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Abstract: Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease marked by abnormal development of retinal 
vessels in low birth weight preterm infants. It is one of the leading causes of blindness in preterm infants. Current ROP screening 
methods impose high demands on both the equipment and the expertise of ophthalmologists, which limits their widespread application, 
particularly in secondary hospitals and remote areas. Thus, the identification of relevant biomarkers and the development of simpler 
detection methods are important and promising. Non-invasive or minimally invasive sampling methods, along with biomarkers 
possessing high sensitivity and specificity, could greatly enhance neonatal screening, facilitate early diagnosis, and improve prevention 
of blindness in preterm infants. This review provides relevant medical insights for clinical practice. This review explored, compares 
and analyzes various sampling sources. It compares and analyzes research on ROP-related biomarkers derived from these samples. 

Plain Language Summary: This review compares different human fluid sampling sources for screening, predicting, diagnosing, and 
prognosticating ROP patients, and compares and analyzes the research on ROP-related biomarkers from different samples. Non- 
invasive or minimally invasive methods of obtaining samples and selecting biomarkers with high validity promise to be more 
beneficial for newborn, early diagnosis of ROP, and better prevention of blindness in preterm infants, providing relevant medical 
references for clinical practice. 
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Introduction
Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease that affects preterm infants.1,2 While ROP 
may regress spontaneously in some cases, it can progress from mild stages (ROP stages I and II) to more severe forms 
(ROP stages III, IV, and V) in others, potentially resulting in complete vision loss if not treated promptly.3 However, ROP 
is largely preventable, and reducing the incidence of blindness hinges on high-quality neonatal care, comprehensive ROP 
screening programs, and the expertise of skilled ophthalmologists.4 Although ROP is classified as a neovascular disease, 
the underlying molecular mechanisms remain unclear. It is hypothesized that multiple pathological risk factors, including 
low birth weight, gestational age, postnatal oxygen fluctuations, and inflammation, contribute to ROP progression by 
inducing retinal vascular occlusion and neovascularization.5 This, in turn, triggers oxidative stress and the release of pro- 
inflammatory and pro-angiogenic factors.6 These cytokines play a pivotal role in the onset and progression of ROP, 
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prompting numerous studies to focus on detecting ROP-related factors for early prediction and intervention to mitigate 
the incidence and severity of ROP in preterm infants.

Currently, ROP screening by the neonatologist is based on birth weight and gestational age, with ROP staging based 
on binocular indirect ophthalmoscopy (BIO) and/or wide-field retinal imaging systems.7,8 However, both methods 
require pupil dilation, the use of an eyelid speculum, and may involve scleral indentation, potentially causing side 
effects such as physiological stress, apnea, and cardiovascular instability.9,10 Additionally, multiple examinations are 
often required to reach a clinical conclusion, with the decision to initiate treatment largely depending on the ophthalmol-
ogist’s clinical experience11–13 or AI.14 In light of research on the pathogenesis of ROP, various factors have been 
measured in different sample types, including peripheral blood, umbilical cord blood, amniotic fluid, placenta, vitreous 
fluid, aqueous humor, urine, and tears, to elucidate their correlation with ROP pathobiology15,16 (shown in Figure 1). 
This review aims to evaluate the existing ROP detection methods, with the goal of identifying more effective, safer, and 
simpler approaches that could reduce the frequency of ROP staging exams in preterm infants. Furthermore, it seeks to 
identify relevant biomarkers that could enable the development of more personalized ROP screening protocols, thereby 
improving the diagnosis and prognosis of ROP and alleviating the burden on patients, families, and healthcare providers.

Different Detection Methods
Peripheral Blood
Peripheral blood, composed of various cell types and compounds such as salts and proteins, has been extensively studied for 
its potential in screening, predicting, diagnosing, and prognosticating Retinopathy of Prematurity (ROP). Research by 
Villegas-Becerril et al has identified Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor 1 (IGF-1) 
as important markers in predicting the risk of ROP.17 VEGF, a key molecule involved in pathological retinal vascular 
changes,18,19 is downregulated during stage I ROP and upregulated in the Müller glial cells of the peripheral avascular 
retina during stage II.20–22 Hellgren and Yenice discovered that preterm infants who later developed ROP had significantly 
lower circulating VEGF levels at birth.23,24 Additionally, studies by Pieh and Yalin demonstrated that VEGF levels 
significantly increased in the blood of patients with late-stage or treatment-requiring ROP.25,26 Thus, maintaining 

Figure 1 Different detection methods of ROP, including peripheral blood, umbilical cord blood, amniotic fluid, placenta, vitreous humor, aqueous humor, urine and tear fluid.
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physiological levels of VEGF may prevent ROP progression, while reducing pathological VEGF levels in advanced ROP 
could help mitigate disease progression. These clinical findings are strongly supported by results from oxygen-induced 
retinopathy (OIR) animal models.27–29 IGF-1, essential for retinal vascular formation during normal eye development,30–32 

stimulates VEGF synthesis.33 When IGF-1 levels are low, VEGF is unable to activate the Akt signaling pathway during the 
first stage of ROP, leading to endothelial cell apoptosis. Several studies have confirmed that low blood IGF-1 levels are 
associated with the development and increased severity of ROP,34–36 and early restoration of IGF-1 to normal levels can 
prevent the onset of ROP.37

