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Objective: The purpose of this study was to develop and validate machine learning models that can predict superaverage length of 
stay in hypercapnic-type respiratory failure and to compare the performance of each model. Furthermore, screen and select the optimal 
individualized risk assessment model. This model is capable of predicting in advance whether an inpatient’s length of stay will exceed 
the average duration, thereby enhancing its clinical application and utility.
Methods: The study included 568 COPD patients with hypercapnic respiratory failure, 426 inpatients from the Department of Respiratory and 
Critical Care Medicine of Yancheng First People’s Hospital in the modeling group and 142 inpatients from the Department of Respiratory and 
Critical Care Medicine of Jiangsu Provincial People’s Hospital in the external validation group. Ten machine learning algorithms were used to 
develop and validate a model for predicting superaverage length of stay, and the best model was evaluated and selected.
Results: We screened 83 candidate variables using the Boruta algorithm and identified 9 potentially important variables, including: 
cerebrovascular disease, white blood cell count, hematocrit, D-dimer, activated partial thromboplastin time, fibrin degradation 
products, partial pressure of carbon dioxide, reduced hemoglobin, and oxyhemoglobin. Cerebrovascular disease, hematocrit, activated 
partial thromboplastin time, partial pressure of carbon dioxide, reduced hemoglobin and oxyhemoglobin were independent risk factors 
for superaverage length of stay in COPD patients with hypercapnic respiratory failure. The Catboost model is the optimal model on 
both the modeling dataset and the external validation set. The interactive web calculator was developed using the Shiny framework, 
leveraging a predictive model based on Catboost.
Conclusion: The Catboost model has the most advantages and can be used for clinical evaluation and patient monitoring.
Keywords: chronic obstructive pulmonary disease, COPD, hypercapnic respiratory failure, HRF, superaverage length of stay, machine 
learning, Catboost model

Introduction
Hypercapnic respiratory failure (HRF), usually defined as arterial partial pressure of carbon dioxide (PaCO2) ≥45 mmHg 
and often accompanied by a decrease in arterial partial pressure of oxygen (PaO2) can occur in a variety of etiologies, 
primarily in chronic respiratory diseases such as exacerbations of chronic obstructive pulmonary disease (COPD), cystic 
fibrosis, thoracic deformities, and other conditions such as neuromuscular disease.1,2 The end-stage of COPD often leads 
to HRF, which is associated with debilitating symptoms and a low survival rate.3

However, the majority of patients with HRF require hospitalization, and many require ventilatory support in a dedicated 
intensive care unit, incurring considerable healthcare costs.4,5 In the United States, acute respiratory failure (ARF) treatment 
costs more than $50 billion annually due to high mortality rates and long hospital stays, especially for older patients.6–8
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Especially as the global healthcare industry gradually and steadily shifts from fee-for-service to value-based care 
agreements, length of stay (LOS) is a useful indicator of resource utilization and cost-effectiveness, and has been likened 
to an indicator for reducing Medicare expenditures.9,10 Therefore, the prolongation of hospital stay has an important 
impact on the resource consumption and revenue management of medical institutions, and should not be discarded.11

However, in order to better clarify the reasons for prolonged hospital stay in order to improve long-term care 
strategies for these patients, at the same time, increased knowledge of prediction and prediction of prolonged length of 
stay may contribute to earlier and better patient treatment, optimal disease planning, and shorter length of stay, which will 
ultimately help in cost assessment for hospitals.12 There are no studies investigating risk factors for superaverage length 
of stay in COPD patients with HRF, so it is important to look for a cause in patients with HRF to reduce the length of 
hospital stay and mitigate high medical costs.13

Machine learning (ML) algorithms can screen for risk factors that affect the length of hospital stay in patients with 
HRF by analyzing large amounts of data from electronic health records. These data may include patient comorbidities, 
demographics, and routine examination findings. These cutting-edge analytical methods can process high-dimensional 
data and analyze complex relationships. They are more flexible than traditional modeling techniques.14,15

This study aims to be used to develop and validate an ML model that can predict the superaverage length of stay in 
COPD patients with HRF.

Materials and Methods
Data Source
Modeling dataset: We selected COPD patients combined with HRF who were hospitalized in the Department of Respiratory 
and Critical Care Medicine of Yancheng First People’s Hospital from October 2020 to September 2021, and the external 
validation dataset: COPD patients combined with HRF who were hospitalized in the Department of Respiratory and Critical 
Care Medicine of Jiangsu Provincial People’s Hospital from October 2021 to December 2021. The diagnosis of COPD was 
determined according to the Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) strategy.16 Diagnostic 
criteria for respiratory failure were as follows: arterial partial pressure of oxygen (PaO2) < 8.0 kPa (60 mmHg) and arterial 
partial pressure of carbon dioxide (PaCO2)>6.0 kPa (45 mmHg) as measured by blood gas analysis.17

Patients who had incomplete clinical data, were under the age of 60, experienced death during hospitalization or 
abandoned treatment, had hearing or speech impairment that hindered their ability to answer questions adequately, required 
tracheotomy or intubation, suffered from organ failure, or were unable to provide informed consent were excluded. Exclusions 
also applied to patients with trauma, malignancy (including hematological malignancy), and pregnancy.

