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Abstract: The JAK-STAT pathway is an essential cell survival signaling that regulates gene expressions related to inflammation, 
immunity and cancer. Cytokine receptors, signal transducer and activator of transcription (STAT) proteins, and Janus kinases (JAKs) 
are the critical component of this signaling cascade. When JAKs are stimulated by cytokines, STAT phosphorylation, dimerization, and 
nuclear translocation occur, which eventually impacts gene transcription. Dysregulation of JAK-STAT signaling is linked with various 
autoimmune diseases, including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. This pathway is constitutively 
activated in human malignancies and leads to tumor cell survival, proliferation, and immune evasion. Oncogenic mutations in the 
JAK and STAT genes have been found in solid tumors, leukemia, and lymphoma. Targeting the JAK-STAT pathway is a viable and 
promising therapeutic strategy for the treatment of autoimmune diseases and cancers. 
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Introduction
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a fundamental regulatory 
network that plays a central role in cellular communication and function. It is crucial in various physiological and 
pathophysiological processes, including cellular growth, differentiation, proliferation, immune responses, and 
tumorigenesis.1,2 This pathway is activated by various signaling molecules such as cytokines, interferons (IFNs), interleukins 
(ILs), colony-stimulating factors, and growth factors (GF).3 Over 60 cytokines and growth factors have been identified as 
activators within the pathway.4,5 The downstream effects of JAK/STAT signaling are diverse and include regulation of 
hematopoiesis, immune system homeostasis, tissue repair, inflammation, apoptosis, and adipogenesis.6 Dysregulation or 
mutations in any of the JAK/STAT components have been implicated in numerous human diseases.

JAKs are noncovalently bound to cytokine receptors, mediating the tyrosine phosphorylation of these receptors and 
subsequently recruiting one or more STAT proteins. Upon phosphorylation, STATs dimerize and translocate to the nucleus, 
where they regulate specific gene expression (Figure 1). Although several cytokines can activate the JAK/STAT pathway, each 
STAT protein has distinct and non-redundant biological effects.7 This pathway has significantly advanced our understanding 
of human health and disease, particularly in the context of malignancies and autoimmune disorders.8–13 As a result, targeting 
the JAK/STAT pathway has become a promising therapeutic approach for treating a variety of diseases, including cancer.

Numerous JAK inhibitors have demonstrated clinical efficacy across multiple settings, and ongoing research is 
focused on developing additional therapeutic agents.14 This review aims to provide an in-depth and updated perspective 
on the JAK/STAT signaling pathway at the cellular, molecular, and genomic levels. It will also explore the relationship 
between JAK/STAT signaling and diseases such as autoimmunity and cancer, focusing on clinically approved and 
investigational therapies designed to target this pathway.
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Exploration of the JAK-STAT Signaling Pathway
The identification of the JAK-STAT signaling pathway originated from the fundamental question: how do cells react to 
interferons (IFN)? During the late 1980s and early 1990s, in the pre-genomic era, researchers faced the challenge of 
elucidating the mechanisms that regulate gene expression in response to various environmental signals. At this time, 
biochemistry, molecular biology, and cell biology were employed to study receptor-mediated signal transduction via 
G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTKs). This research was concurrent with the 
identification of DNA-binding proteins and a variety of transcription factors.15 Despite these advances, the pathways 
connecting signal transduction to transcriptional activation, and the mechanisms by which membrane-bound receptors 
initiate gene transcription, remained unclear.

The finding of oncogenic serine/threonine and tyrosine kinases (TYKs) and their discovery of reversible protein 
phosphorylation sparked a rush to find novel TYKs. A unique family of TYKs was discovered by using the relatively 
new method of degenerate polymerase chain reaction to build protein kinase libraries. This family contained JAK-I, 
JAK-II, and TYK-II Because of the distinct structure of this kinase family which consists of an amino-terminal kinase 
domain followed by a regulatory pseudo-kinase domain the name “JAK” was inspired by the two-faced Roman god 
Janus. However, the alternative interpretation of JAK as “just another kinase” was also appropriate because the exact role 
of the JAK kinases was still unknown.16–19

In 1988, STAT proteins were identified as factors that bind to interferon-stimulated response elements in DNA to 
promote the transcription of type I IFNs.20 The JAK/STAT signaling pathway was further elucidated through studies 
investigating how IFNs activate transcription factors.21 In 1990, the transcriptional activator interferon-stimulated gene 
factor 3 (ISGF3), which is responsive to IFN-α, was discovered to be a complex made up of several interacting 
polypeptide chains weighing 48, 84, 91, and 113 kDa.21 In 1992, Fu further elucidated that the ISGF3α proteins 113, 
91, and 84 kDa contained conserved SH2 and SH3 domains. Additionally, a specific cytoplasmic tyrosine kinase induced 
by IFN-α was shown to phosphorylate and activate ISGF3α. Based on these findings, Fu proposed a direct effector model 

Figure 1 Shows the four phases by which JAK/STAT controls nuclear communication and transmembrane receptors. (a) When cytokines attach to receptors, the receptor 
molecules dimerize, activating and phosphorylating both the intracellular tail of the receptors and JAKs. (b) These phosphorylated tyrosine sites create a docking site, which 
attracts the STAT protein. (c) The STATs can dimerize because they are phosphorylated and active. (d) The STAT-STAT Dimers move into the nucleus and control gene 
expression.
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for signal transduction induced by IFN-α, which helped outline the signaling mechanism of the JAK/STAT pathway.22,23 

Subsequent studies revealed that ISGF3 is composed of the proteins STAT-I, STAT-II, and IRF9.24 Between 1993 and 
1995, other STAT proteins, including STAT-III, STAT-IV, STAT-Va, STAT-Vb, and STAT-VI, were identified by various 
research groups.25–28

The discovery of the JAK proteins occurred from 1989 to 1994. In 1989, Wilks et al identified a tyrosine kinase with 
a recognizable kinase domain and a pseudokinase domain, which they named JAK-I. In 1991, a second tyrosine kinase 
with similar features was identified and named JAK-II.19,29 The discovery of the remaining two JAKs, tyrosine kinase 2 
(TYK-II) and JAK-III took place in 1990 and 1994, respectively.17 The connection between JAKs and STATs was 
established in 1992 when Velazquez et al demonstrated that TYK-II is a critical protein in the IFN-α/β signaling 
pathway.30 Further, in 1993, Müller et al found that JAKs are essential for IFN-dependent signaling by phosphorylating 
STATs.31

By the early 1990s, the major components and general structure of the JAK/STAT signaling pathway had been 
mapped out. Since then, research into additional proteins and the broader functions of this signaling pathway has 
continued, significantly enriching the current understanding of JAK/STAT signalling.

Components of the JAK/STAT Pathway
The JAK/STAT signaling pathway is a highly conserved mechanism in evolution, consisting of three main components, ie 
tyrosine kinase-associated receptor, JAK, and STATs.32 Various cytokines and growth factors transmit signals through the 
JAK/STAT signaling pathway, including interleukin 2 ~ 7 (IL-2 ~ 7), GH, EGF, GM-CSF, PDGF, and IFNs.8 The JAK 
family comprises four distinct members: JAK-I, JAK-II, JAK-III, and TYK-II with over 1000 amino acids and 
a molecular weight of between 120 and 140 kDa while the STAT family consists of seven members: STAT-I, STAT-II, 
STAT-III, STAT-IV, STAT-Va, STAT-Vb, and STAT-VI with molecular weights range from 79 to 113 kDa.33,34 The 
structure and function of these family members are fundamental to their roles in various cellular processes.