A large body of research has also shown that various inflammatory factors in the blood, such as IL-6, IL-8, IL-18, and 
TNF-α, play significant roles in the occurrence and progression of ROP as regulators of angiogenesis. IL-6, which has both 
pro-inflammatory and anti-inflammatory effects,38 can promote VEGF expression.39 Multiple studies have reported 
elevated IL-6 levels in the plasma/serum of preterm infants before and after birth in those who eventually develop ROP, 
whether mild or severe.34,40–42 IL-8, the first chemokine studied, has notable angiogenic activity and induces ocular 
inflammation.43 Several studies have demonstrated a significant association between elevated IL-8 levels in the plasma/ 
serum of preterm infants after birth and the development of severe ROP,42,44,45 findings that have been further validated in 
animal experiments.46 IL-18, a pro-inflammatory cytokine with immunomodulatory properties, exhibits both angiogenic 
and angiostatic effects.47 Sood et al observed lower serum IL-18 levels in preterm infants with ROP compared to those 
without the disease, although IL-18 levels increased within three weeks after birth.40 The biphasic pattern of IL-18 
expression aligns with the two stages of ROP development,48 underscoring its role as a time-sensitive angiogenic 
regulator.40 TNF-α, primarily produced by monocytes or macrophages, is a major initiator of inflammation.49 It enhances 
the production of other cytokines, such as IL-8, basic Fibroblast Growth Factor (bFGF), and MCP-1,50 in perivascular 
retinal microglia through autocrine or paracrine mechanisms and plays a role in the formation of hypoxic retinal 
neovascularization.51,52 Clinical studies by Hellgren and Holm found that elevated TNF-α levels in the serum/plasma of 
preterm infants are associated with the development and severity of ROP.34,42,44 Moreover, animal studies have confirmed 
that inhibiting TNF-α significantly improves vascular restoration in the ischemic retina of the mouse OIR model and 
reduces pathological neovascularization.53,54

In addition to cytokine detection, immune cell infiltration in peripheral blood has also been linked to ROP. 
Peripheral Blood Mononuclear Cells (PBMCs), which include lymphocytes (T cells, B cells, and Natural Killer 
cells), monocytes, and dendritic cells, are central to the immune response.55 Kurtul and others demonstrated that 
lymphocyte count is negatively correlated with ROP, indicating its independent predictive value.56 Further studies 
by Zhou and Li on PBMCs in ROP patients requiring treatment revealed significant changes in non-coding RNAs 
(tsRNA, miRNA, circRNA), with hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554 emer-
ging as promising biomarkers and molecular targets for diagnosing treatment-required ROP.57,58

Moreover, research on the genetic polymorphisms of peripheral blood has identified numerous genes involved 
in pathways related to fetal retinal growth and development, angiogenesis, inflammation, neurodegeneration, and 
oxidative stress, which are associated with ROP.59 Rathi et al found that gene variants in the complement pathway 
(CFH, CFB, C3), ECM remodeling (FBLN5, MMP9), leukocyte transendothelial migration and activation 
(CXCR4), HIF1A signaling and angiogenesis (ANGPT2, H2AFX, and VEGF), and developmental processes 
(TGFb1, IHH) are closely linked to the pathogenesis of ROP.59 Fevereiro-Martins and others discovered that 
polymorphisms in genes involved in the WNT signaling pathway, VEGFA gene, eNOS gene, and Brain-Derived 
Neurotrophic Factor (BDNF) gene are also associated with ROP development.60 Xu et al highlighted the role of 
lactate metabolism in ROP development, finding that a large number of lactate metabolism-related genes (LMRGs) 
are significantly associated with ROP, confirming the involvement of these genes in the disease’s pathogenesis.61

Peripheral blood, typically collected from peripheral veins, is easily accessible and represents a minimally invasive 
and routine method for preterm infants, allowing for repeated analysis. Blood tests reflect cellular activity throughout the 
body and have been widely applied across various diseases.
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Umbilical Cord Blood
Umbilical cord blood, collected from the umbilical vein at the time of delivery, has been extensively studied for its 
relationship with ROP, particularly in the context of VEGF and IGF-1 levels. Research consistently shows that elevated 
VEGF levels in the cord blood of ROP patients and low serum VEGF content in umbilical cord blood are independent 
risk factors for the development of ROP in preterm newborns.15,24,35 IGF-1 levels are also decreased, with low levels of 
IGF-1 in the cord blood of very preterm infants negatively correlating with severe ROP,15,35,62,63 positioning cord blood 
IGF-1 as a biomarker for severe ROP risk. Cekmez et al found that levels of Apelin, a vascular endothelial growth factor 
necessary for normal vascular growth and endothelial cell proliferation,64,65 are lower in the umbilical cord blood of ROP 
patients at birth, with changes in Apelin levels positively correlating with changes in IGF-1 levels.62 Apelin is implicated 
in cell proliferation and angiogenesis.66