Study Variables
The following clinical data were collected within 24 hours of admission: demographic information, clinical character-
istics, comorbidities, various rating scales at the time of admission, laboratory test results (blood sample tests), etc. The 
length of stay in COPD patients combined with HRF was defined as the duration between admission and discharge.

The flowchart illustrating the experimental procedure of the multicenter post-study was depicted in Figure 1. Firstly, 426 
COPD patients combined with HRF in Yancheng First People’s Hospital were used as a modeling dataset, and 142 COPD 
patients combined with HRF provided by Jiangsu Provincial People’s Hospital were used for external validation. The current 
project followed the principles of the Declaration of Helsinki. This work was approved by the First People’s Hospital of 
Yancheng City (No. 2020-K062) and the Ethics Committee of Jiangsu Provincial People’s Hospital (No. 2021-SR-346). In 
addition, participants at both hospitals provided informed written consent to support the clinical study.

Model Building and Validation Methods
The study data included both modeled datasets and external validation datasets. Based on the modeling dataset, the 
Boruta method was used to screen the variables, and then the Random Forest (RF), Categorical Boosting (CatBoost), 
Light Gradient Boosting Machine (LightGBM) and Extreme Gradient were used respectively Boosting (XGBoost), 
Gradient Boosting Machine (GBM), Neural Network (NNET), Support Vector Machine (SVM), K-Nearest Neighbor 
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Algorithm (KNN), Naive Bayes Bayes and Logistic Regression, respectively, constructed models for predicting super-
average length of stay. Each model was trained to determine the optimal hyperparameters through grid search and 10-fold 
cross-validation.

After the model was established, the performance of 10 models was evaluated on the modeling dataset and the 
external validation dataset. The performance of these models was evaluated by several metrics, including accuracy, 
precision (positive predictive value), recall, F1-score, sensitivity, specificity, negative predictive value, and Brier score. 
Subsequently, the area under the receiver operating characteristic curve (AUC) was used as the main criterion to measure 
the performance of the models, and the discrimination ability of the 10 models was evaluated. In addition, calibration 
curves were used to verify the consistency of the prediction effect of each model with the actual situation. At the same 
time, the decision curve analysis (DCA) was used to calculate the clinical net benefit of each model under different 
clinical decision thresholds. Finally, to evaluate model performance more comprehensively, a precision-recall (PR) curve 
was used, a tool that was particularly useful for class-imbalance datasets, to measure the performance of each model in 
terms of positive class predictions.

SHAP plots were used to explain machine learning models, where the length of each variable on the horizontal axis 
represents its contribution to the outcome, and the color of the dots indicated the size or category of the variable’s 

Figure 1 The flowchart of this study.
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features. Through SHAP analysis, the contribution value of the features in each sample to the prediction, ie, the Shapley 
value, can be obtained. Based on the Shapley value, the SHAP summary graph and the single-sample SHAP waterfall 
chart were constructed. The SHAP summary chart ranked the risk factors in importance, while the single-sample SHAP 
waterfall chart explains the predictions of a single sample.

Statistical Methods
All variables were included in the comparison of the modeled dataset and the external validation dataset. In the 
comparison of the differences between the two groups, the chi-square test was used for categorical variables, and 
the results were displayed as frequency and percentage. Normally distributed continuous variables were expressed 
using the t-test, and the results were expressed as mean ± standard deviations; Continuous variables that do not 
conform to the normal distribution were performed using the Mann–Whitney U-test, and the results were 
expressed in median and interquartile ranges. All statistical analysis and machine learning algorithms were 
performed in R language (version 4.1.3), and a two-sided p-value of less than 0.05 was considered statistically 
significant.

Results
Clinical Features of COPD Patients Combined with Hypercapnic Respiratory Failure
A total of 568 COPD patients combined with HRF were included in the study, with 426 in the modelling dataset and 142 in 
the external validation set. The study defined a hospital stay exceeding 10 days as superaverage length of stay, based on 
findings indicating that the average length of stay for hypercapnia respiratory failure was approximately 10 days.18,19 The 
findings of our study revealed that, on the whole, 60.56% of patients had a hospitalization duration of less than 10 days, 
while 39.44% required a hospital stay exceeding 10 days. There was no significant difference in the number of days of 
hospital stay between the two groups (p = 0.766). The median age of the patients was 74 years, and 66.55% were male, and 
there were no significant differences between the two groups in terms of gender, age, BMI, fall score, pressure ulcer score, 
self-care ability score, pain score, and VTE score (P > 0.05). There were significant differences between the two groups in 
terms of smoking history, cardiovascular disease, MMRC score, pneumonia, and white blood cell count (p < 0.05). In 
general, the distribution of most variables between the two groups was similar and comparable, as detailed in Table 1.