The JAK Family
The JAK family is composed of non-receptor tyrosine protein kinases that play a crucial role in transmitting intracellular 
signals following cytokine binding to their respective receptors. Upon receptor activation, JAK kinases become 
phosphorylated and relay signals that regulate numerous cellular functions. The four main members of the JAK family, 
JAK-I, JAK-II, JAK-III, and TYK-II, have diverse tissue-specific expressions. Notably, JAK-III is predominantly 
expressed in the bone marrow, lymphatic system, endothelial cells, and vascular smooth muscle cells, while the other 
members are ubiquitously present across various tissues. Each JAK kinase contains seven homologous domains (JH), 
which are critical for their functional roles.18,19,29,35–40

The domains of JAK kinases include JH1, which represents the kinase domain (or conserved PTK domain ie located at the 
C-terminus) composed of approximately 250–300 amino acids and is responsible for substrate phosphorylation; JH2, the 
central Pseudokinase domain, shares structural similarities with the kinase domain but lacks kinase activity. JH2 primarily 
regulates the activity of JH1. The Src homology 2 (SH2) domain is formed by JH3 and a portion of JH4. The SH2 domain 
contains approximately 100 residues that bind to phosphotyrosine residues. The role of SH2 domain is the activation and 
dimerization of STATs. The N-terminal FERM domain formed by JH4, JH5, JH6, and JH7, are essential for mediating 
interactions between JAKs and cytokine receptors, specifically their membrane-proximal regions. These domains collectively 
influence JAK activation and receptor binding, regulating the overall signaling cascade (Figure 2). 19,37,41–43

The STAT Family
The STAT family of transcription factors includes seven members: STAT-I, STAT-II, STAT-III, STAT-IV, STAT-Va, 
STAT-Vb, and STAT-VI. These proteins range from 750 to 900 amino acids in length and contain multiple functional 
domains. The domains, arranged from the N-terminus to the C-terminus, include the Unique N-terminal domain, coiled- 
coil domain, DNA binding domain, linker domain, SH2 domain, and transcription activation domain. Each domain has 
specific roles in STAT function and regulation (Figure 2). 22,25,26,28,44,45
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a. The Unique N-terminal domain, comprising approximately the first 100 amino acids, is significantly conserved 
across STAT family members and is essential for nuclear translocation and deactivation. Research with chimeric 
STATs has demonstrated that the N-terminus delivers a signal crucial for nuclear translocation and subsequent 
deactivation. It also facilitates the dimerization of STAT proteins, allowing interaction with transcription factors. It 
has been demonstrated to enhance interactions with co-activators, including the PIAS family, and affect nuclear 
translocation.46–50

b. The coiled-coil domain, characterized by a four-helix bundle, is involved in regulating nuclear import and export. 
It interacts with various regulatory proteins, including StlP, c-Jun, Nmi, and p48/IRF9 and plays a key role in 
controlling these processes.46,51–56

c. The linker domain connects the DNA binding and SH2 domains, contributing to the transcriptional regulation of 
STAT-I and other members.53,57

d. The DNA binding domain is responsible for recognizing specific DNA sequences in the regulatory regions of 
target genes, also aiding in the regulation of nuclear import and export.

e. The SH2 domain, highly conserved across the STAT family, is crucial for recognizing phosphotyrosine motifs in 
cytokine receptors. This domain facilitates the formation of homodimers or heterodimers by mediating interac
tions between phosphorylated STAT monomers.58–61

f. The transcriptional activation domain is vital for promoting gene transcription by recruiting co-activators, with 
a conserved serine phosphorylation site that regulates transcriptional activity. Additionally, this domain plays 
a role in protein stability, as STAT-IV, STAT-V, and STAT-VI are more susceptible to ubiquitin-mediated 
degradation, while STAT-I, STAT-II, and STAT-III exhibit greater stability.22,26,28,44,45

Various biological activities that JAK/STATs can mediate and the ligands that can activate them are listed in Table 1.

Figure 2 Domain architecture of essential proteins in the JAK-STAT signaling pathways. The figure illustrates the various domains represented in JAK (Janus Kinase), STAT 
(Signal Transducer and Activator of Transcription), SOCS (Suppressor of Cytokine Signaling), PIAS (Protein Inhibitors of Activated STATs), and SHP (SH2 domain-containing 
protein tyrosine phosphatase) proteins.
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Cytokine Receptor Family
Cytokine receptors are essential transmembrane proteins that mediate cytokine effects by initiating intracellular signaling 
cascades, including the JAK/STAT pathway. These receptors are categorized into two main families: the hematopoietin 
and immunoglobulin-like receptor families. Upon ligand binding, cytokine receptors undergo conformational changes 
that activate associated JAK kinases, triggering downstream signalling pathways.68

These receptors are distinguished by extracellular domains for ligand binding, a single transmembrane helix, and 
intracellular domains that interact with JAKs. The intracellular region often contains conserved motifs, such as Box1 and 

Table 1 The Ligands That Activate JAK/STATs and Modulate Biological Events

JAK/ 
STATs

Ligands Biological Events Role in Cancer and Autoimmune Diseases

JAK-I All interferons (INFα/β, 

INFγ), IL-2, 4, 6, 7,9, 10, 

15,21 family cytokines

ALL, AML, solid-organ malignancies8 Role in cytokine signaling essential for immune 

function, while its dysregulation is implicated in 

oncogenesis.

JAK-II IFNγ, IL-3, 5, GM-CSF, GF, 

G-CSF

PV, PMF, ET, hypercoagulable state, acute 

and chronic hematologic malignancies8

Mutations contribute to autoimmune diseases and are 

also strongly linked to myeloproliferative neoplasms 
and hematological malignancies.

TYK-II IFNα/β, IL-12, 23 family 

cytokines

Primary immunodeficiency8 Essential for lymphocyte development and immune 

function, with activating mutations contributing to 

leukemias and lymphomas.

JAK-III IL-2, 4, 7, 9, 15, 21 family 

cytokines

SCID8 Regulates immune responses through cytokine 

signaling, and its mutations are linked to inflammatory 
diseases and cancer progression.

STAT-I All interferons (INFα/β, 
INFγ)

Anti-virus and anti-bacteria response; 
Cell growth; Cell apoptosis; 

Oncogenesis62,63

Involved in antiviral and immune responses, while its 
dysregulation can contribute to tumor immune evasion.

STAT-II Type I IFNs (INFα/β) Anti-virus response; Oncogenesis62,64 Plays a key role in antiviral immunity, but its direct 

association with cancer is not well-defined.

STAT-III IL-6 family members and 

Growth factors: EGF and 

HGF.

AD-HIES, LGL, Cell mitogenesis; Cell 

apoptosis; Oncogenesis; Cell 

proliferation; Th17 differentiation62,65

Mediates immune tolerance and inflammation, with 

hyperactivation promoting tumor growth and immune 

evasion in various cancers.

STAT-IV IL-12, IL-23, type 1 

interferons

Th1 development, RA and SLE47,62 Regulates Th1 immune responses, while its 

overexpression is linked to certain cancers, including 
leukemia.

STAT-Va Prolactin, IL-2, GM-CSF, 
erythropoietin, and other 

hormone-like cytokines.

Prolactin signaling; Treg cells 
differentiation, autoimmunity, bleeding 

diathesis, immunodeficiency62,66

Essential for immune cell development and cytokine 
signaling, with persistent activation driving oncogenesis 

in hematological malignancies.

STAT-Vb GH, IL-2 and other 

hormone-like cytokines.

Autoimmunity, bleeding diathesis, 

immunodeficiency, Growth hormone 

signaling62,67

Functions in immune regulation and cell proliferation, 

with its aberrant activation contributing to leukemia 

and prostate cancer.

STAT-VI IL-4/13. Th2 development, asthma, atopy, 

increased levels of IgE62

Regulates allergic inflammation and Th2 immune 

responses, while its involvement in cancer remains less 
understood.