Furthermore, elevated expression of numerous inflammatory factors in umbilical cord blood has been linked to ROP 
development and severity, with the expression of inflammatory factors (MIP-1β, MCP-1) inversely correlated with 
gestational age (GA) and birth weight (BW).67 Yu et al reported that elevated levels of Monocyte Chemoattractant 
Protein-1 (MCP-1), Macrophage Inflammatory Proteins (MIP-1α, MIP-1β), and IL-7 in umbilical cord serum predict 
ROP risk, with MIP-1β associated with ROP severity.67 Park et al demonstrated that high concentrations of inflammatory 
mediators (IL-6 and C5a) in umbilical cord blood collected at birth are significantly associated with an increased risk of 
severe ROP and Type 1 ROP.68 Elevated IL-6 levels in umbilical cord plasma can predict ROP severity and serve as an 
independent marker for severe ROP, while increased C5a concentrations can assess ROP severity and the need for laser 
treatment.68 Thus, the combined analysis of various inflammatory factors offers a more accurate prediction of ROP 
development.

In addition to cytokines, protein level detection in umbilical cord blood has also been closely linked to ROP. TGFBI, 
an extracellular matrix protein associated with angiogenesis, inflammation, and embryonic development, plays a key role 
in regulating immune and inflammatory responses.69 Endoglin, critical in post-occlusive reperfusion and neovascular 
diseases, is involved in angiogenesis, neovascular formation, and vascular remodeling.70 Song et al found that reduced 
TGFBI levels in cord blood are significantly associated with severe ROP and Type 1 ROP, with low Endoglin levels 
serving as a predictor for Type 1 ROP.70 A combined predictive model based on TGFBI, Endoglin levels, and weight data 
can serve as a reliable birth indicator for neonatal ROP risk.70 Additionally, Madan et al found higher levels of 
deamidated globulin chains in the cord blood of preterm infants with severe ROP,71 where deamidation is a form of 
protein damage associated with various pathological conditions.72,73

Umbilical cord blood at birth directly reflects the intrauterine environment’s impact on the fetus, including hypoxia, 
stress, injury, and infection/inflammation.68 Compared to peripheral blood, it is collected at an earlier stage, allowing for 
a more timely reflection of the pathological processes involved in ROP.

Amniotic Fluid
Amniotic fluid, collected through direct puncture during delivery, has been examined in preterm infants to assess 
its relationship with Retinopathy of Prematurity (ROP). Studies, such as those by Woo et al, have identified 
significant correlations between elevated levels of inflammatory mediators (eg, IL-6 and IL-8) and angiogenic 
mediators (eg, Endoglin, Endostatin, and IGFBP-2) in the amniotic fluid and the severity of ROP.74 These 
biomarkers, combined with prenatal factors like gestational age and birth weight, can predict ROP’s occurrence 
and progression.74 Endostatin, known for inhibiting angiogenesis, may counteract the effects of VEGF and other 
growth factors.74 IGFBP-2, which plays a role in cell proliferation and angiogenesis, is also expressed in fetal and 
placental tissues.33,75 Additionally, Jang et al found that lower levels of IL-10 and TNF-α in amniotic fluid were 
significantly associated with ROP, and increased MMP-2 levels were identified as a risk factor for the disease.76 

MMP-2, a protease involved in extracellular matrix degradation, is linked to pathological retinal 
neovascularization.77,78

Because amniotic fluid is collected early, it allows for the detection of factors that may reflect the initial stages of 
ROP, providing a timely insight into the disease’s development.
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Placenta
The placenta serves as the critical interface between mother and fetus, facilitating the exchange of nutrients and oxygen. 
Research has shown that placental pathology significantly impacts postnatal conditions in preterm infants, such as 
bronchopulmonary dysplasia, necrotizing enterocolitis, and neurocognitive and neurovascular development.79–85 

Histological examinations of the placenta can provide valuable insights into the risks of adverse neonatal outcomes, 
particularly in extremely preterm infants (EPT) born before 28 weeks of gestation.86

Placental function is directly linked to the underlying mechanisms of ROP. For instance, Leviton et al demonstrated 
that preterm infants with impaired placental implantation exhibited significantly lower IGF-1 levels in peripheral blood 
on the first day post-birth.87 However, the relationship between placental infection, inflammation, and ROP remains 
controversial. Some studies suggest a strong association between placental inflammation (eg, chorioamnionitis, funisitis) 
and an increased risk of ROP.88–92 Inflammatory conditions in the placenta may trigger cytokine release into the fetal 
circulation, contributing to ROP development. Chen et al, for example, found that co-existing placental bacterial 
infection and histological inflammation were linked to an increased risk of Zone I ROP but not severe ROP.88 

Conversely, other studies have suggested no significant correlation and even a protective effect of placental inflammation 
against ROP.93–97 Owen et al posited a protective relationship between acute placental inflammation and ROP risk,16 

a finding supported by Park et al, who observed a decreased ROP risk with the progression of acute histological 
chorioamnionitis (HCA).97 These contradictory findings indicate a complex relationship between placental function, 
inflammation, and ROP, warranting further investigation.