Table 1 Clinical Characteristics of COPD Patients Combined with Hypercapnic Respiratory Failure

Variables Total  
(n = 568)

Training Set  
(n = 426)

External Validation  
Set (n = 142)

p

Length of stay 0.766

≤10 344 (60.56) 256 (60.09) 88 (61.97)
>10 224 (39.44) 170 (39.91) 54 (38.03)

Sex 0.837

0 190 (33.45) 144 (33.8) 46 (32.39)
1 378 (66.55) 282 (66.2) 96 (67.61)

Age 74 [69, 80] 75 [69, 80] 73.5 [69, 79.75] 0.618
BMI 21.26 [18.37, 24.61] 21.02 [18.29, 24.49] 21.84 [18.94, 25.03] 0.311

Smoking history < 0.001

No 224 (39.44) 138 (32.39) 86 (60.56)
Yes 344 (60.56) 288 (67.61) 56 (39.44)

Treatment 0.265

0 313 (55.11) 235 (55.16) 78 (54.93)
1 232 (40.85) 177 (41.55) 55 (38.73)

2 23 (4.05) 14 (3.29) 9 (6.34)

(Continued)
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Table 1 (Continued). 

Variables Total  
(n = 568)

Training Set  
(n = 426)

External Validation  
Set (n = 142)

p

Fall score 4 [3, 5] 4 [3, 5] 4 [2.25, 5] 0.873
Pressure ulcer score 18 [15, 20] 18 [15, 20] 18 [15.25, 20] 0.984

Self-care score 58 [38, 78] 58 [38.75, 80] 60 [38, 71] 0.568

Pain score 0 [0, 0] 0 [0, 0] 0 [0, 0] 0.504
MMRC score 4 [3, 4] 4 [3, 4] 3 [3, 4] 0.010

VTE score 3 [1, 5] 3 [1, 5] 3 [2, 5] 0.321

Hypertension 0.233
No 346 (60.92) 266 (62.44) 80 (56.34)

Yes 222 (39.08) 160 (37.56) 62 (43.66)

Diabetes 0.239
No 487 (85.74) 370 (86.85) 117 (82.39)

Yes 81 (14.26) 56 (13.15) 25 (17.61)

Cerebrovascular disease 0.938
No 507 (89.26) 381 (89.44) 126 (88.73)

Yes 61 (10.74) 45 (10.56) 16 (11.27)

Cardiovascular disease 0.009
No 439 (77.29) 341 (80.05) 98 (69.01)

Yes 129 (22.71) 85 (19.95) 44 (30.99)

Asthma 0.168
No 562 (98.94) 423 (99.3) 139 (97.89)

Yes 6 (1.06) 3 (0.7) 3 (2.11)
Interstitial lung disease 0.375

No 561 (98.77) 422 (99.06) 139 (97.89)

Yes 7 (1.23) 4 (0.94) 3 (2.11)
Bronchiectasis 0.672

No 517 (91.02) 386 (90.61) 131 (92.25)

Yes 51 (8.98) 40 (9.39) 11 (7.75)
Pneumonia < 0.001

No 479 (84.33) 373 (87.56) 106 (74.65)

Yes 89 (15.67) 53 (12.44) 36 (25.35)
RDW-CV 13.5 [12.9, 14.6] 13.5 [12.9, 14.6] 13.5 [12.9, 14.4] 0.584

RDW-SD 45.9 [42.8, 49.8] 45.9 [42.9, 49.77] 45.85 [42.5, 49.72] 0.920

White blood cell count 7.8 [6.02, 10.36] 7.69 [5.72, 10.16] 8.43 [6.7, 11.39] 0.026
Large platelet ratio 35 [28.67, 43.2] 35.2 [28.8, 43.1] 34.6 [28.63, 43.63] 0.917

Percentage of monocytes 7.3 [4.88, 9.6] 7.3 [4.82, 9.47] 7.35 [5.03, 9.95] 0.881

Monocyte absolute value 0.54 [0.39, 0.75] 0.53 [0.37, 0.74] 0.58 [0.42, 0.8] 0.076
Erythrocyte volume 41.2 [36.8, 45.42] 41.15 [36.8, 45.4] 41.25 [36.8, 45.75] 0.742

Red blood cell count 4.46 [3.99, 4.94] 4.46 [4, 4.94] 4.43 [3.95, 4.94] 0.845

Percentage of lymphocytes 11.3 [5.88, 18.05] 11.6 [6.3, 17.85] 10.6 [4.9, 18.58] 0.310
Lymphocyte absolute value 0.86 [0.5, 1.26] 0.86 [0.52, 1.22] 0.86 [0.46, 1.42] 0.865

Mean erythrocyte volume 92.45 [88.9, 95.93] 92.25 [88.82, 96.18] 93.35 [89.3, 95.75] 0.298

