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Background: This retrospective study aims to predict the risk of 3-month nonunion in patients with unstable distal clavicle fractures 
(UDCFs) treated with open reduction and internal fixation (ORIF) using machine learning (ML) methods. ML was chosen over 
traditional statistical approaches because of its superior ability to capture complex nonlinear interactions and to handle imbalanced 
datasets.
Methods: We collected UDCFs patients at Nanjing Luhe People’s Hospital (China) between January 2015 and May 2023. The 
unfavorable outcome was defined as 3-month nonunion, as represented by disappeared fracture line and continuous callus. Patients 
meeting inclusion criteria were randomly divided into training (70%) and testing (30%) sets. Five ML models (logistic regression, 
random forest classifier, extreme gradient boosting, multi-layer perceptron, and category boosting) were developed. Those models 
were selected based on univariate analysis and refined using the Least Absolute Shrinkage and Selection Operator (LASSO). Model 
performance was evaluated using AUROC, AUPRC, accuracy, sensitivity, specificity, F1 score, and calibration curves.
Results: A total of 248 patients were finally included into this study, and 76 (30.6%) of them had unfavorable outcomes. While all five 
models showed similar trends, the CatBoost model achieved the highest performance (AUROC = 0.863, AUPRC = 0.801) with 
consistent identification of the risk factors mentioned above. The SHAP values identified the CCD as the significant predictor for 
assessing the risk of 3-month nonunion in patients with UDCFs within the Chinese demographic.
Conclusion: The refined model incorporated four readily accessible variables, wherein the CCD, HDL levels, and blood loss were 
associated with an elevated risk of nonunion. Conversely, the application of nerve blocks, including postoperative block, was 
correlated with a reduced risk. Our results suggest that ML, particularly the CatBoost model, can be integrated into clinical workflows 
to aid surgeons in optimizing intraoperative techniques and postoperative management to reduce nonunion rates.
Keywords: distal clavicle fracture, machine learning, prediction, nonunion

Introduction
Distal clavicle fractures constitute a prevalent type of upper limb fracture, representing 28% of all adult clavicle 
fractures.1 Among these, 10% to 52% are classified as displaced and unstable, attributed to the multidirectional forces 
exerted by the robust trapezius, latissimus dorsi, and pectoral muscles.2 Recent research indicates that the nonunion rate 
for unstable distal clavicle fractures (UDCFs) subjected to nonoperative treatment can reach up to 30%.3,4 Consequently, 
Open reduction and internal fixation (ORIF), incorporating anatomic locking plate and hook plate techniques, is widely 
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recommended in China. Nevertheless, clinicians frequently encounter adverse outcomes, including internal fixation 
failure, re-fracture, 3-month nonunion (ie, delayed union) and eventual bone nonunion.5–8 Nonunion poses significant 
treatment challenges and incurs considerable financial burdens, with indirect costs like productivity losses being pivotal 
in escalating the total expenses for non-union patients. Hence, any strategy aimed at reducing healing duration, 
facilitating quicker return to work, and minimizing financial implications should be advocated for patients with fractures 
and non-unions. Predicting high-risk factors following UDCFs could yield compelling evidence to guide reasonable 
intraoperative and postoperative interventions, thereby abbreviating the disease course and alleviating discomfort.

Some studies reveal that various risk factors are associated with the adverse outcomes of 3-month nonunion and 
nonunion in fracture patients. These include physiological factors (eg, advanced age, smoking), comorbidities (eg, 
metabolic diseases, use of non-steroidal anti-inflammatory drugs, diabetes, nutritional deficiencies), and patient- 
specific factors (eg, fracture pattern and location, displacement, infection, degree of bone loss, and severity of soft tissue 
injury).9,10 Distal clavicle fractures, particularly unstable types, are prone to complications such as nonunion, signifi-
cantly impacting patient recovery and healthcare resources. Despite advancements in surgical techniques, the nonunion 
rates remain high, posing a challenge for effective management. Traditional functional assessments of the shoulder joint, 
such as the Constant-Murley and Neer scores, predominantly evaluate recovery from a functional standpoint without 
providing reliable predictions for fracture healing outcomes.