Moreover, epigenetic investigations by Bulka et al on placental tissue unveiled that placental DNA methylation at 16 
CpG sites in 8 genes linked to mothers of extremely low gestational age newborns (ELGAN) is associated with early 
ROP onset risk.98 Methylation patterns in genes like Serum Amyloid A (SAA1 and SAA2), Myeloperoxidase (MPO), 
C-Reactive Protein (CRP), and Tumor Necrosis Factor Receptor Superfamily Member 1B (TNFRSF1B) exhibit 
a negative correlation with early ROP onset risk.98 Conversely, methylation at three sites in the Tumor Necrosis 
Factor Receptor Superfamily Member 1A (TNFRSF1A) gene is positively linked to early ROP risk. Furthermore, 
methylation at two sites in the Brain-Derived Neurotrophic Factor (BDNF) and Angiopoietin 1 (ANGPT1) genes 
respectively correlates positively/negatively with early ROP risk.98 Assessment of CpG methylation sites across multiple 
genes can serve as valuable predictive biomarkers for ROP, offering avenues for early intervention to mitigate disease 
severity.

Studies on other placental elements, such as chemical composition, have also been insightful. For example, Deev et al 
found altered levels of elements like nitrogen and potassium in the placentas of ROP patients, with nitrogen content 
potentially serving as a preclinical biomarker for the disease.99 Research into placental nutrients has similarly shown 
correlations between omega-3 receptor expression and ROP occurrence,100 emphasizing the role of omega-3 in retinal 
vascularization and reducing the severity of pathological neovascularization.54,101

Histological examination of placental tissue offers early insights into the pathological processes of ROP, enhancing 
our understanding of the disease’s pathogenesis and providing clinical insights for early prediction and prevention of 
ROP onset and progression.

Vitreous Fluid
The vitreous humor, which constitutes 80% of the eye’s volume, is predominantly composed of water (98–99.7%).102 It 
forms a transparent gel structure containing a myriad of diluted structural macromolecules (such as hyaluronic acid (HA), 
proteoglycans, collagen, and non-collagen proteins), non-structural proteins (serum), and a small population of cells 
(hyalocytes).103 Given its proximity to the retina, particularly when the blood-retinal barrier (BRB) is compromised, the 
vitreous can accumulate secretory products from the retina.104 Consequently, in vitreoretinal diseases, the composition of 
the vitreous undergoes alterations due to the varied expression of proteins under distinct pathological conditions.103

Studies have identified elevated levels of angiogenic factors like VEGF,59,105–107 erythropoietin,108 angiopoietin-1, 
and angiopoietin-2 in the vitreous of ROP patients,109 while anti-angiogenic factors such as pigment epithelium-derived 
factor and VEGF165b are decreased.106,110 Angiopoietins work in conjunction with VEGF, contributing to both 
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physiological and pathological neovascularization.109 Higher levels of Ang-1 and Ang-2 have been observed in the 
vitreous of infants with moderate to late-stage ROP.111 Although intravitreal anti-VEGF injections are a common 
treatment for ROP, particularly aggressive posterior ROP.112,113 Nonetheless, some side effects have been observed in 
neonates treated with anti-VEGF for ROP, including neovascular recurrence,114 enduring impairments in photoreceptor 
integrity,115 and compromised eye and organ development.116–118 Studies also indicate resistance to anti-VEGF therapy 
in some patients,119 underscoring the necessity of identifying alternative angiogenic or anti-angiogenic cytokines 
implicated in ROP pathogenesis.

Beyond angiogenic factors, studies have documented escalated levels of numerous inflammatory factors, complement 
factors, and chemokines in the vitreous of ROP patients. Sato and Velez-Montoya, for example, found increased levels of 
erythropoietin, VEGF, IL-6, IL-7, IL-15, Eotaxin, G-CSF, IP-10, and RANTES in the vitreous.120 Complement factors 
like CFH, C3, and C4,59 typically downregulated in normal preterm infants due to immune immaturity,121,122 are 
upregulated in ROP patients, suggesting a significant role for the complement pathway in ROP development.59 The 
chemokine receptor CXCR4, which facilitates lymphocyte and monocyte migration,123 has been shown to influence 
retinal vascular sprouting,124 and RANTES, a chemokine critical for innate immunity in neonates, has demonstrated 
complex roles in ROP.125 Sato et al have found that RANTES exhibits significantly higher vitreous levels in both active 
and inactive ROP patients compared to non-ROP individuals.120 However, another study reported lower RANTES 
concentrations in the vitreous of preterm infants with severe ROP, with higher RANTES levels associated with reduced 
ROP risk,44 suggesting a protective role of RANTES.