Mean erythrocyte hemoglobin volume 30.15 [28.8, 31.3] 30.2 [28.8, 31.6] 29.9 [28.8, 30.9] 0.057
Mean erythrocyte hemoglobin 
concentration

325 [315, 333] 326 [317, 335] 322 [314, 329] < 0.001

Mean platelet volume 11.3 [10.5, 12.3] 11.3 [10.5, 12.3] 11.25 [10.5, 12.38] 0.975
Hemoglobin 134.06 ± 21.23 134.55 ± 21.46 132.58 ± 20.52 0.327

Platelet distribution width 13.9 [11.9, 16.2] 13.9 [11.9, 16.2] 13.85 [12.03, 16.53] 0.917

Platelet count 170 [127, 213.25] 163.5 [125, 211.75] 179.5 [141.5, 217] 0.030
Platelet accumulation 0.19 [0.15, 0.23] 0.19 [0.15, 0.23] 0.2 [0.17, 0.24] 0.006

(Continued)
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Table 1 (Continued). 

Variables Total  
(n = 568)

Training Set  
(n = 426)

External Validation  
Set (n = 142)

p

Percentage of neutrophils 79.4 [70.7, 87.3] 79.35 [70.7, 87.25] 79.5 [70.4, 88.65] 0.615
Neutrophil absolute value 6.15 [4.39, 8.7] 6.12 [4.22, 8.59] 6.43 [5, 9.04] 0.065

D-dimer 0.62 [0.35, 1.22] 0.6 [0.35, 1.21] 0.72 [0.42, 1.3] 0.119

APTT 27.7 [25.7, 30.22] 27.8 [25.63, 30.5] 27.6 [25.8, 29.08] 0.160
Antithrombin III 76.72 ± 14.26 75.68 ± 14.38 79.82 ± 13.47 0.002

TT 15.8 [14.97, 17.1] 15.7 [14.93, 16.9] 16.4 [15, 17.48] 0.019

PT 11.8 [11.1, 12.6] 11.7 [11, 12.6] 12 [11.2, 12.67] 0.138
FDP 2.9 [1.9, 4.73] 2.9 [1.9, 4.8] 2.6 [1.8, 4.45] 0.318

Fibrinogen 3.53 [2.7, 4.67] 3.51 [2.65, 4.52] 3.89 [2.77, 5.07] 0.046

γ- glutamyltransferase 23 [16.92, 37] 23 [16.27, 37] 24 [17, 38.85] 0.714
Albumin 36.33 ± 4.6 36.35 ± 4.56 36.28 ± 4.71 0.872

Alanine aminotransferase 25 [17, 36] 24 [15.85, 36] 28 [21, 38] < 0.001

Cholinesterase 5000 [4386.5, 6170] 5000 [4365.5, 6119.6] 5317.1 [4488.25, 6343.48] 0.051
Calcium 2.18 ± 0.12 2.19 ± 0.12 2.18 ± 0.13 0.792

Triglyceride 0.96 [0.74, 1.27] 0.92 [0.72, 1.25] 1.02 [0.82, 1.38] 0.024

Creatinine 64.3 [51.95, 79.6] 62.95 [51.15, 77.68] 66.7 [54.35, 83.3] 0.041
CK 39 [30, 66.1] 37.5 [30, 62] 47.5 [34, 79.75] < 0.001

CK-MB 11.45 [9.93, 16] 11 [9, 16] 13 [10, 17] 0.021

Alkaline phosphatase 77 [65, 93.93] 76.9 [66, 93.25] 78.25 [64.17, 94.3] 0.973
Phosphorus 1.2 [1.05, 1.38] 1.2 [1.06, 1.38] 1.19 [1.03, 1.39] 0.685

Urea 6.98 [5.25, 8.93] 7.06 [5.27, 8.89] 6.72 [5.11, 9.3] 0.840
Uric acid 309.6 [231.7, 396.8] 296.95 [226.55, 390.18] 326.85 [244.45, 418.02] 0.150

Globulin 28.4 [25.7, 31.5] 28.25 [25.6, 31.37] 29.25 [26.45, 31.78] 0.062

LDH 320.5 [208.75, 473.25] 356.5 [217.98, 490.5] 239.5 [199.5, 355.25] < 0.001
Bicarbonate 35.85 [32.08, 39.2] 36.25 [32.7, 39.6] 33.9 [29.47, 37.98] < 0.001

Aspartate aminotransferase 25 [20, 33.4] 25 [20, 33.77] 26 [20, 33.3] 0.452

Total cholesterol 4.11 [3.45, 4.9] 4.11 [3.4, 4.93] 4.09 [3.59, 4.85] 0.568
Total bilirubin 11.8 [8.42, 16.7] 12.13 [8.6, 16.9] 11.1 [8.2, 16.19] 0.298