Recent research has demonstrated the growing application of ML models in the medical sector.11–16 Logistic 
regression is a mature modeling technique in public health, boasts high computational efficiency and accurate 
predictions.17,18 Random forest is a robust machine learning algorithm, combines multiple-decision trees to effectively 
mitigate overfitting and handle both discrete and continuous data without normalization.19 Extreme gradient boosting is 
a classic ensemble boosting framework, excels in high training efficiency, good prediction outcomes, numerous 
controllable parameters, and user-friendly implementation.20 Multi-layer perceptron is a neural network model capable 
of capturing complex patterns and relationships in data through its layered architecture, offering high flexibility and 
predictive power.21 Category boosting enhances the performance of categorical data predictions by combining multiple 
weak learners, focusing on difficult-to-classify instances for improved accuracy.

In comparison to traditional regression models, ML has been validated as an effective method for prognosis 
prediction in modeling due to its capacity to intricately analyze complex non-linear interrelations among variables,22,23 

and to enhance prediction accuracy through its superior algorithms, particularly when analyzing large datasets with 
numerous variables.24,25 Crucially, the widespread adoption of Electronic Patient Record systems and the extensive use 
of structured patient data have made sophisticated algorithmic modeling and bedside application feasible.26

Recent studies emphasize the potential of predictive modeling in enhancing the prognosis of fracture healing by 
identifying risk factors that are not immediately modifiable but crucial for postoperative management. Recognizing the 
significant variability in nonunion rates across different demographics and institutions, our study aims to develop 
a machine learning model that incorporates both modifiable and non-modifiable predictors. This approach seeks to 
enable tailored postoperative strategies to mitigate the risk of 3-month nonunion and enhance patient outcomes across 
diverse clinical settings. By focusing on a high-risk population within a specific medical setting, this study provides 
a foundation for validating our model in broader contexts, thereby addressing the pressing need for precise and adaptable 
predictive tools in orthopedic surgery.

Patients and Methods
Study Population
This retrospective study was performed in the Nanjing Luhe People’s Hospital, China, where electronic health records 
from the orthopedic unit for patients diagnosed with UDCFs were collected and analyzed, spanning from January 2015 to 
May 2023. Before data collection, we estimated the minimum sample size required using the 10 EPV (events per 
variable) rule. We expected 4 variables to enter our final and assume that in our database incidence rate of the outcome is 
25% based on previous study. Therefore, we need at least (4*10)/0.25=160 patients according to the EPV rule. The 
primary outcome was the union of UDCFs within the first three months post-operation, as determined by clinical signs of 
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healing and corroborated by shoulder X-rays images. The exclusion criteria were patients with incomplete clinical or pre- 
treatment data, those receiving conservative treatment, individuals under 18, and patients with concurrent neurovascular 
injuries.

Predictors and Outcomes
In this study, the candidate variables for our model included demographic factors such as age, sex, smoking status, 
drinking status, level of education, and labor intensity, medical histories like diabetes mellitus, hypertension, anemia, and 
hypoproteinemia, baseline characteristics including height, weight, diastolic and systolic blood pressures, presence of 
comminuted or multiple fractures, and results of blood biochemical tests, as well as surgical details such as the method of 
operation, types of implants (including the lateral locking plate and Hook plate), CCD, type of anesthesia, duration of 
surgery, volume of blood loss, length of incision, and use of osteogenic stimuli, and postoperative outcomes, including 
3-month fracture union status and complications.

We sought to predict a binary outcome, either the achievement of union within 3 months or a 3-month nonunion, and 
evaluated the status of fracture union during the initial 3 months postoperatively by analyzing shoulder X-rays images, 
focusing on the disappearance of the fracture line and the formation of continuous callus as indicators of union. CCD was 
defined as the measure between the coracoid process and the inferior aspect of the clavicle,27 determined from shoulder 
X-ray images taken within 7 days after surgery. In addition, educational attainment was categorized into two levels: high, 
for those with college education, and low, for those without.

Data Pre-Processing
The dataset was randomly split into a training set (70% of the cases) and a testing set (30% of the cases) to ensure robust 
internal validation of the predictive models. Two methods were mainly used to deal with missing data in both training 
and test sets. Variables with a missing data rate exceeding 30% were removed outright from the dataset, and for the rest 
of remaining variables exhibiting missing values, multiple imputation employing predictive mean matching (PMM) was 
executed. The One-Hot Encoding technique was applied to transform multiple categorical variables into dummy 
variables. Whereas continuous variables underwent normalization by a z-score.