Abbreviations: ILs, Interleukins; ALL, Acute lymphocytic leukemia; AML, Acute myeloid leukemia; GM-CSF, Granulocyte-macrophage colony-stimulating factor; GF, growth 
factors; G-CSF, Granulocyte colony-stimulating factor; PV, Polycythemia vera; PMF, Primary myelofibrosis; ET, Essential thrombocytosis; SCID, Severe combined immuno
deficiency; INFα/β, Interferon alpha/beta; INFγ, Interferon-gamma; EGF, Epidermal Growth Factor; HGF, Hepatocyte growth factor; AD-HIES, Autosomal dominant 
hyperimmunoglobulin E syndrome; LGL, Large granular Lymphocytic Leukemia; RA, Rheumatoid Arthritis; SLE, Systemic Lupus Erythematosus; GH, Growth hormone; 
IgE, Immunoglobulin E.
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Box2, which are crucial for recruiting JAKs and initiating signaling. Based on structure and function, they are classified 
as Type I and Type II cytokine receptors. Type I receptors typically involve JAK-I and JAK-III, while Type II receptors 
are associated with JAK-II and TYK-II.69

Cytokine receptors play a critical role in numerous physiological processes, including metabolism regulation, neural 
stem cell activation, inflammatory responses, bone development, and the growth of blood and immune cells. They also 
contribute to reproduction, lactation, postnatal growth, and body composition. Their defining feature is the activation of 
JAK tyrosine kinases, which initiate these signaling cascades. Some cytokine receptors, such as those for GH, PRL, and 
LEP, act as hormones and directly influence the endocrine system.

The receptors are divided into two classes based on sequence homology and structural characteristics. The class 
I cytokine receptor family, which includes more than 30 members like EPO, PRL, GH, TPO, and others, predominantly 
participates in signaling related to hematopoiesis and metabolic functions.70 The class II receptor family, initially 
comprising interferon and IL-10 receptors, has expanded to include receptors for other cytokines like IL-19, IL-20, 
IL-22, IL-24, IL-26, and IL-29.71,72

Negative Regulation of JAK/STAT Signaling
Various regulatory factors hinder the activation of the JAK-STAT signaling pathway. The regulators can be classified into 
three primary categories: suppressors of cytokine signaling (SOCSs), protein inhibitors of activated STATs (PIASs), and 
protein tyrosine phosphatases.73–77 The SOCS family comprises the principal signaling molecules that inhibit the JAK- 
STAT pathway, including CIS, SOCS-I, SOCS-II, SOCS-III, SOCS-IV, SOCS-V, SOCS-VI, and SOCS-VII.78 All 
members of the SOCS family possess a structural composition that includes an SH2 domain and a SOCS box. 
Cytokines including IL-2, IL-3, and IFN-γ can stimulate SOCS proteins. Upon activation, STATs go to the nucleus, 
facilitating the transcription of SOCS genes.79,80 These SOCSs negatively regulate JAK-STAT signaling by obstructing 
STAT-receptor binding, inactivating JAKs via the N-terminal kinase inhibitory domain, or binding to and ubiquitinating 
JAKs or STATs, resulting in their proteasomal destruction. This procedure creates a negative feedback loop initiated by 
STAT activation, subsequently increasing SOCS transcription.81 The PIAS family (Figure 2), comprising PIAS1, PIAS3, 
PIASx, and PIASy, can disrupt STAT function by either obstructing STAT dimerization or impeding the attachment of 
STAT dimers to DNA.4,82,83 Moreover, protein tyrosine phosphatases can dephosphorylate JAKs at receptor locations or 
directly dephosphorylate STAT dimers, thus suppressing JAK-STAT signaling.84–86

Cytokine receptor dysregulation, such as mutations or overexpression, is associated with various diseases, including 
autoimmune disorders, cancers, and chronic inflammation. As a result, they are key therapeutic targets for drug 
development aimed at modulating immune responses and treating related conditions.

Initiation and Regulation of JAK/STAT Signaling Pathways
Regulation of JAK/STAT Signaling Pathways are mainly focused on two signaling pathways first canonical and another 
non-canonical signaling. Current studies have mostly focused on the canonical pathways. However, some studies have 
shown that non-canonical pathways also play an important role in this pathway.

Canonical JAK/STAT Signaling
The canonical JAK/STAT signaling pathway is a critical mechanism for transmitting extracellular signals directly to the 
nucleus, regulating gene expression without the need for second messengers.13 This evolutionarily conserved pathway 
plays a crucial role in various cellular processes, including immune regulation, cell growth, differentiation, and 
apoptosis.6,87 The canonical JAK/STAT signaling pathway operates as follows: the ligand binds to its receptor, initiating 
receptor dimerization. Certain receptors, including EpoR, IL-17R, IL-10R, gp130, TNF-R1, and the GH receptor, can 
form inactive receptor dimers without ligand binding.88–94 This pre-formation may facilitate the rapid assembly of the 
receptor complex upon ligand binding, leading to subsequent signal transduction. Ligand binding induces the trans 
phosphorylation of Janus kinases (JAKs), which then phosphorylate the receptor on tyrosine residues, creating docking 
sites for signal transducer and activator of transcription proteins (STATs). At these sites, JAKs phosphorylate STATs, 
causing them to dissociate from the receptor and form homodimers or heterodimers through SH2-domain 
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phosphotyrosine interactions.8,75 These dimers subsequently translocate to the promoters of target genes, where they 
regulate transcription.

STATs influence gene expression in various ways: (1) they directly bind to DNA targets to initiate transcription; (2) 
they enhance STAT-driven transcription by complexing with non-STAT transcription factors; (3) they work with non- 
STAT DNA-binding elements to support STAT-mediated transcription; (4) they combine with other transcription 
factors to stimulate transcription by binding to different DNA locations; (5) PDGFR, EGFR, and FGFR can activate 
STATs independently or dependently on JAKs. It is true that EGFR kinases improve STAT signaling the most when 
EGF is stimulated, but JAK- and Src-mediated constitutive STAT-III activation happens even when EGF is not 
stimulated; (6) G-protein-coupled receptors, such as chemokine receptors, activate STATs after binding a ligand; (7) 
Non-receptor tyrosine kinases, such as SFK, can keep STATs active all the time. SFKs like c-Src, Blk, Fgr, Fyn, and 
others are involved in signaling pathways. Protein-tyrosine kinase, integrin, and G-protein-coupled receptors interact 
with Src, which activates at Tyr419 and inactivates at Tyr530. Activated Src directly phosphorylates and activates 
STATs.62,95–98

Non-Canonical JAK/STAT Signaling Pathway
Recent studies have revealed that JAK/STAT signaling also participates in non-canonical forms of signal transduction, 
which exhibit greater complexity. Non-canonical STAT signaling pathways include preassembled receptor complexes, 
preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions such as microtubule regula
tion, mitochondrial modulation, and heterochromatin stabilization.99 For instance, unphosphorylated STAT-III has been 
shown to promote the expression of multiple target genes independently of phosphorylation at S727. Additionally, Lys- 
685 acetylation and NF-κB contribute to this process. STAT proteins can be activated not only in the cytoplasm but also 
in mitochondria, where all STATs except STAT-IV facilitate oxidative phosphorylation and regulate membrane perme
ability. STAT-III also localizes to the endoplasmic reticulum, where it plays a role in mitigating apoptosis induced by 
oxidative stress.100 A fraction of the unphosphorylated STAT pool is associated with heterochromatin, particularly in 
relation to the allelic autosomal gene heterochromatin protein-1 (HP1) in the nucleus. When STAT is activated by JAK or 
other kinases, HP1 dissociates from heterochromatin, allowing phosphorylated STAT to bind to specific sites on 
autosomes and regulate gene transcription. This atypical form of JAK/STAT signaling is vital for the maintenance of 
heterochromatin stability.101–103 Studies in Drosophila have shown that STAT phosphorylation can lead to the dissocia
tion of HP1 from heterochromatin, disrupting its stability and potentially contributing to tumorigenesis.103–106 Similar 
atypical JAK/STAT signaling patterns have been observed in mammals. For example, IFN-induced activation of STAT-I 
leads to higher-order chromosomal remodeling of MHC, and JAK-III-STAT-V activation induces chromatin remodeling 
at the Ifng locus during Th1 cell differentiation.107,108 Notably, JAK proteins can also be activated by tumorigenic 
tyrosine kinases, independently of cytokine receptors.109 For example, the proto-oncogene v-Abl of the Abelson murine 
leukemia virus constitutively activates the JAK/STAT pathway by modulating the interaction between suppressors of 
cytokine signaling (SOCS)-1 and JAK.110 Likewise, the oncogenic fusion protein nucleophosmin-anaplastic lymphoma 
kinase inactivates SH2-containing protein tyrosine phosphatase-1 (SHP-1), inhibiting JAK-III degradation and enhancing 
JAK-III-STAT-III signaling, potentially contributing to the development of anaplastic large cell lymphoma.111 The BCR- 
ABL fusion gene exerts anti-apoptotic effects, with BCR-ABL synergizing with hematopoietic growth factors through 
low-level constitutive phosphorylation of JAK proteins, thereby modulating STAT activation.112 Additionally, STAT can 
be activated by other non-receptor tyrosine kinases or directly by receptors independent of JAK. For example, c-Src 
tyrosine kinase constitutively activates STAT-III, increasing the likelihood of STAT signaling regulating tumor-related 
gene expression.113 The epidermal growth factor receptor can directly activate STAT-I, STAT-III, and STAT-V, while the 
platelet-derived growth factor receptor can directly activate STAT-V.114–116