Total protein 65.11 ± 6.89 64.96 ± 6.84 65.54 ± 7.05 0.396

Myoglobin 37.45 [27.3, 59.85] 38.7 [27.4, 60.15] 35.8 [27.1, 59.38] 0.612
N-telencephalic natriuretic peptide 433 [130, 2152.5] 481 [130, 2300] 319.5 [132.25, 1855] 0.275

PH value 7.37 [7.32, 7.41] 7.37 [7.32, 7.41] 7.37 [7.33, 7.4] 0.960

PaO2 48 [40, 54] 50 [41, 56] 44 [37, 50] < 0.001
PaCO2 65 [56, 78] 65 [56, 78] 65 [56, 76.75] 0.378

SB 32.3 [29.4, 35.4] 32.4 [29.52, 35.7] 31.8 [28.9, 34.9] 0.355

Calcium _ vitality 1.16 [1.12, 1.19] 1.16 [1.13, 1.19] 1.15 [1.1, 1.18] 0.014
Methemoglobin 1.2 [1, 1.4] 1.2 [1, 1.4] 1.2 [1, 1.4] 0.843

Reduced hemoglobin 4 [2, 9.1] 3.7 [1.92, 7.88] 6.15 [2.55, 11.47] < 0.001

Hematocrit 44 [38, 49] 44 [38, 48] 43 [39, 49] 0.955
Base surplus 9.9 [6, 13.72] 10.1 [6.2, 14.1] 9.35 [5.73, 13.3] 0.426

Lactic acid 1.5 [1.2, 1.9] 1.5 [1.2, 1.9] 1.6 [1.2, 2] 0.195

AB 37.9 [33.5, 42.82] 38.1 [33.6, 43.13] 37.65 [32.7, 42.48] 0.340
Carboxyhemoglobin 2.4 [1.9, 2.9] 2.4 [2, 2.9] 2.3 [1.8, 2.8] 0.205

Oxygenated hemoglobin 92.2 [87.35, 94.32] 92.6 [87.93, 94.4] 90.25 [84.52, 93.6] 0.001

Anion gap 4 [2, 7] 4 [2, 7] 4 [1, 7] 0.627
Total carbon dioxide 40.05 [35.2, 45.23] 40.15 [35.3, 45.4] 39.5 [34.4, 44.75] 0.315

Abbreviations: BMI, Body Mass Index; MMRC, modified British medical research council; VTE, Venous Thrombus Embolism; RDW-CV, Red Cell Distribution Width- 
variation coefficient; RDW-SD, Red Cell Distribution Width-standard deviation; APTT, Activated Partial Thromboplastin Time; TT, Thrombin Time; PT, Prothrombin Time; 
FDP, Fibrinogen Degradation Products; CK, Creatine Kinase; LDH, Lactate Dehydrogenase; PaO2, Arterial partial pressure of oxygen; PaCO2, Arterial partial pressure of 
carbon dioxide; SB, Standard bicarbonate.
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Variable Screening and Identification of Independent Influencing Factors
In this study, we used the Boruta algorithm to screen 83 candidate variables with the aim of identifying key indicators 
that are closely related to the dependent variable. The results showed that nine potentially important variables were 
screened from the modeled dataset, including: cerebrovascular disease, white blood cell count, hematocrit, D-dimer, 
activated partial thromboplastin time, fibrin degradation products, carbon dioxide partial pressure, reduced hemoglobin 
and oxyhemoglobin, as shown in Figure 2.

In order to conduct an initial exploration of the factors influencing prolonged hospitalization in COPD patients with 
HRF, we employed multivariate logistic regression analysis based on the 9 indicators selected by the Boruta algorithm 
mentioned above. The findings revealed that cerebrovascular diseases, erythrocyte specific volume, activated partial 
thromboplastin time, partial pressure of carbon dioxide, reduced hemoglobin and oxygenated hemoglobin were identified 
as independent factors significantly impacting the excessively long duration of hospital stay among COPD patients 
combined with HRF, as presented in Table 2.

Establishment and Evaluation of 10 Machine Learning Models
In this study, we used 10 algorithms, including RF, Catboost, LightGBM, XGBoost, GBM, NNET, SVM, KNN, 
NaiveBeyes, and Logistic regression to train the model, and used 8 evaluation indicators to compare the evaluation 
effect of each model on the modeling dataset and the external validation set (Table 3). The results indicated that the 
Catboost model demonstrated superior performance in both the modeling dataset and the external validation set.

Then, in this study, we compared the performance of 10 different prediction models using the area under the receiver 
operating characteristic curve (AUC) as an evaluation metric. The Catboost model exhibited the highest AUC values on both 
the modeled data set and the external validation set, as illustrated in Figure 3. The analysis of calibration curves further 
confirmed the superiority of the Catboost model, particularly in the external validation set. The calibration curves of the 
Catboost model demonstrated a significantly higher level of prediction accuracy compared to other models, as clearly 

Figure 2 The process of filtering variables using the Boruta method.
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depicted in Figure 4. Decision curve analysis (DCA) demonstrated that each model exhibited excellent clinical applicability 
in both the modeling data set and external validation set, with the specific DCA results presented in Figure 5.