Model Development and Validation
In order to select the variables that would eventually develop models, we used the LASSO algorithm to process variables 
that demonstrated statistical significance in univariate analysis. The variables retaining nonzero coefficients following the 
LASSO were selected as the final variables for model development.

Five machine learning classifiers—logistic regression (LR), random forest classifier (RFC), extreme gradient boosting 
(XGB), multi-layer perceptron (MLP), and CatBoost—were employed. Their performance was compared using evalua-
tion metrics such as AUROC, AUPRC, accuracy, sensitivity, specificity, F1 score, and calibration curves. The optimal 
parameters for each algorithm were determined by the grid search algorithm coupled with 10-fold cross-validation. The 
test set in our study provided data for internal validation to demonstrate the generalization of the machine learning model, 
ensuring the model, developed from the training data, maintained its applicability.

Model Evaluation
Due to the imbalance within our dataset, AUPRC was selected as the principal evaluation metric, which has been proven 
to be superior to AUROC, especially in the context of imbalanced data. In addition, accuracy, recall, precision, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the F1 score were served 
as metrics to evaluate the models. A calibration curve analysis was also carried out to visually evaluate the degree of 
agreement between the model’s predicted and actual probabilities.

Model Interpretation
SHAP method was used to evaluate variable importance and provide an explanation for the predictions generated by ML 
algorithms in order to gain a better understanding of the machine learning model’s predictive process. SHAP is a useful 
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tool that helps boost the model’s credibility and acceptability in clinical environments, which illustrates how each 
variable contributes to and influences the risk of 3-month nonunion.

Statistical Analysis
Baseline characteristics were compared between the control group and the 3-month nonunion cohort. The Shapiro–Wilk 
test was used firstly to determine whether continuous variables were normally distributed. Descriptive statistics were 
presented as means with standard deviations (for normally distributed variable), or medians with IQR (for non-normally 
distributed variable), and frequency (percentages) for categorical variables, respectively. We used the Student’s t-test or 
the Mann–Whitney U-test to assess the differences in continuous variables, while for categorical variables, the Chi- 
squared or Fisher’s exact tests were performed. The above statistical analysis conducted with the statistical package R, 
version 4.1.3 (R Development Core Team, Auckland, New Zealand), and p-values less than 0.05 was considered 
statistically significant.

Results
Baseline Characteristics
We analyzed the data of 248 patients treated for UDCFs from January 2015 to May 2023. In general, the overall median 
age was 55 years, interquartile ranges (IQR): 47–63 years, and with males constituting 60.1% of the cohort. 3-month 
nonunion was observed in 76 patients (30.6%, median age: 55 years, number of male patients: 52), finally 6 cases had 
bone nonunion after extended follow-up time, and underwent secondary surgery. Whereas 172 patients exhibited primary 
healing post-procedure (69.4%, median age: 54.5 years, number of male patients: 97). After data split, 173 patients were 
allocated to the training set and 75 to the test set. The detailed baseline information of the training set is shown in Table 1 
and the training set and the testing set were similar in baseline characteristics.

Feature Selection
Seven of the 47 variables we gathered that may be connected to 3-month nonunion were statistically significant after 
univariate analysis. Furthermore, after exclusion of variables with zero coefficients through the Least Absolute Shrinkage 
and Selection Operator(LASSO) process, we ultimately used four variables for model construction: Coracoclavicular 

Table 1 Baseline Characteristics of Patients in Normal and Delayed Union Groups in the Training 
Set

Variable Normal Delayed union P-value
(n=120) (n=53)

Age, years, median (IQR) 54.0 [44.8, 62.0] 56.0 [52.0, 62.0] 0.239

BMI, kg/m2, median (IQR) 22.8 [21.0, 25.7] 23.2 [20.7, 25.7] 0.923
Height, cm, median (IQR) 168.0 [160.0, 172.0] 169.0 [163.0, 173.0] 0.462

Weight, kg, median (IQR) 64.0 [58.0, 72.3] 65.0 [56.5, 75.0] 0.475

Female, sex, n (%) 49 (40.8) 17 (32.1) 0.356
Smoking, n (%) 42 (35.0) 22 (41.5) 0.518