Additionally, examinations of proteins in the vitreous of ROP patients, such as Opticin, a glycoprotein abundant in the 
human vitreous extracellular matrix (ECM) and an endogenous anti-angiogenic factor,126,127 have shown reduced 
expression of the anti-angiogenic protein Opticin in the vitreous of ROP patients.3 Intravitreal administration of 
Opticin has demonstrated efficacy in preventing retinal neovascularization development, with animal studies corroborat-
ing Opticin’s ability to promote regression of established retinal neovascularization in a mouse model of oxygen-induced 
retinopathy.3

However, due to the invasive nature of vitreous sampling, this method of “screening” or of prophylactic treatment, is 
not currently practical. Current knowledge primarily comes from animal studies, which provide valuable insights into 
retinal conditions and help guide clinical research on ROP’s pathogenesis.

Aqueous Humor
The aqueous humor is secreted by the ciliary epithelium, extending to the serrated margin and reaching the peripheral 
retina. Therefore, the cytokine levels in the aqueous humor of ROP patients are likely to reflect retinal-related cytokine 
levels, similar to those in the vitreous.107 Studies by Nonobe and Velez-Montoya have found elevated levels of VEGF in 
the aqueous humor of late-stage ROP patients, with a significant reduction in VEGF concentration after intravitreal 
injection of anti-VEGF (bevacizumab).107,128 Liang et al further observed that VEGF levels in the aqueous humor of 
preterm infants with severe ROP (aggressive retinopathy of prematurity, A-ROP) were higher than those with milder 
forms (threshold ROP and type 1 pre-threshold ROP).129 The VEGF levels were negatively correlated with the lesion 
area and stage of ROP but positively correlated with the degree of venous tortuosity, while unrelated to arterial 
tortuosity.129

Moreover, Lyu et al detected elevated levels of VEGF, interferon-γ (IFN-γ), IL-10, and IL-12 in the aqueous humor of 
ROP patients, correlating with the severity of ROP.130 Notably, higher levels of VEGF and MIP-1β were independently 
associated with the need for ROP retreatment.130

In addition to VEGF and cytokines, other anti-angiogenic factors such as Col1a1, tRF-1001, and 16K-PRL have been 
detected in the aqueous humor of ROP patients. Animal studies have shown that Col1a1 can reduce retinal neovascular-
ization and ischemic areas, making it a promising therapeutic target.131 Clinical studies by Xia et al also observed 
upregulated expression of Col1a1 in the aqueous humor of ROP patients.131 tRF-1001, a novel class of non-coding RNA 
transcripts with anti-angiogenic properties, has shown downregulation in the retina of an oxygen-induced retinopathy 
(OIR) animal model and in the aqueous humor of patients with age-related macular degeneration (AMD).132 The 
upregulation of tRF-1001 could inhibit pathological angiogenesis, offering potential therapeutic avenues.132 16K-PRL, 
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a potent angiogenesis inhibitor produced locally in the eyes of ROP patients, has been linked to the regression of 
intraocular vessels, with Dueñas et al reporting significantly elevated PRL levels in the aqueous humor of ROP 
patients.133

Aqueous humor is generally collected using a 30-gauge needle through a clear corneal puncture, obtaining 20–30 μL 
of undiluted aqueous humor from each eye, is somewhat invasive and may pose severe complications. Current research 
on aqueous humor predominantly focuses on glaucoma and certain fundus diseases post-intravitreal drug injection, 
collecting aqueous humor for relevant research to provide insights into ROP pathogenesis-related mechanisms.

Urine
Urinary VEGF levels are easily measurable and can be used for the early diagnosis of ROP. Studies by Levesque and 
others have found that low levels of VEGF in urine during the first month after birth are associated with the development 
of ROP.134 Early research by Kwinta and subsequent studies by Levesque and Yenice found that infants with ROP 
requiring active intervention exhibited decreased urinary VEGF levels.24,134,135

In addition to VEGF, other inflammatory markers such as IL-8 and IL-6 can also be detected in the urine of ROP 
patients. IL-8 plays a significant role in the recruitment of neutrophils in inflammation, cell adhesion, tumor growth, 
angiogenesis, neuronal protection, and brain development.43 Studies have shown similar levels of IL-6, IL-8, and VEGF 
in the urine of both ROP and non-ROP groups, but there is a positive correlation between the levels of IL-8, IL-6, and 
VEGF in urine, indicating that the level of IL-6 increases with the levels of IL-8 and VEGF in urine, and the level of 
VEGF also increases with the level of IL-8 in urine.45

Beyond VEGF and inflammatory markers, researchers have also explored the relationship between urine metabolites 
and ROP, including oxidative products like 8-hydroxy-2ʹ-deoxyguanosine (8-OHdG) and N-terminal pro B-type natriure-
tic peptide (NTproBNP). 8-OHdG, a sensitive biomarker of oxidative DNA damage,136 has been found at significantly 
higher levels in the urine of ROP patients, suggesting its potential as a screening indicator for ROP.137 NTproBNP, 
widely used to assess conditions such as heart failure and bronchopulmonary dysplasia,138,139 was also found to be 
elevated in the first month after birth in preterm infants under 30 weeks of gestation, correlating with a higher risk of 
severe ROP.140 Czernik et al identified a significant increase in the urine NTproBNP/creatinine ratio (UNBCR) in 
preterm infants with severe ROP, further underscoring its predictive value.141

However, urine collection in newborns presents challenges due to the difficulty in obtaining samples on demand. 
Typically, urine is collected using diapers or pads, which may lead to contamination and lower accuracy, limiting its 
utility as a diagnostic method.