The Catboost model also showed strong performance in terms of positive predictions in the evaluation of precision 
rate-recall curve (PR curve), as depicted in Figure 6. Taken together, the Catboost model was considered to be the best 
model due to its performance on several key performance indicators. To further demonstrate this, we also provided the 
Catboost model’s confusion matrix on the modeling dataset and the external validation set, as shown in Figure 7. This 
matrix provided a comprehensive breakdown of the model’s accurate predictions and misclassifications across different 
categories, thereby offering an insightful assessment of its predictive capabilities.

SHAP Interpretation of the Catboost Model
In order to better understand the influence of the Catboost model on the variable in the analysis of the factor of 
superaverage length of stay, we used SHAP (SHapley Additive exPlanations) values to explain the prediction results of 
the model.

First, we generated a SHAP summary plot that summarizes the impact of all variables on the model’s predictions. As 
can be observed from Figure 8, the effects of variables on superaverage length of stay were oxyhemoglobin (O2Hb), 
activated partial thromboplastin time (APTT), D-dimer, reduced hemoglobin (deoxy-Hb), fibrin degradation products 
(FDP), white blood cell count (WBC), hematocrit (HCT), cerebrovascular disease (CeVD), and partial pressure of carbon 
dioxide (PCO2). These results pointed to the level of oxyhemoglobin as the most important factor in predicting 
superaverage length of stay, followed by coagulation system-related indicators such as APTT and D-dimer.

Further, we used SHAP waterfall plots to explain in detail the predictions of the model at the individual patient level. 
The waterfall plot details the risk probability of 0.259 for the first patient (Figure 9), which meaned that the patient has 
a lower risk of superaverage length of stay. The figure showed that a lower APTT is a factor that increases the probability 
of superaverage length of stay in this patient. On the contrary, D-dimer, O2Hb, and deoxy-Hb were the protective factors 
that reduced the probability of superaverage length of stay in this patient, indicating that the higher values of these 
indicators may help mitigate the risk of prolonged hospitalization.

Webpage Calculator for Catboost Model
In order to provide a practical tool to predict the risk of a patient’s superaverage length of stay, we builted an interactive 
web-based calculator using the Shiny framework based on Catboost’s prediction model. In the Shiny app, users can enter 
the patient’s medical parameters such as oxyhemoglobin levels, D-Dimer values, etc., which are key variables in the 

Table 2 Multivariate Logistic Regression Results for Predicting the Risk 
of Prolonged Hospital Stay in COPD Patients with Hypercapnia 
Respiratory Failure

Variables OR 95% CI P SE Wald B

CEVD
No Reference
Yes 2.994 1.521–5.892 0.002 0.346 10.070 1.096

WBC 1.027 0.980–1.076 0.272 0.024 1.208 0.026

HCT 0.954 0.924–0.986 0.005 0.016 8.060 −0.047
D-dimer 0.946 0.710–1.260 0.704 0.146 0.144 −0.056

APTT 1.078 1.022–1.137 0.006 0.027 7.566 0.075
FDP 1.087 0.964–1.227 0.172 0.061 1.861 0.084

PCO2 1.018 1.006–1.031 0.004 0.006 8.237 0.018

Deoxy-Hb 1.381 1.042–1.831 0.025 0.144 5.038 0.323
O2Hb 1.381 1.042–1.832 0.025 0.144 5.035 0.323

Abbreviations: CEVD, Cerebrovascular disease; WBC, White Blood Cells; HCT, 
Hematocrit; APTT, Activated Partial Thromboplastin Time; FDP, Fibrinogen Degradation 
Products; PCO2, Partial Pressure of Carbon Dioxide; Hb, Hemoglobin.
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Table 3 Evaluation Results of 10 Models on Modeling Datasets and External Validation Sets

Dataset Model Accuracy Precision Recall F1-Score Sensitivity Specificity NPV Briser_Score

Training Catboost 0.993(0.985–1.001) 0.983(0.964–1.002) 1.000(1.000–1.000) 0.991(0.982–1.001) 1.000(1.000–1.000) 0.988(0.976–1.001) 1.000(1.000–1.000) 0.049(0.044–0.055)

Training GBM 0.737(0.694–0.780) 0.656(0.590–0.724) 0.718(0.646–0.788) 0.685(0.629–0.743) 0.718(0.646–0.788) 0.750(0.699–0.803) 0.800(0.747–0.851) 0.182(0.167–0.196)

Training KNN 0.692(0.648–0.735) 0.634(0.554–0.714) 0.541(0.467–0.614) 0.584(0.520–0.649) 0.541(0.467–0.614) 0.793(0.742–0.842) 0.722(0.671–0.771) 0.212(0.196–0.229)

Training LightGBM 0.735(0.694–0.776) 0.667(0.601–0.736) 0.671(0.600–0.741) 0.669(0.613–0.727) 0.671(0.600–0.741) 0.777(0.729–0.828) 0.780(0.730–0.830) 0.192(0.179–0.205)