Drinking, n (%) 49 (40.8) 23 (43.4) 0.882

High education level, n (%) 16 (13.3) 2 (3.8) 0.103
Heavy physical labor, n (%) 50 (41.7) 25 (47.2) 0.612

Hypertension, n (%) 35 (29.2) 22 (41.5) 0.157

DM, n (%) 24 (20.0) 8 (15.1) 0.580
Other internal medicine diseases, n(%) 19 (15.8) 3 (5.7) 0.109

SBP, mmHg, median (IQR) 130.5 [122.0, 141.3] 138.0 [120.0, 151.0] 0.385

DBP, mmHg, median (IQR) 82.5 [76.0, 91.0] 85.0 [75.0, 93.0] 0.571

(Continued)
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distance(CCD), anesthesia method, High-density lipoprotein(HDL), and blood loss. The detailed coefficients of these 
non-zero coefficient variables are detailed in Supplementary Table 1.

Model Performance
All machine learning models that have been constructed have demonstrated similar performance, with no significant 
differences in AUROCs, as determined by the DeLong test (Supplementary Table 2). Among the five predictive models, 
the Category Boosting (CatBoost) model attained the greatest AUROC (0.863, 95% CI: 0.762–0.964) and Area Under 
the Precision-Recall Curve (AUPRC 0.801, 95% CI: 0.592–0.918), the highest accuracy (74.7%), F1 score (0.689), and 

Table 1 (Continued). 

Variable Normal Delayed union P-value
(n=120) (n=53)

Blood biochemical test data, median (IQR)
Blood glu, mmol/L 5.7 [5.2, 6.4] 6.0 [5.6, 6.7] 0.089

WBC, ×10^9/L 7.1 [5.7, 8.6] 7.4 [5.7, 9.4] 0.623

Hemoglobin, g/L 126.0 [114.0, 140.3] 127.0 [117.0, 140.0] 0.666
Platelet, ×10^9/L 202.0 [166.0, 251.8] 203.0 [153.0, 256.0] 0.488

CRP, mg/L 7.6 [2.2, 17.7] 6.3 [1.6, 16.3] 0.500

D-dimer, μg/mL 0.9 [0.5, 2.0] 0.8 [0.5, 1.8] 0.394
Total protein, g/L 64.1 [60.4, 67.1] 63.6 [60.4, 67.1] 0.696

Albumin, g/L 39.0 [36.3, 41.4] 38.8 [36.8, 41.1] 0.877

LDH, U/L 191.0 [162.5, 220.5] 183.0 [162.0, 206.0] 0.212
Total cholesterol, mmol/L 4.1 [3.6, 4.7] 4.2 [3.6, 4.8] 0.895

Triglyceride, mmol/L 1.1 [0.8, 1.6] 1.1 [0.7, 1.3] 0.238

HDL, mmol/L 1.2 [1.0, 1.4] 1.3 [1.2, 1.5] 0.036*
LDL, mmol/L 2.5 [2.0, 3.0] 2.4 [1.9, 3.1] 0.746

Urea, mmol/L 4.9 [4.1, 6.0] 5.50 [4.40, 6.20] 0.239

Creatinine, μmol/L 65.5 [54.3, 75.6] 66.4 [53.7, 73.7] 0.865
Blood potassium, mmol/L 3.8 [3.5, 4.0] 3.8 [3.6, 4.0] 0.610

Blood calcium, mmol/L 2.2 [2.2, 2.3] 2.2 [2.2, 2.3] 0.596

Blood phosphorus, mmol/L 1.1 [0.9, 1.2] 1.0 [0.9, 1.1] 0.229
Blood magnesium, mmol/L 0.9 [0.8, 0.9] 0.9 [0.8, 0.9] 0.608

CCI, mm, median (IQR) 7.5 [6.2, 8.6] 10.2 [9.0, 11.7] <0.001*

Comminuted fracture, n (%) 6 (5.0) 9 (17.0) 0.022*
Multiple fractures, n (%) 47 (39.2) 23 (43.4) 0.723

TBI, n (%) 10 (8.3) 2 (3.8) 0.445

Surgical duration, min, median (IQR) 70.0 [55.0, 85.0] 75.0 [60.0, 95.0] 0.080
Blood loss, mL, median (IQR) 50.0 [20.0, 100.0] 50.0 [50.0, 10.00] 0.047*