The STAT Signaling Pathways in Autoimmune Disorders
The JAK-STAT signaling pathway is essential for immune system function, hematopoiesis, and cellular proliferation. The 
dysregulation of JAK signaling is associated with inflammatory conditions, multiple autoimmune diseases, and specific 
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hematological malignancies.117 Consequently, the development of small-molecule inhibitors targeting JAKs has emerged 
as a promising avenue in the quest for more precise and effective therapies.

Cytokines are essential for the pathogenesis of immune-mediated diseases, each of which exhibits characteristic 
cytokine profile. Accelerated research in autoimmune diseases has demonstrated successful treatment results from 
targeting the JAK/STAT system in type I and type II cytokine signaling. We give brief information related to diseases 
that are known to be affected caused by changes in the JAK/STAT pathways:

Rheumatoid Arthritis (RA)
RA is a chronic and progressive autoimmune disorder, primarily marked by inflammation and pain in synovial 
joints.118,119 Persistent activation of the JAK-STAT signaling pathway is a critical aspect of the pathogenesis and 
progression of RA, driven by various pro-inflammatory cytokines, or “immunokines”, including IL-6, IL-15, IL-23, 
and IFN-γ, which are significant in disease development. Several cytokines play important roles in the pathogenesis of 
RA, including IL-1, IL-6, TNF-α, IL-7, IL-15, IL-12, IL-23, and GM-CSF.120 The gp130 signaling component of the IL- 
6/IL-6Rα complex is closely associated with the continuation of inflammation in synovial joints affected by RA.121 Pre-B 
cell colony-enhancing factor (PBEF) is recognized as a significant regulator. Research conducted by Nowell et al 
indicates that IL-6-mediated trans-signaling, specifically JAK-STAT activation through soluble IL-6R, influences PBEF 
in a manner dependent on STAT-III. The JAK-STAT signaling pathway, influenced by PBEF, is linked to arthritis severity 
and elevated PBEF levels in synovial tissue in murine models of antigen-induced arthritis.122 The increased production of 
IL-17 via JAK-STAT signaling is pivotal in the advancement of RA pathology, as it facilitates the differentiation of TH17 
cells from naïve lymphocytes.123 This indicates that inhibiting IL-6/gp130 may serve as a therapeutic approach to 
diminish TH17 cell production.124

Vasculitis
The term “vasculitis” describes a collection of many systemic inflammatory diseases characterized by vascular wall 
inflammation, which results in intramural vascularization, thickening of the outer membrane, and intimal hyperplasia. 
This leads to poor tissue perfusion, vascular integrity degradation, and eventually organ damage.125 The pathophysiology 
of vasculitis is significantly influenced by the activation of the JAK/STAT signaling system, which is closely associated 
with the synthesis of several cytokines, including type I and type II cytokines. IL-1, IL-4, IL-6, IL-8, IL-9, IL-10, IL-12, 
IL-17, IL-21, IL-23, IFN-γ, type I IFN, TNF-α, and GM-CSF are among the cytokines that are elevated in this disease.126 

By attaching to their respective receptors on the surface of immune cells, these elevated cytokines trigger the JAK/STAT 
pathway, which in turn controls the immune response at the subcellular level. When immune cells, such as T cells and 
macrophages, are activated, they release a variety of cytokines that encourage T cell differentiation into distinct subtypes, 
which in turn causes the cells to infiltrate the vascular wall and, eventually, cause vasculitis. Positive feedback 
mechanisms also serve to further activate these cells. T-helper (Th) cells 1 and Th17 are among the T cells that infiltrate 
the vascular wall of vasculitis patients.125,127 The increased cytokine levels in vasculitis cause these ligands to attach to 
immune cell surface receptors, including T cells, which causes JAK to dimerize. Following its activation, this receptor- 
associated JAK phosphorylates the tyrosine residue in the receptor’s tail, creating p-JAK. Tyrosine phosphorylation and 
activation of STAT to create p-STAT occur when STAT docks at these phosphorylation sites and binds via its SH2 
domain. Although heterodimers like STAT-I/2 can exist, the majority of STAT proteins form homodimers. As a result, 
STAT dimers go from the cytoplasm to the nucleus, where they act as transcription factors to control the expression of 
certain genes. When immune cells are activated in vasculitis, they release a variety of cytokines that affect the 
differentiation of naïve T cells into Th1, Th17, TFH, and TRM cells. These T cells contribute to intramural vasculariza
tion, thickening of the outer membrane, and intimal hyperplasia in addition to secreting different cytokines to stimulate 
immune cells. Vascular wall thickening causes the vascular lumen to constrict, tissue blood circulation to be insufficient, 
and ultimately organ injury.128

According to preclinical research, in mice with inflammatory human arteries, inhibiting the JAK/STAT system 
successfully reduces tissue-resident memory T cells and blocks important vasculogenic effector pathways.127 

Furthermore, the JAK/STAT pathway can be used to modify the Th1 (IL-12, IFN-γ) and Th17 (IL-6, IL-23) signaling 
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pathways, which are implicated in Vasculitis.129 These results suggest that JAK inhibitors may be used therapeutically to 
treat systemic vasculitis.

Systemic Lupus Erythematosus
The complicated pathophysiology of systemic lupus erythematosus (SLE), a chronic systemic autoimmune disease, 
involves hormone molecules, environmental triggers, hereditary variables, and an excess of several cytokines. A loss of 
self-tolerance and an excess of autoantibodies occurred under these circumstances. The pathophysiology of SLE involves 
significant functions for both the innate and adaptive immune systems.130 SLE patients, who previously received high- 
dose corticosteroids and hydroxychloroquine have seen significant improvements in treatment and life expectancy.131 

Early investigations into lupus pathophysiology focused on faulty T cell apoptosis as a putative mechanism of 
immunological tolerance failure in SLE.132 The FasL/Fas signaling pathway was initially believed to be the key player 
in this process. However, investigations indicated that Fas-mediated apoptosis was not faulty in monocytes from SLE 
patients, leading a move towards examining alternative important signaling pathways.133,134 Recent genome-wide 
association studies have demonstrated that polymorphisms in the STAT-IV gene are related with the development of 
human SLE.135 Furthermore, enhanced STAT-I mRNA and total STAT-I levels in SLE T and B cells imply a main 
mechanism behind increased STAT-I response to interferon (IFN). This was verified by Kawasaki et al, who reported that 
IFN-regulated genes and those linked with the IFN signature were enhanced in active SLE due to altered JAK-STAT 
system activation.136