Training Logistic 0.695(0.652–0.739) 0.630(0.554–0.709) 0.571(0.499–0.643) 0.599(0.538–0.664) 0.571(0.499–0.643) 0.777(0.726–0.830) 0.732(0.680–0.782) 0.211(0.196–0.227)

Training NNET 0.695(0.652–0.737) 0.635(0.560–0.711) 0.553(0.477–0.627) 0.591(0.529–0.655) 0.553(0.477–0.627) 0.789(0.740–0.839) 0.727(0.674–0.776) 0.193(0.176–0.211)

Training NaiveBayes 0.671(0.627–0.716) 0.606(0.525–0.689) 0.506(0.432–0.584) 0.551(0.486–0.621) 0.506(0.432–0.584) 0.781(0.729–0.832) 0.704(0.652–0.756) 0.258(0.226–0.291)

Training RF 0.866(0.835–0.897) 0.842(0.789–0.896) 0.818(0.760–0.873) 0.830(0.788–0.872) 0.818(0.760–0.873) 0.898(0.862–0.934) 0.881(0.842–0.918) 0.140(0.129–0.152)

Training SVM 0.859(0.826–0.893) 0.904(0.857–0.953) 0.724(0.655–0.793) 0.804(0.755–0.855) 0.724(0.655–0.793) 0.949(0.923–0.975) 0.838(0.795–0.880) 0.222(0.212–0.232)

Training XGBoost 0.756(0.716–0.796) 0.699(0.629–0.769) 0.682(0.617–0.752) 0.690(0.637–0.748) 0.682(0.617–0.752) 0.805(0.754–0.853) 0.792(0.745–0.840) 0.213(0.207–0.219)

External Catboost 0.810(0.745–0.877) 0.745(0.630–0.867) 0.759(0.639–0.883) 0.752(0.662–0.852) 0.759(0.639–0.883) 0.841(0.762–0.921) 0.851(0.774–0.926) 0.155(0.120–0.187)

External GBM 0.676(0.598–0.755) 0.569(0.443–0.701) 0.611(0.480–0.744) 0.589(0.484–0.703) 0.611(0.480–0.744) 0.716(0.621–0.812) 0.750(0.655–0.842) 0.205(0.176–0.235)

External KNN 0.627(0.548–0.703) 0.519(0.334–0.713) 0.259(0.137–0.383) 0.346(0.212–0.489) 0.259(0.137–0.383) 0.852(0.782–0.923) 0.652(0.564–0.737) 0.228(0.195–0.260)

External LightGBM 0.634(0.558–0.711) 0.520(0.387–0.663) 0.481(0.349–0.615) 0.500(0.388–0.622) 0.481(0.349–0.615) 0.727(0.638–0.821) 0.696(0.602–0.787) 0.215(0.189–0.242)

External Logistic 0.683(0.603–0.761) 0.600(0.453–0.751) 0.500(0.363–0.633) 0.545(0.427–0.669) 0.500(0.363–0.633) 0.795(0.709–0.884) 0.722(0.629–0.809) 0.224(0.193–0.256)

External NNET 0.634(0.556–0.713) 0.524(0.380–0.678) 0.407(0.278–0.537) 0.458(0.341–0.585) 0.407(0.278–0.537) 0.773(0.686–0.864) 0.680(0.588–0.769) 0.212(0.179–0.245)

External NaiveBayes 0.606(0.528–0.686) 0.479(0.336–0.620) 0.426(0.296–0.554) 0.451(0.333–0.572) 0.426(0.296–0.554) 0.716(0.623–0.812) 0.670(0.579–0.766) 0.309(0.247–0.368)

External RF 0.739(0.667–0.815) 0.667(0.535–0.807) 0.630(0.501–0.766) 0.648(0.543–0.765) 0.630(0.501–0.766) 0.807(0.721–0.895) 0.780(0.696–0.864) 0.187(0.160–0.214)

External SVM 0.655(0.574–0.738) 0.551(0.409–0.687) 0.500(0.366–0.637) 0.524(0.410–0.644) 0.500(0.366–0.637) 0.750(0.653–0.845) 0.710(0.615–0.810) 0.233(0.212–0.253)

External XGBoost 0.648(0.570–0.727) 0.542(0.402–0.690) 0.481(0.348–0.619) 0.510(0.394–0.637) 0.481(0.348–0.619) 0.750(0.661–0.840) 0.702(0.609–0.793) 0.230(0.219–0.241)

Note: Sort by the first letter of the model name. The 95% CI for this measure is in parentheses.
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model’s decision-making process through a simple and intuitive interface. The application reads these inputs in real-time 
and uses a pre-trained Catboost model to calculate the patient’s superaverage length of stay and displays the risk 
probability on a web page at: https://prolonged.shinyapps.io/Catboost-model/.