Length of incision, cm, median (IQR) 10.0 [8.0, 10.0] 10.0 [8.0, 10.0] 0.359

Operation, n (%) 0.079
Outer panel 49 (40.8) 30 (56.6)

Hook plate 71 (59.2) 23 (43.4)
Anesthesia, n (%) 0.006*

Nerve block 76 (63.3) 21 (39.6)

General anesthesia 44 (36.7) 32 (60.4)
Postoperative ossotide dosage, mg, median (IQR) 0.0 [0.0, 420.0] 0.0 [0.0, 350.0] 0.883

Complication, n (%) 6 (5.0) 10 (18.9) 0.009*

Peripheral callus, n (%) 6 (5.0) 2 (3.8) 1.000

Note: * P < 0.05. 
Abbreviations: BMI, body mass index; DM, diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, 
white blood cell count; CRP, C-reactive protein; LDH, lactic dehydrogenase; HDL, high density lipoprotein; LDL, low density 
lipoprotein; CCI, coracoclavicular interspace; TBI, traumatic brain injury; IQR, interquartile range.
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PPV (55.3%) in the test set. AUROCs and AUPRCs for both the training and test sets are depicted in Figure 1. In 
addition, the calibration curve, presented in Figure 2, demonstrates a good alignment between the predictions of the 
CatBoost model and the actual outcomes. Evaluation metrics for all models are compiled in Table 2.

Model Interpretation
We offer Figure 3 as the global interpretation to the prediction behavior of the CatBoost model using SHapley Additive 
exPlanations(SHAP). Our model identified CCD as the main driving factor based on the mean absolute SHAP value as 
Figure 3a shows. Figure 3b summarizes the direction of effects for each variable. Feature values are indicated by 
a spectrum with blue representing the lowest value and red color indicates higher risk of 3-month nonunion while blue 
color shows lower risk. As a result, the variables included in the CatBoost are all risk factors except for the anesthesia 
method of nerve block.

Figure 1 Receiver operating characteristic (ROC) curve and precision-recall curve (PRC) of the five models for predicting the risk of 3-month nonunion. (a) The ROC 
curve of the training set. (b) The ROC curve of the testing set. (c) The PRC of the training set. (d) The PRC of the testing set. 
Abbreviations: LR, logistic regression; RFC, random forests classifier; XGB, eXtreme gradient boosting; MLP, multi-layer perceptron; CatBoost, category boosting.
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From our result, this study is the first to employ ML techniques for predicting 3-month nonunion in UDCF patients 
treated with ORIF within a Chinese cohort, providing novel insights into both risk stratification and potential avenues for 
clinical intervention.

Discussion
Despite the clinical efficacy of diverse surgical approaches in managing UDCFs, the issue of postoperative nonunion 
persists, influenced by numerous factors pre-, intra-, and post-operatively. Accurately predicting the risk of nonunion 
following ORIF remains an unresolved challenge. Developing a prediction model for the risk of 3-month nonunion 
among UDCFs patients aids in identifying risk factors and facilitates early intervention to reduce incidence.

A significant advantage of our model is its outstanding performance. This study employed five distinct machine 
learning methodologies to develop a predictive model for the risk of 3-month nonunion in Chinese patients with UDCFs 
undergoing ORIF, based on four critical variables: CCD, anesthesia method (nerve block), HDL, and blood loss. Among 
these models, the CatBoost model emerged as the most effective, achieving an AUPRC of 0.801, a critical measure for 
assessing the predictive accuracy of models trained on imbalanced datasets. In addition, other evaluation metrics such as 

Figure 2 Calibration curve of the five models. 
Abbreviations: LR, logistic regression; RFC, random forests classifier; XGB, eXtreme gradient boosting; MLP, multi-layer perceptron; CatBoost, category boosting.