Tears
Tears, a complex mixture of proteins, lipids, mucins, water, and salts, have recently been shown to contain 1526 proteins 
through proteomic analysis,142 making them less complex than serum or plasma. Tears are ideal for assessing biomarkers 
and molecular characteristics related to ocular vascular changes in both health and disease. Numerous studies have 
explored the relationship between ocular diseases and tear composition, including dry eye disease (DED), vernal 
conjunctivitis, diabetic retinopathy, Graves’ orbitopathy, ocular tumors, and glaucoma.142–147

Vinekar et al analyzed pro-angiogenic factors in the tears of preterm infants with ROP, finding lower VEGF levels in 
those with ROP, especially in progressing cases.148 Conversely, angiogenin levels were higher, and the ratio of 
angiogenin to birth weight, gestational age, and/or VEGF could serve as a potential non-invasive screening biomarker 
for ROP.148 Magnani and others further confirmed that tear VEGF levels negatively correlate with the severity of ROP, 
with significantly lower levels in late-stage (stage 3) ROP patients compared to those in earlier stages or those with 
regressed or resolving ROP.111 In contrast, Ang-1 and Ang-2 levels were positively correlated with ROP severity, with 
late-stage (stage 2) ROP patients showing significantly higher levels of these factors.111 However, VEGF, Ang-1, and 
Ang-2 levels in tears alone are not reliable biomarkers for assessing ROP severity or treatment needs.111

Additionally, studies have shown an upregulation of numerous inflammatory factors in tears, such as CCL2, 
RANTES-CCL5, and IL-8. Vinekar et al detected higher levels of RANTES-CCL5 and IL-8, along with lower levels 
of IL-6 and sL-selectin, in the tears of infants with ROP, though MCP1-CCL2 levels remained unchanged.149 Baba et al 
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found significantly elevated CCL2 levels in the tears of severe ROP patients, suggesting that tear CCL2 could serve as 
a useful biomarker for assessing ROP severity.150 CCL2, a chemokine involved in monocyte and macrophage recruitment 
to inflammation sites, plays a role in the pathogenesis of various retinal vascular proliferative diseases.151

Tear protein concentrations are relatively high and can be easily obtained through minimally invasive methods.152 

Tear proteomics has identified potential biomarkers for other ocular diseases, including growth factors and VEGF,153–155 

with functions spanning angiogenesis, immune or inflammatory responses, visual perception, and metabolism.152 Shipton 
and others validated the feasibility of using tear proteins to assess ROP risk, finding an increase in LDH-B chains in 
infants at higher risk for ROP and a rise in immunoglobulin concentrations with postmenstrual and postnatal age.10 Rathi 
and Patnaik further found that MMP2 and MMP-9 expression was significantly higher in the tears of severe ROP patients 
compared to those with mild ROP or without the disease.3,59 These findings highlight the potential of tear MMPs as early 
predictive biomarkers for ROP, with MMP levels increasing with disease severity and showing no response to laser 
treatment, underscoring their diagnostic value.

Tear collection is relatively non-invasive and straightforward, most commonly done using sterile Schirmer strips 
(5 x 35 mm) to collect tears or conjunctival secretions. Other methods include glass capillaries, surgical sponges, 
glass rods and scrapers, and phenol red thread tear tests. Tears can be safely collected, reliably analyzed repeatedly, 
and associated with disease staging and progression, making them a valuable tool for predicting the onset and 
progression of ROP in preterm infants.

Comparison of Different Detection Methods and Factors
Comparison of Different Detection Methods
Research on ROP has revealed that various detection methods possess distinct advantages and disadvantages. The 
collection of vitreous and aqueous humor, while invasive and primarily used for laboratory research, offers a more direct 
insight into the retinal condition and aids in clarifying the pathogenesis of ROP. Sampling of amniotic fluid, umbilical 
cord blood, and placental tissue occurs relatively early, allowing for an assessment of the in utero environment, which 
can provide early predictions regarding the occurrence and progression of ROP. Peripheral blood and urine samples are 
easier to obtain; however, their collection typically occurs later and is susceptible to influence from a variety of systemic 
factors. Tears, on the other hand, can be collected safely at multiple time points, allowing for the dynamic monitoring of 
disease progression. This makes them an ideal source for identifying and validating molecular markers closely associated 
with ocular diseases, including ROP.156