Discussion
As far as we know, this is the first study based on ML techniques to generate multiple models, evaluate performance, and 
select the highest-performing model to predict the superaverage length of stay in COPD patients combined with HRF. 
This study showed that the Catboost model exhibited superior performance and clinical utility compared to other 

Figure 3 The ROC curve was used to evaluate the 10 models in modeling data set (A) and external validation set (B).

Figure 4 The Calibration curve was used to evaluate the 10 models in modeling data set (A) and external validation set (B).
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independent machine learning models, including RF, LightGBM, XGBoost, GBM, NNET, SVM, KNN, NaiveBeyes, and 
Logistic regression models.

CatBoost is a novel machine learning algorithm that has the advantage of automatically processing categorical 
features and missing values during training, not during preprocessing.20,21 As a result, in some previous studies, CatBoost 
has significantly outperformed other machine learning models in various data analysis.22

In this study, the CatBoost model was a machine learning technique that could prevent overfitting by using unbiased 
gradient estimation.23 The CatBoost algorithm was chosen because our dataset contains many categorical variables (eg, 
gender, smoking status, comorbidities, etc.) and ensured generalization of the model by minimizing overfitting.23

Figure 5 The DCA curve was used to evaluate the 10 models in modeling data set (A) and external validation set (B).

Figure 6 The PR curve was used to evaluate the 10 models in modeling data set (A) and external validation set (B).
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In addition, machine learning-based AI methods, such as CatBoost, tend to favor black-box models, which offer significant 
advantages over traditional models in obtaining accurate predictions, but cannot be reasonably explained.24 Therefore, the SHAP 
method could be used to calculate the SHAP value of each feature in the prediction model to provide consistent and accurate 
attribution for each feature, and the interpretable analysis of the machine learning model was carried out.25,26 The SHAP analysis 

Figure 7 The Confusion matrix was used to evaluate the Catboost model in modeling data set (A) and external validation set (B).

Figure 8 The SHAP summary diagram of Catboost model.
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of a single sample enables the identification of high-risk samples and patients, thereby enhancing physicians’ comprehension of 
the decision-making process employed by the CatBoost model and facilitating the utilization of predictive outcomes.

According to the results of the study, we found that cerebrovascular disease,White blood cell count, hematocrit, activated 
partial thromboplastin time, partial pressure of carbon dioxide, reduced hemoglobin and oxyhemoglobin were risk factors for the 
superaverage length of stay in COPD patients with HRF. Some results have been shown to affect the length of stay in other types 
of respiratory failure27–30 or in patients with COPD,31–33 but reduced hemoglobin and oxyhemoglobin have not been studied.

Based on the CatBoost algorithm, we found that oxyhemoglobin, APTT, and D-dimer were the top 3 strongest predictors 
of superaverage length of stay in HRF patients. There are no studies on the effect of these measures on the superaverage length 
of stay in COPD patients with HRF, but in one study it was found that patients with COPD often resulted in prolonged hospital 
stay and poor prognosis. The main reason is that high concentrations of blood carbon dioxide and acidosis can lead to 
malfunction of coagulation factors34 and damage to blood endothelial cells.35 Specifically, APTT may be significantly 
prolonged36,37 and D-dimer levels may increase.38 Prolongation of APTT may be caused by the depletion of coagulation 
factors,39,40 while D-dimer is an indicator of thrombosis and is suggested as a prognostic biomarker of mortality in 
AECOPD.41 These results suggest a correlation between coagulopathy and HRF, and that this relationship may lead to 
a longer hospital stay.42,43 This is consistent with our findings.

Severe impairment of respiratory function is associated with oxyhemoglobin affinity (P50).44 In particular, when hypoxia or 
hypercapnia is present, P50 has some effect.45 Hypercapnia has been shown to inhibit arterial oxygen-carrying capacity.46 

Moreover, some studies have substantiated the correlation between oxyhemoglobin concentration and the long-term mortality 
risk associated with COPD.47,48 Perhaps this is the reason for the extraordinarily long hospital stay in HRF patients. These 
findings can identify the risk of long hospital stay in HRF patients at an early stage, and enable targeted clinical care through 
timely intervention.

Of course, our study is also subject to some limitations: first, the patient cohort size is relatively small, although some 
interesting results have been found. However, the model still needs to be further validated in a large number of cohorts from 
multiple clinical centers. Second, future studies will be able to consider incorporating a wider range of clinical features to 
provide better outcomes. For example, other clinical information: patient medical images, ECG signals, lung function, etc.

Figure 9 The SHAP waterfall diagram of the first patient in the Catboost model.
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In summary, a model for predicting the superaverage length of stay in COPD patients with HRF was developed and 
validated using clinical variables using 10 machine learnings. Among them, the Catboost model has the most advantages 
and can be used for clinical evaluation and patient monitoring. This model could predict the average length of hospital 
stay for HRF patients, assist clinicians in selecting appropriate treatment plans, and prevent the unnecessary expenditure 
of clinical resources.
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