Table 2 The Performance of the Models in Training and Test Set

AUROC(95% CI) AUPRC(95% CI) Accuracy(%) Sensitivity(%) Specificity(%) F1 PPV(%) NPV(%) Brier

LR Training 0.862(0.795–0.929) 0.798(0.669–0.886) 83.8 71.7 89.2 0.731 74.5 87.7 0.126

Test 0.844(0.739–0.948) 0.774(0.563–0.901) 72.0 60.9 76.9 0.571 53.8 81.6 0.138

RFC Training 0.877(0.822–0.932) 0.728(0.594–0.831) 78.0 94.3 70.8 0.725 58.8 96.6 0.146

Test 0.847(0.744–0.949) 0.674(0.464–0.832) 70.7 95.7 59.6 0.667 51.2 96.9 0.151

XGB Training 0.884(0.829–0.939) 0.771(0.640–0.865) 80.9 86.8 78.3 0.736 63.9 93.1 0.130

Test 0.852(0.753–0.952) 0.712(0.501–0.859) 73.3 91.3 65.4 0.677 53.8 94.4 0.137

MLP Training 0.857(0.790–0.924) 0.785(0.655–0.876) 83.2 71.1 88.3 0.724 73.1 87.6 0.135

Test 0.838(0.731–0.945) 0.766(0.555–0.896) 70.7 60.9 75.0 0.560 51.9 81.2 0.139

Catboost Training 0.920(0.879–0.960) 0.857(0.735–0.928) 82.7 90.6 79.2 0.762 65.8 95.0 0.122

Test 0.863(0.762–0.964) 0.801(0.592–0.918) 74.7 91.3 67.3 0.689 55.3 94.6 0.143

Abbreviations: LR, logistic regression; RFC, random forest classifier; XGB, eXtreme gradient boosting; MLP, multi-layer perceptron; Catboost, category boosting; NPV, 
negative predictive value; PPV, positive predictive value; AUROC, the area under the receiver operating characteristic curve; AUPRC, the area under the precision-recall 
curve.
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sensitivity and F1 score also achieve better performance. Subsequently, risk stratification was executed using the optimal 
threshold defined by the CatBoost model, enabling the high-risk group identified by the model to benefit from preventive 
interventions targeting CCD, HDL and blood loss. The results showed that CCD, HDL levels, and blood loss were 
associated with an elevated risk of 3-month nonunion. Conversely, the application of nerve blocks, including post-
operative block, was correlated with a reduced risk.

Risk Factors Affecting Fracture Union
It is well known that many factors can affect bone union. Qvist et al 28 conducted a retrospective analysis of 150 clavicle 
fracture cases, assessing eight factors: age, sex, smoking status, comminuted fractures, fracture shortening exceeding 
2 cm, Disabilities of the Arm, Shoulder and Hand (DASH) scores, Visual Analogue Scale (VAS) scores, and the VAS 
ratio (four-week VAS score/two-week VAS score). Their findings revealed that: (1) a rise in the absolute pain score 
4 weeks post-fracture correlated with a heightened risk of nonunion at 6 months; (2) patients with a VAS ratio above 0.6 
faced an 18-fold increased relative risk of nonunion compared to those with a VAS ratio below 0.6. Nicholson et al 29 

conducted a prospective follow-up of 200 patients with clavicle fractures, assessing them 6 weeks post-fracture to predict 
the likelihood of nonunion after 6 months. The AUROC of the final established model was 0.873. This study gathered 
data on 7 patient-related factors, 3 fracture characteristics, 5 outcomes from physical examinations, and 3 results from 
subjective functional evaluations. Analysis via a conditional stepwise regression model indicated that a QuickDASH 
score ≥ 40, absence of callus formation in X-ray images, and fracture displacement observed during physical examina-
tions were predictors of nonunion. Takahashi et al 30 used ML to predicted osteoporotic vertebral fracture nonunion, the 
ML architecture utilized in this study included a logistic regression model, decision tree, extreme XGBoost, and random 
forest RF, and found that MRI findings, anterior height ratio, kyphotic angle, posterior wall injury, fracture level, and 
smoking habit ranked as important features in the ML algorithms. Leister et al 31 used XGBoost algorithm to identify 
treatment-related risk factors, found that the odds of odontoid fracture nonunion increased significantly with age. Similar 
to the aforementioned studies, our research serves as a risk alert for 3-month nonunion; however, we discovered that 
preoperative HDL levels, intraoperative blood loss, and postoperative CCD were linked to the risk of nonunion, diverge 
from those of previous research, likely due to its foundation on distinct risk factors. These predictors are readily 
ascertainable via laboratory tests, imaging examination and surgical documentation, and the developed model based 
on these risk factors has relatively good prediction performance (AUROC of the Catboost is 0.863 and the AUPRC is 
0.801). This significantly aids clinicians in making tailored and accurate treatment decisions for high-risk individuals, 
thereby mitigating the risk of 3-month nonunion and offering broad applicability in clinical settings.