Comparison of Different Detection Factors
VEGF has emerged as the most extensively studied and modifiable factor in ROP. The pathogenesis of ROP is divided 
into two phases: the first phase involves the downregulation of VEGF levels due to high environmental oxygen, which 
inhibits retinal vascular growth. The second phase is marked by accelerated retinal development and metabolism, leading 
to relative retinal hypoxia. This hypoxia stimulates increased VEGF production in the avascular retina, promoting 
extensive retinal neovascularization.20,157 Numerous studies have examined VEGF levels across various sample types in 
ROP patients, with most indicating elevated VEGF levels. Showing differences in severity in peripheral blood, ie, 
decreased VEGF in mild ROP patients and increased VEGF in severe ROP patients, consistent with the two development 
stages of ROP disease. Notably, VEGF levels in tears and urine are decreased in ROP patients. Lower tear VEGF levels 
may reflect systemic VEGF levels; Vinekar et al reported that infants with higher tear VEGF levels exhibited more 
systemic angiogenesis, likely as a response to prematurity-related inflammatory complications, independent of ROP 
status.148

Insulin-like growth factor-1 (IGF-1) is a critical peptide hormone with structural similarity to insulin, playing 
a fundamental role in fetal and neonatal growth and development.158 It promotes cell proliferation and differentiation, 
inhibits apoptosis, and has metabolic and immunomodulatory effects akin to insulin.159 IGF-1 is considered a positive 
regulator of VEGF, effectively facilitating retinal neovascularization.160 Recent studies have increasingly elucidated the 
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relationship between IGF-1 and ROP, with multiple investigations into peripheral and umbilical cord blood suggesting 
that low IGF-1 levels are crucial in the onset and progression of ROP.

A wide range of inflammatory factors, including TNF-α, IL-6, IL-8, IL-18, IL-10, MCP-1, MIP-1α/β, and CCL2, have 
been found to be elevated in various sample types from ROP patients and are believed to interact synergistically with 
VEGF. TNF-α, a key cytokine in inflammation with paradoxical anti-inflammatory properties, has been shown to 
influence retinal angiogenesis. Its expression is upregulated in animal models of retinal neovascularization and human 
proliferative eye diseases.161 Blocking TNF-α can enhance physiological angiogenesis while reducing pathological 
neovascularization in mouse models of oxygen-induced retinopathy.53,54 IL-6, known to promote pathological angiogen-
esis, including retinal angiogenesis, increases in diabetic retinopathy.162–164 IL-8, another inflammatory cytokine, plays 
a crucial role in promoting angiogenesis and is elevated under conditions of retinal neovascularization.162,163,165 

However, some studies report conflicting results or no significant differences for these inflammatory markers. 
Additionally, certain studies have detected immune cells (PBMCs), complement factors (C3, C4), and angiopoietins 
(Ang-1 and Ang-2) as contributors to the development and progression of ROP.

Furthermore, specific factors demonstrate unique expression patterns in particular samples. For instance, reduced 
TGFBI levels in umbilical cord blood proteins are significantly associated with severe ROP. Increased MMP levels in 
amniotic fluid and tears are identified as risk factors for the onset and independent risk factors for the progression of ROP. 
Elevated opticin levels in the vitreous have been shown to prevent retinal neovascularization. Additionally, Col1a1 and 
16K-PRL are significantly upregulated in the aqueous humor of ROP patients. Placental function and inflammation also 
exhibit a complex association with ROP, and significant elevations in 8-OHdG and NTproBNP have been observed in the 
urine of ROP patients.

Common influencing factors and their related mechanisms are shown in Table 1. The detection results of different 
factors across various, and even identical, sample types are largely consistent, though some contradictory findings may be 
attributed to differences in the stage of ROP at the time of sampling, variations in corrected gestational age, and the 
overall condition of the patients. Further research is needed to examine related factors in the same or different sample 

Table 1 Predominant Cytokines Implicated in Retinopathy of Prematurity and Their Mechanistic Roles

Cytokines Study 
Subjects

Expression in OIR/ROP Samples Characteristics and Actions Ref.

IGF-1 Human ↓ (blood, umbilical cord blood) 1. Augments VEGF synthesis to optimize its pro-angiogenic effects.
2. Fosters endothelial cell proliferation while preserving structural 

integrity.

[33,159,160]

IL-6 Human ↑ (blood, umbilical cord blood, amniotic 
fluid, vitreous) 
↓ (tears)

1. Elicits an acute phase protein response.
2. Exhibits both pro-inflammatory and anti-inflammatory properties.
3. Facilitates pathological angiogenesis.
4. Facilitates VEGF expression.

[38,162–164]

IL-8 Mice 
Human

↑ (retina, blood, amniotic fluid, tears) 1. Orchestrates the directed migration of neutrophils, basophils, and 
T lymphocytes.

2. Stimulates endothelial cell proliferation and the formation of 
capillaries.

3. Suppresses endothelial cell apoptosis.

[43,162,163,165]

TNF-α Mice 
Human

↑ (retina, blood) 
↓ (amniotic fluid)

1. Exhibits both pro-inflammatory and anti-inflammatory properties.
2. Facilitates retinal neovascularization.

[49,51,52]

VEGF Mice 
Human

↑ (umbilical cord blood, vitreous, aqueous) 
↓ (tears, urine) 
↓ or ↑(blood, retina)

1. Activated by HIF-1α, it operates synergistically with other angio-
genic mediators.

2. Modulates endothelial cell migration and ensures cellular survival.
3. Facilitates anomalous vascular sprouting.
4. Enhances vascular permeability.