In addition to STAT-I, other components of the JAK-STAT pathway, such as STAT-III and STAT-VB, have also been 
implicated in SLE. These proteins are crucial for the function of TH17 and T regulatory (Treg) cells, and an imbalance 
between activated STAT-V and STAT-III in SLE has been linked to reduced IL-10 expression.135 Moreover, the 
production of autoantibodies by SLE B cells appears to be STAT-III-dependent. In vitro investigations have demonstrated 
that enhanced autoantibody synthesis can be reduced by the JAK inhibitor ruxolitinib or the STAT inhibitor BStattic.137 

Clinical research by Meshaal et al, shown a positive connection between pSTAT-V levels and the systemic lupus activity 
measure (SLAM), as well as with other clinical symptoms in SLE patients.138

Pre-clinical research in animal models of SLE further suggest the involvement of JAK-STAT signaling in the disease. 
B cell activation factor (BAFF), a tumor necrosis factor family member is crucial in the pathogenesis of SLE.139 This 
discovery led to the development of belimumab, a human IgG1λ monoclonal antibody which is now an important 
treatment option for SLE.140–143 Immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, which 
modulate macrophage responses to Toll-like receptor and cytokine receptor stimulation, have been identified as key 
regulators in SLE pathogenesis.144 In murine lupus nephritis models, treatment with the highly selective JAK-II inhibitor 
CEP33779 resulted in clinical improvement, prolonged survival, and reduced levels of IL-12, IL-17A, IFN-α, IL-1β, 
TNF-α, anti-nuclear antibodies, and autoantigen-specific antibody-secreting cells.145,146 Additionally, treatment with the 
tyrosine kinase inhibitor tyrphostin (AG-490) inhibited JAK-II activation and STAT-I phosphorylation, leading to 
a reduction in renal inflammation in MRL/lpr mice (murine model of Lupus), includes “SLE”.147 These findings 
emphasize the potential of targeting JAK-II/STAT-I activation as a therapeutic method, presenting hope for broadening 
lupus therapy techniques, particularly in lupus nephritis.

Inflammatory Bowel Disease (IBD)
IBD includes immune-mediated intestinal illnesses of indeterminate origin, marked by cytokine dysregulation and a typical 
mucosal responses.148,149 A robust correlation between JAK-STAT activity and inflammatory bowel disease (IBD) has been 
established.2,9,148 Sanchez-Muñoz et al, noted heightened levels of IL-6 and STAT-III in individuals with IBD,149 whereas 
West et al, identified augmented expression of oncostatin M (OSM) and its receptor in inflamed tissues, corresponding with 
disease severity.150 Moreover, abnormalities in the interaction between STAT and SOCS proteins were seen in patients with 
IBD.151–153 accompanied by higher serum soluble IL-6R levels, signifying active IL-6 transsignaling.154

Clinical trials and experimental investigations have investigated JAK-STAT targets for alleviating inflammation in 
inflammatory bowel illness, specifically in ulcerative colitis and Crohn’s disease.148,155–158 Research on natural products 
also focuses on JAK-STAT in experimental colitis, with curcumin demonstrated to inhibit dendritic cell activation by 

ImmunoTargets and Therapy 2025:14                                                                                               https://doi.org/10.2147/ITT.S485670                                                                                                                                                                                                                                                                                                                                                                                                    531

Parveen et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



modulating JAK-STAT and SOCS interactions.159 In murine models, the expression of Krüppel-like factor-5 (KLF5) 
diminished the severity of colitis, possibly by regulation of the JAK-STAT signaling pathway.160 Regulating STAT-III 
activation by targeting SOCS-III has been suggested as a method to mitigate experimental colitis.161 Dysfunction of 
immune cells associated with changes in JAK-STAT signaling contributes to the pathophysiology of IBD. Nieminen et al, 
discovered reduced STAT phosphorylation in plasmacytoid dendritic cells from Crohn’s disease patients, despite high IL- 
6 levels, indicating that abnormalities in JAK-STAT signaling contribute to immunological dysfunction.162 Furthermore, 
CD2-facilitated T cell activation through STAT transcription factors is crucial in IBD, especially in modulating IFN-γ 
production in the gastrointestinal tract.163–167 Modifications in CD2 activity correlate with diminished lymphocyte 
populations in ulcerative colitis and irregular IL-10 secretion in Crohn’s disease.168,169

Dermatomyositis
Dermatomyositis is a rare, devastating autoimmune disease characterized by inflammation of both muscle and skin, 
leading to muscle weakness and skin rashes in the majority of affected individuals. In severe cases, systemic involve
ment, including inflammation of the lungs, joints, gastrointestinal tract, and heart, may occur, resulting in a poor 
prognosis. Traditional treatments, such as glucocorticoids and disease-modifying antirheumatic drugs (DMARDs), 
have shown limited efficacy, particularly in patients with systemic involvement.170,171 Analysis of muscle and skin 
samples from dermatomyositis patients has revealed elevated inducible transcript and protein levels associated with type 
I interferon signaling. Notably, the IFN1 and IFN2 pathways are differentially activated in various forms of myositis.172

Psoriasis and Psoriatic Arthritis
Psoriasis, a chronic, T cell-mediated skin ailment, is often accompanied with comorbidities,157 including Psoriatic Arthritis 
(PsA),9 which causes synovitis and tissue and bone damage.173 Two investigations revived interest in signal transduction, 
particularly JAK-STAT signaling, in psoriasis etiology three years ago. In psoriasis lesions, Hald et al, found higher STAT-I 
mRNA and protein levels. In addition, psoriatic lesions have higher STAT-I activity at the Tyr701 and Ser727 phosphorylation 
sites than non-lesions.174 Studying normal human keratinocytes activated with IFN-α or IFN-γ in vitro revealed elevated 
STAT-I levels, linking IFN signaling to STAT activation in dysregulated cells. IFN-α and IFN-γ produced STAT-I phosphor
ylation at Ser727 and Tyr701 activation, respectively, requiring PKC and p38 MAPK activity. The latter was dependent on 
PKCδ activity. Psoriasis pathogenesis may depend on STAT-I activity, according to these findings.

In cultured normal human keratinocytes subjected to tetradecanoylphorbol-13-acetate and UVB irradiation, Andrés et al, 
verified and extended these findings by revealing that ERK1/2 and p38 MAPK pathways phosphorylated STAT-III at 
Ser727.175 This suggested that STAT-III activation may contribute to psoriasis.176 According to Johansen et al, psoriasis 
sufferers’ lesional skin has higher STAT-II levels than non-lesional skin.177 The chemokines CXCL11 and CCL5, which are 
common in psoriasis, were connected with STAT-II-dependent activation, which was likewise impacted by IRF9. STAT-I and 
STAT-VI were not. Findings suggest no association between CXCL11 or CCL5 expression and IL-17A, suggesting STAT-II 
may be a potential target for limiting IFN-γ-producing immune cell migration to the skin, where psoriatic plaques form.

PsA, originating from psoriatic skin lesions, is linked to T cell signaling via JAK-I/STAT-III/STAT-I and PKCδ activation. 
In clinically active PsA, Fiocco et al, found that this signaling pathway increases CD4+ (IL17A-F and CD4+ IL-23R+) TH17 
T effector cells.178 Based on these findings, JAK inhibition was suggested a treatment for psoriasis and PsA. Several studies 
have evaluated the clinical efficacy of JAK inhibitors, including tofacitinib, baricitinib, and ruxolitinib for PsA treatment.