Predicted Factors
Our results indicate that an increased CCD is associated with a higher risk of 3-month nonunion. It is widely recognized 
that conservative treatment of UDCFs carries a higher risk of nonunion and may result in shoulder instability.32–34 The 
coracoclavicular ligament is pivotal in stabilizing the acromioclavicular joint, consisting of the trapezoid and conoid 
ligaments. These components are instrumental in preventing forward and backward displacement, as well as upward 

Figure 3 Shapley additive explanations (SHAP) plots of the selected variables in the CatBoost model. (a) The mean absolute SHAP value ranks the relative importance of 
the variables in the model. (b) The direction of effects for each variable in the model. 
Abbreviations: CCD, coracoclavicular distance; HDL, high density lipoprotein.
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rotation of the clavicle. Notably, the trapezoid ligament exhibits a significantly enhanced capacity to restrict backward 
displacement compared to the conoid ligament.35,36 An increase in the CCD is predominantly attributed to injuries of the 
coracoclavicular ligament, which leads to stress concentration at the distal fracture end, thereby diminishing stability. 
Fleming et al 37 highlighted that combined coracoclavicular ligament repair more effectively restores the CCD and 
stabilizes the acromioclavicular joint. Surgical strategies to restore the CCD typically encompass ORIF for anatomical 
realignment, Coracoclavicular Screw Fixation in cases where ligaments are intact, Ligament Reconstruction with grafts 
to replicate shoulder biomechanics, Hook Plate Fixation for provisional stability, and minimally invasive Arthroscopic 
Techniques utilizing various devices for less invasive interventions.38 Therefore, radiological images reveal significantly 
increased CCD in the preoperative or intraoperative, which suggest that it is necessary to reevaluate the stability and 
surgical strategy.

Second, our findings indicate that anesthesia impacts bone nonunion three months post-surgery, with nerve blocks, 
including postoperative nerve block, potentially serving as a protective factor against nonunion outcomes. A variety of 
anesthesia can be employed in clavicular surgeries,39–42 however an increasing body of literature advocates for the use of 
nerve blocks. Nerve blocks alleviate pain by inhibiting nerve cells from transmitting electrical signals that the brain 
interprets as pain. This effect is accomplished through anesthetics that obstruct the nerve receptors tasked with detecting 
damage or injury. Additionally, nerve blocks diminish inflammation, which aids in nerve recovery and further lessens 
pain.1,39 Certain studies have suggested that mitigating absolute pain may be advantageous for the union outcome 
following unstable distal clavicle fractures.43 A separate retrospective cohort study revealed that employing regional 
anesthesia in ORIF for clavicle fractures correlated with a higher rate of same-day discharge.44 Ryan et al 45 discovered 
that the combined use of brachial plexus regional anesthesia with a modified superficial cervical plexus block constitutes 
a dependable and effective approach, potentially offering advantages in terms of anesthesia initiation and overall case 
duration. Our retrospective analysis suggesting that opting for nerve block anesthesia, including postoperative nerve 
block, could diminish the risk of 3-month nonunion.

Third, HDL have a significant impact on the pathology and management of conditions such as atherosclerosis, morbid 
obesity, nonalcoholic fatty liver disease, type 2 diabetes, and various central nervous system disorders.46 Researchers 
have uncovered a novel function of HDL in the development of degenerative and metabolic bone diseases through 
experimental mouse studies.47,48 The findings indicate that reduced and dysfunctional HDL levels may contribute to 
a higher incidence of these diseases by influencing the molecular mechanisms involved in bone synthesis and degrada-
tion. Studies have reported that elevated HDL-C levels are linked to osteoporosis 49 and an increased risk of 
fractures.50,51 The relationship between high HDL-C levels, low bone mineral density, and osteoporosis,52 along with 
a genome-wide association study linking high HDL-C to low bone mineral density,53 may offer a pathophysiological 
explanation. A case-control study by Quan et al 54 identified osteoporosis as an independent risk factor for bone 
nonunion. Furthermore, another study presented high-quality evidence of a negative correlation between HDL-C levels 
and bone mineral density.55 Integrating these findings with our research suggests that an increased HDL-C levels may be 
associated with a heightened risk of nonunion. However, this view conflicts with other opinions that assert no association 
between HDL-C levels and osteoporosis.56 Thus, whether high HDL levels exacerbate the risk of 3-month nonunion 
requires further investigation.

