasticNet performed poorly. Further investigation revealed that 
their performance was highly dependent on sample size and distribution, which we hypothesize is due to the nonlinear 
nature of blood concentration features. When dealing with unevenly distributed and poorly defined medical data, machine 
learning models based on boosting algorithms outperform traditional linear kernel methods in predictive accuracy.

Among the important variables identified by the random forest model, some have been mentioned in previous studies, 
while others are new factors discovered in this research. In the LightGBM predictive model, these influencing factors 
were reordered, and the SHAP analysis further confirmed their impact. For example, hydration status has long been 
recognized as a critical component in high-dose methotrexate chemotherapy regimens. Hydration and urine alkalinization 
are essential protective measures to safeguard the kidneys and prevent adverse drug events, whether in hematologic 
malignancies or osteosarcoma.44 Additionally, studies have highlighted the statistical significance of weight, albumin 

Figure 2 SHAP values of important features.
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levels, and urine output in the distribution of methotrexate blood concentrations.45,46 The key features identified in this 
study, such as weight and prealbumin, align with previous research; however, urine output was excluded during variable 
selection, possibly due to overlap with the effects of hydration and renal function-related indicators. Further research is 
needed to confirm the significance of urine output as an influencing factor.

Liver and kidney functions play an essential role in drug metabolism.23 GGT is commonly used as an indicator of 
liver health, and its expression is particularly active in the proliferation and differentiation of bone marrow and the 
progression of hematologic malignancies.47,48 Kidney function directly impacts the deposition of methotrexate and its 
metabolites in the renal tubules, with CREA levels reflecting renal filtration capacity. Furthermore, we identified that 
LDH, RDW-CV, PLCC, and P-LCR also influence methotrexate blood concentrations. LDH is closely associated with 
hematologic disorders and is related to tumor proliferation, invasion, and severity, aiding in early diagnosis and efficacy 
monitoring. Some studies have suggested LDH as a novel biomarker.49–52 RDW-CV is typically used to differentiate 
anemia types, but it can also serve as a new predictive indicator for cardiovascular diseases and general population 
prognosis. PLCC and P-LCR are hematological biomarkers used to assess platelet status. For methotrexate, a drug that 
can cause significant bone marrow suppression, these indicators reflect the patient’s hematopoietic system status.

These findings suggest that both methotrexate dosage and rescue treatment should be carefully considered based on 
the patient’s hematopoietic function, liver, and kidney function. The random forest model has proven to be highly 
comprehensive in feature selection, effectively identifying important influencing factors from multiple variables while 
maintaining strong interpretability. When combined with highly predictive machine learning models and SHAP analysis 
techniques, it offers valuable assistance in the analysis of medical data.

Previous studies have applied machine learning techniques to analyze methotrexate (MTX) dosage indicators for the 
precise prediction of adverse drug reactions or delayed drug excretion. However, no studies have yet focused on 
predicting methotrexate blood concentrations. In contrast, research on the drug tacrolimus has successfully integrated 
machine learning with real-world data to develop a predictive model for tacrolimus blood concentration in autoimmune 
disease populations. This model, constructed using nine features and the XGBoost algorithm, achieved an R² of 0.54 and 
a mean absolute error (MAE) of 0.25.53 Research on methotrexate has largely concentrated on predicting delayed 
elimination and adverse reactions, with populations mainly consisting of hematologic cancer and rheumatoid arthritis 
patients.54–56 For instance, a model predicting hepatotoxicity and delayed elimination for low-dose methotrexate 
achieved an ROC of 0.97.55 Compared to classification problems, regression tasks require larger sample sizes and higher 
data quality. Using appropriate methods for sample augmentation can reduce the cost of data collection, which is 
especially useful in situations where some medical data is difficult to accumulate or requires long collection periods. 
However, whether these models can be further applied depends on the accumulation and validation of real-world data.

Traditional pharmacokinetic models are based on the atrioventricular theory or physiological pharmacokinetics to 
describe drug metabolism processes through parameters such as clearance rate and distribution volume. The mechanism 
is clear and can maintain stability in small samples, allowing for direct understanding of clinical decisions. However, the 
process of obtaining and calculating parameters is difficult to capture nonlinear relationships between individuals, and the 
accuracy of simulating complex drug organ interactions is limited.57,58 Machine learning models directly learn the 
correlation pattern between blood drug concentration and influencing factors through feature engineering, which has 
advantages in predicting population heterogeneity and nonlinear relationships.59 However, relying on large-scale labeled 
data and extrapolating to new drugs or special populations poses risks.60 The explainable tool SHAP can partially explain 
the feature contribution, but the “black box” attribute still restricts its application. Both methods have limitations, but 
attempts to integrate them may be able to compensate for their respective shortcomings. Although the k-NN algorithm 
was used for sample amplification, the sample size of this study is still relatively small and lacks controls. The model 
needs to be validated and improved. In the future, further accumulation of cases can be considered for dose adjustment 
experiments, or PK parameters can be incorporated into machine learning modeling to enhance the interpretability of the 
model and guide clinical decision-making.

The convergence of osteosarcoma treatment, high-dose methotrexate administration, and the innovative application of 
machine learning and model-informed precision dosing for predicting blood drug concentrations underscores a critical 
area of ongoing research. By adjusting the patient’s medication dosage based on the predicted blood drug concentration 
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and existing recommended administration methods using our research model, it may be possible to avoid delayed 
elimination of drugs and the occurrence of drug-related adverse reactions. Simultaneously providing a new predictive 
paradigm distinct from pharmacokinetic models. The potential to personalize therapy through advanced computational 
methods holds significant promise for improving survival rates and quality of life in affected patients. Continued 
exploration into the integration of ML and model-informed precision dosing (MIPD) in clinical settings, alongside 
robust pharmacokinetic studies, will be essential for refining treatment protocols and maximizing therapeutic efficacy.

Conclusion
In summary, based on real-world data from 68 cases of methotrexate therapeutic drug monitoring, this study utilized data 
augmentation and machine learning techniques to identify and select 10 key variables that significantly influence 
methotrexate blood concentrations. These variables include hydration status, red blood cell distribution width coefficient 
of variation, platelet distribution width, creatinine, γ-glutamyl transferase, large platelet ratio, serum potassium, lactate 
dehydrogenase, weight, and prealbumin, along with their quantitative relationships. A predictive model for methotrexate 
blood concentration following high-dose chemotherapy in osteosarcoma patients was then constructed, with SHAP 
analysis used for model interpretation. After comparing with other models, the LightGBM algorithm demonstrated the 
best predictive performance.

To date, this study is the first to apply real-world data, data augmentation, and machine learning techniques to predict 
high-dose methotrexate blood concentrations, offering valuable insights and modeling approaches for utilizing small 
sample sizes in the medical field. In addition, machine learning methods have broken through the bottleneck of traditional 
monitoring, providing possibilities for reducing patient blood collection pain, improving the safety of methotrexate 
medication, and promoting personalized use of methotrexate in primary hospitals. They also provide ideas for the 
development of pharmacokinetics and optimization of dose adjustment. The limitation of this study lies in its single- 
source sample, relatively small dataset, and lack of multi-center external validation to confirm the model’s general-
izability. In the future, through data accumulation and external collaborations, the reliability and applicability of the 
model will be further validated and optimized.
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