Multiple Sclerosis
MS is an autoimmune central nervous system condition that causes neural cell demyelination and death. CD4+ T and myeloid 
cells may be key players in MS development.179 MS contributes to elevated levels of pro-inflammatory cytokines, including IL- 
2, IL-6, IL-12, IL-18, IL-21, IL-23, GM-CSF, and IFN-γ.179–181 MS may potentially include the IL-7 receptor (IL-7R). 
Downregulation of IL-7R promotes JAK-STAT signaling, causing oligodendrocyte death in adult transgenic zebrafish. 
Despite being conducted in an animal model, this study may help us understand how IL-7R causes MS demyelination. These 
findings support JAK-STAT signaling in MS, considering its pro-inflammatory cytokine profile.182,183 Hatami et al found that 
relapsing-remitting MS patients’ blood cells had lower STAT-VA expression and higher STAT-VI expression than healthy 
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controls. High STAT-VI levels were linked to the Kurtzke Expanded Disability Status Scale (EDSS), a measure of physical 
impairment in MS patients.184 These findings indicate that STAT-VA and STAT-VI dysregulation may contribute to MS’s 
immunological responses that transition from TH1 to TH2 cytokine production. Other research is needed to determine if these 
findings can be used to develop new MS treatments targeting JAK-STAT signaling.

Other Autoimmune Diseases
Dysregulation of JAK-STAT signaling has been implicated in various other autoimmune and inflammatory diseases. 
Many of these diseases are Sjögren’s Syndrome (SS), Systemic sclerosis (SSc), Graft-versus-Host Disease (GVHD), 
Multiple Sclerosis (MS), Juvenile Idiopathic Arthritis (JIA), Allergic Rhinitis, Idiopathic Pulmonary Fibrosis (IPF), and 
Celiac Disease. For example, Primary Sjögren’s syndrome (SS) is a systemic autoimmune disease marked by inflamma
tion of the exocrine glands, which leads to sicca symptoms in people with the condition. In mouse models treated with 
filgotinib exhibited increased salivary flow rates, indicating that JAK inhibitors may provide a new therapeutic strategy 
for primary SS.185 Systemic sclerosis (SSc), another autoimmune condition causing inflammation in the connective 
tissues of the skin and internal organs, leads to fibrosis and vasculopathy.186 Similar to SLE and other connective tissue 
diseases, patients with SSc showed overexpression of IFNα, suggesting a direct pathogenetic role in the disease’s 
development.187 Importantly, The IFN signature is detectable at early stages of the disease, indicating that IFN 
upregulation occurs early and may play a significant role in disease pathogenesis.188 The another main players in the 
field of SSc pathogenesis are the IL-6 and IL-6 cytokine families. IL-6 plays a significant role in the pathogenesis of SSc 
by contributing to vasculopathy and promoting fibrotic processes. It is associated with disease activity and the degree of 
skin thickening.189 Reports have indicated that tofacitinib may improve polyarthritis in SSc patients, pointing to the 
potential of JAK inhibitors as therapeutic options for arthropathy, scleroderma, and vasculopathy in SSc. This pathway 
has received considerable attention in immunology and autoimmunity because to its crucial role in several immunolo
gical diseases. Dysregulated activation of JAK/STAT signaling is associated with the pathogenesis of numerous auto
immune diseases, such as RA, psoriasis, SLE, and IBD etc. The intricacy has prompted a growing number of research 
investigations focused on elucidating the specific mechanisms by which JAK/STAT signaling contributes to these 
diseases and identifying possible therapeutic targets within this pathway (Figure 3).

The JAK/STAT Signaling Pathways and Cancer
The influence of the JAK-STAT pathway on disease progression is complex. Cellular plasticity enables cells to assume novel 
phenotypes in reaction to environmental alterations, and cancer cells utilize this plasticity to promote tumor heterogeneity, 
metastasis, and therapeutic resistance.190–194 A notable instance of lineage plasticity in cancer is the histological transition of 
lung malignancies with EGFR mutations, wherein tumors evolve from adenocarcinoma to aggressive neuroendocrine 
carcinoma.195,196 Numerous evidences demonstrate a robust association between JAK-STAT signaling, lineage flexibility, 
and resistance, especially via the regulation of stem cell self-renewal and multilineage differentiation.197–199 A significant 
instance is the involvement of activated JAK-STAT signaling in the lineage change of prostate cancer from adenocarcinoma to 
neuroendocrine carcinoma.200 In liver cancer, JAK-STAT-III is involved in the RAS-induced trans-differentiation of hepato
cytes into intrahepatic cholangiocarcinoma cells, a process linked to malignancy.201 The stimulation of the IL-6-JAK-STAT 
pathway by WNT5A is recognized to facilitate epithelial-mesenchymal transition (EMT) in keloid scarring.194 

A comprehensive understanding of the impact of JAK-STAT signaling on lineage plasticity may establish a biological basis 
for the creation of innovative therapeutic approaches for malignant conditions.202

The substantial success of JAK inhibitors in clinical applications has led to the development of innovative strategies for 
targeting the JAK/STAT signaling pathway in immune-mediated diseases.9 The tumor microenvironment comprises various 
elements surrounding a tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular 
matrix.203 A pioneering treatment approach utilizing checkpoint inhibitors to overcome the limitations of traditional chemother
apy highlights the considerable potential of immunotherapy as an effective cancer treatment.204 The JAK/STAT pathway 
regulates complex cytokine signaling networks as well as the differentiation and activation of immune cells. Consequently, an 
increasing number of studies have focused on the role of the JAK/STAT pathway in the pathogenesis of various tumors.
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Hematologic Malignancies
The JAK-STAT signaling pathway plays a crucial role in the development and progression of hematologic malignancies, 
which encompass hematologic malignancies including leukemia, lymphoma, and multiple myeloma.205,206 This pathway 
regulates essential processes such as cell proliferation, differentiation, survival, and immune response modulation. 
Dysregulation in these tumors often results in uncontrolled cell growth and immune evasion.207 Hematological malig
nancies, including myeloproliferative neoplasms (MPNs) such as polycythemia vera (PV), essential thrombocythemia 
(ET), and primary myelofibrosis (PMF), have been shown to aberrantly activate the JAK-STAT pathway.81

Dysregulated JAK/STAT signaling in these conditions is often due to activating mutations in JAK-II, especially the 
V617F mutation, which results in the substitution of valine with phenylalanine at position 617 of the JAK-II 
protein.208,209 The discovery of the JAK-IIV617F mutation led to the development of JAK-II inhibitors as targeted 
therapy for MPNs.210 Activated JAK-STAT signaling is a common feature across different MPN phenotypes, regardless 
of the specific driver mutation.210,211 This mutation plays a key role in the development of the PV phenotype in mouse 

Figure 3 This figure illustrates the involvement of JAK-STAT signaling in autoimmunity and cancer. The pathway is activated by cytokines (IFNs, ILs, GM-CSF, etc.) and 
growth factors, leading to phosphorylation of JAKs and STATs. Different STATs (I–VI) then dimerize and translocate to the nucleus, where they regulate gene transcription, 
influencing the development of cancer and autoimmune diseases. The figure also lists specific diseases associated with the activation of each STAT, such as rheumatoid 
arthritis, leukemia, multiple sclerosis, and various cancers.
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models.212,213 Approximately 80% of PV patients carry the homozygous JAK-IIV617F mutation, underscoring the role 
of JAK-II activation in the development and progression of this hematological disorder.214 This pathway is involved in 
clonal proliferation of mature myeloid cells and upregulation of downstream transcription and gene expression in 
MPNs.211 Interestingly, while JAK inhibitors have shown clinical efficacy in MPNs, they are not clonally selective for 
JAK-IIV617F-mutant cells and have limited ability to reduce disease burden or reverse myelofibrosis.209,210 Recent 
studies have identified additional mechanisms contributing to MPN pathogenesis, including alterations in gene regulation 
through differential enhancer utilization and activation of NF-κB signaling. Combined JAK/BET inhibition has shown 
promise in reducing inflammatory cytokines, disease burden, and bone marrow fibrosis in vivo.209 STAT-V acts as 
a crucial adaptor in transducing signaling mediated by activated JAK-IIV617F in MPNs.215,216 Constitutive activation of 
STAT-V is associated with the progression of hematologic malignancies, including myelofibrosis.217 Targeting STAT-V 
by reducing its phosphorylation inhibits MPN cell growth, highlighting the therapeutic potential of disrupting JAK/STAT 
signaling in these diseases.218 Emerging therapies are focusing on multiple biological levels, including JAK-II-mutant 
MPN stem cells, non-JAK signaling pathways, and the inflammatory bone marrow microenvironment.219