Fourth, our research identified a correlation between intraoperative blood loss and the risk of 3-month nonunion. 
Research has demonstrated that formation of callus beyond the fracture site predominantly relies on the vascular 
supply to the periosteum and adjacent soft tissues. Furthermore, factors like trauma, excessive displacement at the 
fracture site, comminuted fractures, and both open and closed soft tissue injuries can impair the local blood supply. 
Surgical interventions can further influence the vascular supply to the fracture site, necessitating procedures like 
extended wound exposure, periosteal stripping, and varying levels of damage to surrounding soft tissues. Following 
a fracture, the blood supply to the affected end is compromised, and full restoration of vascular supply to this area may 
take over 6 months. 57 Insufficient blood supply prevents callus formation and increases the risk of nonunion. To 
mitigate the risk of postoperative nonunion, a multifaceted approach is essential for managing intraoperative hemor-
rhage: (1) Minimizing surgical trauma and employing minimally invasive techniques are crucial for preserving the 
peripheral blood supply, especially the protection of periosteum; 38 (2) The application of advanced hemostatic 
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methods, including electrocoagulation and topical hemostatic agents, is recommended; 58 (3) It is imperative to secure 
stable fracture fixation to minimize displacement at the fracture site; (4) Postoperative care should encompass optimal 
nutrition and the initiation of controlled activities to enhance circulation; (5) The administration of anti-fibrinolytic 
agents, for instance, triamcinolone, is advocated to curtail bleeding.59 Employing these comprehensive strategies is 
beneficial for sustaining an adequate blood supply at the fracture site, thereby diminishing the likelihood of 3-month 
nonunion.

Practical Implications of Predictive Modeling
Our results suggest that while some predictors like HDL and intraoperative blood loss are not directly modifiable during 
surgery, their identification is vital for postoperative management. For instance, elevated preoperative HDL and 
significant intraoperative blood loss are indicators for intensive monitoring and intervention. These might include 
nutritional adjustments, optimization of physical therapy regimens, and stricter hematological surveillance to promote 
healing and mitigate the risk of nonunion. Moreover, CCD can be directly modified during the operation. Understanding 
the role of CCD in nonunion provides actionable insights for preoperative planning. When the CCD is significantly 
increased by analyzing radiological images, it suggests a potential reevaluation of surgical techniques to ensure optimal 
alignment and stability.

Enhancing External Validity
Acknowledging the high 3-month nonunion rate observed in our study, finally 6 cases had bone nonunion after extended 
follow-up and underwent secondary surgery. We are undertaking collaborative studies to validate these findings across 
multiple centers with varied 3-month nonunion incidences. This initiative will help determine whether the identified 
predictors hold universally or if their influence is context-specific. Such validation is crucial for enhancing the robustness 
and applicability of our predictive model in global clinical settings.

Limitations
This study is subject to certain limitations that warrant consideration in subsequent research. Firstly, the predictive 
model did not include functional outcomes, as another important indicator of delayed nonunion, besides radiolo-
gical signs of nonunion. Secondly, similar to numerous retrospective analyses, our model’s efficacy requires 
prospective validation. Thirdly, prediction model was not developed based on 6 patients with final bone nonunion. 
Fourthly, the dataset for this research was sourced from single medical institution, which may not provide as 
comprehensive a perspective as a multicenter study would. Although external validation data were utilized, these 
originated from the same institution too, lacking validation cohorts from diverse regions and nations. Subsequently, 
additional datasets and prospective multicenter clinical trials are essential to confirm the reliability of our findings 
and model.

Conclusion
In summary, our retrospective analysis demonstrates that ML-particularly the CatBoost model-can effectively predict 
3-month nonunion in patients with unstable distal clavicle fractures treated with ORIF. Key predictors identified (CCD, 
HDL levels, and intraoperative blood loss) offer actionable insights that can inform intraoperative adjustments and 
postoperative management. Integrating these predictive models into clinical practice could potentially reduce nonunion 
rates and improve patient outcomes by enabling more personalized treatment strategies.
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