[18–20,33,109,160]

Notes: ↑: upregulation; ↓: downregulation. 
Abbreviations: HIF, hypoxia-inducible factor; IGF-1, insulin-like growth factor 1; IL, interleukin; OIR, oxygen-induced retinopathy; ROP, retinopathy of prematurity; TNF, 
tumor necrosis factor; VEGF, vascular endothelial growth factor.
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types at consistent stages to enhance our understanding of ROP pathogenesis and to provide more effective recommen-
dations for early prevention and treatment in clinical practice.

Conclusion
Retinopathy of Prematurity (ROP), characterized by abnormal and uncontrolled vascular growth in the immature retina of 
preterm infants, remains a leading cause of potentially preventable blindness in children globally. Various detection 
methods for ROP, including peripheral blood, umbilical cord blood, amniotic fluid, placenta, vitreous humor, aqueous 
humor, urine, and tears, offer distinct advantages and limitations. Among these, the simplicity, safety, and speed of tear 
collection make it a particularly promising method for use in preterm infants. Tears can be safely and repeatedly 
collected, and they are associated with disease staging and progression. Previous studies have investigated relevant 
cytokines in the tears of premature infants with retinopathy, such as angiogenic factors (VEGF, Ang-1, and Ang-2), 
inflammatory factors (CCL2, RANTES-CCL5, IL-8), and MMPs (MMP-2 and MMP-9). It was found that the levels of 
MMPs (MMP-2 and MMP-9) increased with the severity of the disease. The establishment of tear protein expression 
profiles has also played a significant role in the study of ocular diseases, facilitating patient compliance and longitudinal 
monitoring. Identifying biomarkers that accurately predict the risk and severity of ROP is critical for many infants, their 
families, and the healthcare system. As neonatal medicine continues to evolve, the clinical and practical challenges 
associated with ROP are likely to grow, underscoring the need for further investigation into potential tear biomarkers for 
ROP. Such research could lead to more effective early detection and intervention strategies, ultimately reducing the 
incidence of ROP-related blindness.

Retinal vascular disorders such as Familial Exudative Vitreoretinopathy (FEVR), Incontinentia Pigmenti (IP), and 
Coats Disease severely impair infant vision by damaging retinal vasculature. Previous studies have identified disease- 
specific biomarkers, such as Okamoto et al166 reported that the combination of V-shaped vascular notch, brushy vascular 
ends, and csAR serves as a biomarker for autosomal dominant FEVR (AD-FEVR) patients with pathogenic variants in 
the Norrin/β-catenin genes. Woffendin et al167 demonstrated that marked skewing of X–inactivation patterns is 
a hallmark of IP. Zhang et al168 proposed angiogenin as a potential biomarker for retinal vascular abnormalities, with 
VEGF and MCP-1 concentrations positively correlating with the severity of retinal exudation. These disorders, along 
with Retinopathy of Prematurity (ROP), share common features of retinal vascular dysfunction. The biomarkers 
discussed in this study may provide a cross-disease reference framework for early prediction and severity assessment 
of such retinal vascular abnormalities.

Abbreviations
AMD, age-related macular degeneration; ANG, Angiopoietin; bFGF, basic fibroblast growth factor; BDNF, brain-derived 
neurotrophic factor; BIO, binocular indirect ophthalmoscopy; BRB, blood-retinal barrier; BW, birth weight; C5a, 
complement Component 5a; Col1a1, Collagen Type I Alpha 1 Chain; CRP, C-Reactive Protein; CXCR4, C-X-C Motif 
Chemokine Receptor 4; DED, dry eye disease; ECM, extracellular matrices; ELGAN, extremely low gestational age 
newborns; HA, hyaluronic acid; HCA, acute histological chorioamnionitis; IGF-1, insulin-like growth factor 1; IFN-γ, 
interferon-γ; IL, interleukin; IP, interferon-inducible protein; GA, gestational age; G-CSF, Granulocyte colony- 
stimulating factor; LMRGs, lactate metabolism-related genes; MCP, monocyte chemotactic protein; MIP, macrophage 
inflammatory protein; MMPs, matrix metalloproteinases; MPO, Myeloperoxidase; NTproBNP, N-terminal pro B-type 
natriuretic peptide; 8-OHdG, 8-hydroxy-2ʹ-deoxyguanosine; OIR, oxygen-induced retinopathy; PBMCs, peripheral blood 
mononuclear cells; PRL, prolactin; RANTES (CCL5), C-C Motif Chemokine Ligand 5; ROP, retinopathy of prematurity; 
SAA, Serum Amyloid A; TGF, transforming growth factor; TNF, tumor necrosis factor; tRFs, transfer RNA-derived 
fragments; UNBCR, creatinine ratio; VEGF, vascular endothelial growth factor.
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