Furthermore, mutations affecting the JAK/STAT pathway have been identified in plasmablastic lymphoma (PBL), 
a malignant B-cell lymphoma, as well as in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, activating 
mutations in the IL-7R-mediated JAK/STAT pathway, along with the loss of function of the polycomb repressor complex 
2 (PRC2), have been linked to poor responses to prednisone-based therapies.220 Mutations in the JH2 domain of JAK-I, 
which enhance kinase activity, have also been found in patients with ALL and T-cell prolymphocytic leukemia 
(T-PLL).221,222 Recent studies have reported upregulation of JAK-II signaling and increased cell cycle progression in 
primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (pcAECyTCL).223

Additionally, constitutive activation of the JAK-STAT pathway has been reported in various types of leukemias, including 
acute myelogenous leukemia, T-LGL leukemia (T-cell large granular lymphocytic leukemia), and multiple myeloma.207 In 
chronic myelogenous leukemia (CML), the BCR-ABL fusion protein induces persistent activation of JAK/STAT signaling, 
particularly STAT-V, promoting survival and proliferation of leukemia cells.224 The importance of JAK-STAT signaling in 
hematologic malignancies is further emphasized by the fact that STAT proteins, particularly STAT-III, regulate the expression 
of numerous critical mediators of tumor formation and metastatic progression.225 STAT-III and STAT-V activation in 
hematologic malignancies can modulate the immune microenvironment by promoting immunosuppressive cytokine produc
tion (eg, IL-10, TGF-β) and inhibiting the activity of immune cells such as T cells and natural killer (NK) cells.226

Inhibition of aberrant STAT-III activation has shown promise in abrogating cancer growth in preclinical models, 
suggesting that targeting this pathway may have therapeutic potential in hematological malignancies87,207 In conclusion, 
the JAK-STAT pathway serves as a critical mediator of malignant transformation and progression in hematologic 
malignancies. Understanding the consequences of JAK-STAT pathway mutations and aberrant activation is integral to 
developing targeted therapies for hematological malignancies. Ongoing research and clinical investigations are focused 
on JAK and STAT inhibitors as potential therapeutic strategies for these cancers.87,207,227,228

Solid Tumors
The initial information indicating the activation of JAK/STAT signaling in solid tumors was obtained from cancer cell lines. 
Substantial evidence indicates tyrosine phosphorylation and nuclear localization of STATs, signifying STAT activity, in tumor 
tissue obtained from numerous patients across various tumor types.81 A correlation between JAK/STAT activity and prognosis 
has been established in numerous tumor types. Typically, the activation of STAT-III or STAT-V correlates with a poorer 
prognosis; however, in breast cancer and certain studies including colorectal cancer and head and neck squamous cell carcinoma, 
it seems to be linked to more favorable results. The association in breast cancer aligns with the function of pSTAT-V in normal 
physiology; persistent phosphorylation of STAT-V characterizes normal breast epithelial cells, where it is believed to facilitate 
differentiation.229 Variations in the methodologies employed to measure STAT phosphorylation across different tumor types may 
explain the seemingly contradictory relationships between STAT phosphorylation and tumor outcomes, Notably, data indicates 
that in MPNs (Myeloproliferative Neoplasms), STAT-III may counteract malignant growth,230,231 implying that this phenomenon 
may also manifest in specific contexts inside solid tumors. Conversely, the activation of STAT-I, is typically linked to improved 
outcomes in all tumor types. Despite the observation of STAT activation across several tumor types, the mechanisms behind this 
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activation remain poorly elucidated in many instances. These investigations primarily delineate relationships between JAK/STAT 
activation and outcomes, although they do not establish whether the observed JAK/STAT activation plays a causative role in the 
disorders. Additional research is required to confirm this, particularly in relation to the JAK/STAT pathway as a potential 
therapeutic target.81

Point mutations affecting JAK activity have also been observed in solid tumors. Some patients with JAK-I mutations 
exhibit upregulated JAK-I and STAT-III phosphorylation, facilitating cell growth independent of cytokine expression, 
particularly in hepatitis B-associated hepatocellular carcinoma.232 Amplification of the JAK-II gene locus in gastric adeno
carcinoma, corresponding to increased JAK-II transcript levels, suggests enhanced JAK-dependent pathway activity.233 

Although mutations in the STAT locus are rare, approximately 40% of patients with large granular lymphocytic leukemia 
harbor STAT-III mutations, leading to stable dimer formation of the STAT protein and enhanced expression of its downstream 
genes.234 High levels of STAT-III expression are associated with poor prognosis in various cancers, including gastric cancer, 
lung cancer, gliomas, liver cancer, osteosarcoma, and pancreatic cancer.235 Increased STAT-VA/B expression is linked to 
nuclear accumulation of STAT-V in prostate cancer, and the activation of STAT-III and STAT-V drives tumor progression by 
regulating genes involved in cell cycle, inflammation, and stemness. Cyclin D, a major target gene of STAT-III and STAT-V, is 
stabilized by acetylation of STAT-III by p300 acetyltransferase, promoting cell cycle progression.236,237 Additionally, the 
STAT-III-p300-CD44 complex regulates survival genes such as c-MYC, BCL2, BCL-XL, and surviving.238

The engagement of cytokines or growth factors activates the JAK/STAT pathway, increasing phosphorylation of STAT-III 
and contributing to tumor progression. The common γ chain in cytokine receptors is essential for receiving signals from 
various cytokines (eg, IL-2, IL-4, IL-7, IL-9, IL-15, IL-21), which regulate immune cell proliferation, activation, and 
differentiation.68 Other cytokines such as IL-6, IL-11, IL-13, and IL-31 activate downstream signaling partners through 
JAK-I- and JAK-II-dependent mechanisms. TYK-II mediates signaling triggered by IL-10 family members (eg, IL-10, IL-19, 
IL-22).74 IL-6 stimulation induces constitutive activation of STAT-III in head and neck squamous cell carcinoma, while 
granulocyte colony-stimulating factor (G-CSF)-induced JAK-II-STAT-III activation promotes ovarian cancer growth.239,240 In 
basal-like breast cancers, inflammatory response genes are closely associated with STAT-III activation. Several proinflamma
tory molecules in addition to IL-6, such as IL-17, TNF-α and IFN-γ, can also exert biological functions through STAT-III and 
NF-κB and drive cancer associated inflammation to promote cancer development (Figure 3).241,242

Role of JAK/STAT Signaling in the Induction of Epithelial-Mesenchymal 
Transition (EMT)
STAT proteins are involved in cancer carcinogenesis in a context-dependent manner. While STAT-I is recognized for promoting 
anti-tumor immunity, other members of the STAT family, such as STAT-III, STAT-V, and STAT-VI, primarily contribute to cancer 
progression. STAT-III has received much focus as a pivotal intrinsic transcription factor in the initiation of EMT and the 
development of cancer.243 The activation of the JAK/STAT signaling pathway promotes metastasis by inducing EMT through the 
upregulation of EMT-inducing transcription factors (EMT-TFs) such as Snail, Zeb1, JUNB, and Twist-1, and by enhancing cell 
motility via the activation of focal adhesion kinase (FAK).244–247 In prostate cancer, paracrine signaling through JAK/STAT 
initiates an autocrine IL-6 loop, whereas the stimulation of insulin-like growth factor receptor (IGF-IR) by IL-6 and IGF 
promotes EMT via the STAT-III/NANOG/Slug pathway.248,249 STAT-III acts as a transcriptional activator by associating with the 
promoter regions of target genes in a way dependent on tyrosine phosphorylation.61 Once active, STAT-III interacts with the 
estrogen receptor (ER) to bind the LIV-1 promoter, resulting in the activation of LIV-1 expression. This is succeeded by 
proteolytic cleavage of the N-terminal of LIV-1 protein and its subsequent translocation to the plasma membrane, where it 
stabilizes Snail by inactivating GSK3β.250–252 Furthermore, RANKL (Receptor activator of nuclear factor kappa-Β ligand) is 
recognized for facilitating EMT in prostate cancer through the STAT-III/LIV-1 pathway.253 Furthermore, IL-8-induced synthesis 
of IL-6 and TGF-β1 promotes STAT-III association with the AUF-1 promoter, resulting in the activation of breast stromal 
fibroblasts via the downregulation of p16, p21, and p53 in a paracrine fashion. Increased AUF-1 levels subsequently facilitate 
EMT by augmenting the expression of SDF-1, α-SMA, TGF-β1, and IL-6, due to AUF-1’s interaction with their respective 
promoters.254,255 Moreover, the STAT-III-mediated enhancement of Fra-1 and PTTG1 expression via promoter binding facil
itates tumor invasion and leads to resistance against androgen deprivation therapy (AR). The increased expression of RTVP-1 by 
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the concurrent binding of C/EBPβ and STAT-III to the RTVP-1 promoter maintains the stemness of glioblastoma cells and is 
associated with unfavorable clinical outcomes.256–258 Furthermore, STAT-III enhances UHRF1 expression by directly interacting 
with its promoter. The PHD and SRA domains of UHRF1 play a crucial role in the silence of tumor suppressor genes in colorectal 
cancer (CRC) cells, which is particularly significant in cancer biology.259 The characteristics of cancer, regulated by STAT-III- 
dependent transcriptional control of target proteins, directly affect cellular responses that promote tumor growth.260 Activation of 
JAK/STAT protein stimulated by IL-6 up-regulates MMP-2 and SNAIL expression, which results in EMT.261,262 However, the 
JAK-II/STAT-III inhibitor WP1066 prevents IL-6– induced activation of the JAK-II/STAT-III pathway and EMT.263 

Furthermore, Ovatodiolide effectively suppresses nasopharyngeal cancer development through the induction of apoptosis and 
inhibition of EMT, aligning with the repression of the JAK/STAT signaling pathway. The IL-6-mediated JAK/STAT signaling 
pathway promotes cancer progression by inhibiting autophagy.264,265 Recent studies have shown that resveratrol inhibits the IL- 
6–mediated JAK/STAT signaling pathway, causing autophagy and prevents ovarian cancer cell migration, according to recent 
studies. In primary effusion lymphoma, quercetin inhibits STAT-III to induce autophagy. Docetaxel-mediated autophagy 
inhibited STAT-III to reduce castration-resistant prostate cancer (CRPC) cell survival and metastasis.266–269 Another study on 
Head and neck squamous cell carcinomas revealed that Inhibition of either IL-6R or ERK effectively reverses EMT and re- 
sensitizes cells to ionizing radiation. According to Niu et al, the hyaluronan-mediated motility receptor (HMMR) responsible for 
cell mitosis and proliferation might be implicated in the proliferation and metastasis of clear cell renal cell carcinoma (ccRCC) 
through EMT and JAK-I/STAT-I signaling pathways.260,270,271 Hence, many pathways like autophagy activators might be used to 
hinder EMT by suppressing JAK/STAT signaling (Figure 4).

Figure 4 The figure illustrates the JAK/STAT signaling pathway and its role in cancer progression, highlighting its influence on tumor invasion, progression, autophagy, and 
apoptosis. This pathway promotes tumor invasion by regulating factors like ZEB1, JUNB, TWIST-1, and MMP, and supports EMT via IL-6 and SNAIL. The JAK/STAT pathway 
also inhibits autophagy and apoptosis, contributing to tumor survival and progression. Key factors like p16, p21, p53, and Bcl-xl are involved in these processes.
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JAK Inhibitors (Jakinibs) as a Therapeutic Approach
Janus kinase inhibitors (JAK inhibitors or JAKinibs) have emerged as a vital class of targeted biologic therapies, initially 
developed for autoimmune, inflammatory, and allergic diseases, and more recently extended to cancer treatment.272 These drugs 
function by inhibiting type I/II cytokine receptors through the Janus kinase-signal transducer and activator of transcription (JAK- 
STAT) pathway, a central mechanism in immune and inflammatory responses. The development of JAK inhibitors has 
progressed from non-selective first-generation drugs like baricitinib and tofacitinib to second-generation agents such as filgotinib 
and upadacitinib, which exhibit selective inhibitory activity against specific JAK family members JAK-I, JAK-II, JAK-III, and 
TYK-II.273 This evolution in selectivity has been associated with differences in safety and efficacy profiles. Additionally, 
JAKinibs can be classified based on their binding mode into reversible (competitive) and irreversible (covalent) inhibitors, further 
diversifying their potential applications. JAK inhibitors have demonstrated substantial efficacy in treating chronic inflammatory 
conditions such as rheumatoid arthritis and psoriatic arthritis (PsA).274 Their potential extends to other diseases, including 
ankylosing spondylitis (AS), where polymorphisms in JAK-II and STAT-III genes have been linked to disease susceptibility. The 
role of the JAK/STAT pathway in the IL-23/IL-17 axis, which is critical in PsA and spondyloarthropathies, underscores the 
importance of JAKinibs in addressing these conditions. In cancer therapy, acquired genetic mutations like JAK-II V617F, 
K607N, and T875N activate JAK-II signaling, providing a strong rationale for targeting this pathway. Beyond oncology, JAK 
inhibitors are being investigated for hyperinflammatory conditions such as COVID-19, where modulation of the JAK-STAT 
pathway could mitigate severe immune responses.275 For example, the combination of baricitinib with methotrexate (MTX) has 
produced remarkable clinical outcomes, suggesting that such combinations could be effective strategies for managing complex 
inflammatory diseases. Despite their promising therapeutic potential, JAK inhibitors come with challenges, particularly the 
increased risk of infections due to blocking the JAK-STAT pathway.276 Additionally, their efficacy and safety profiles do not 
always align with predictions based on selectivity, necessitating long-term studies and rigorous post-marketing surveillance to 
establish comprehensive risk profiles. The relative risk across different JAK inhibitors and their dose-dependent effects remain 
areas requiring further investigation. The continued development of more selective and safer JAK inhibitors is expected to 
expand their clinical applications. Combining JAKinibs with other therapies, such as antiviral agents or novel anti-inflammatory 
drugs, represents a promising avenue for tackling diseases with complex pathophysiology.151 The integration of these agents into 
treatment paradigms will depend on ongoing innovation and a careful balance between efficacy and safety to maximize their 
therapeutic potential.

Tofacitinib
Tofacitinib is an oral Janus kinase (JAK) inhibitor that selectively targets JAK-I and JAK-III, with moderate activity against JAK- 
II, disrupting the JAK-STAT signaling pathway to reduce inflammation and immune responses. Approved by the FDA in 2012 
for the treatment of RA,277 tofacitinib has since been approved for PsA in 2017, ulcerative colitis in 2018, juvenile idiopathic 
arthritis (JIA) in 2020, and ankylosing spondylitis (AS) in 2021.278,279 Its mechanism of action involves inhibiting cytokine- 
mediated signaling pathways, particularly those utilizing the common γ chain family, effectively blocking interleukins such as IL- 
2, IL-7, and IL-6. This inhibition alleviates symptoms and slows disease progression.280 Tofacitinib, the first JAK inhibitor aimed 
at JAK-I, JAK-II, and JAK-III, showed greater selectivity for JAK-I and JAK-III. It received approval from the US Food and 
Drug Administration (FDA) in November 2012 and from the European Medicines Agency (EMA) in March 2017 for moderate 
to severe active RA. Tofacitinib has been recommended as a second-line or subsequent therapy for RA by the European League 
against Rheumatism (EULAR) and the American College of Rheumatology (ACR).278 Tofacitinib offers a convenient oral 
administration alternative to biologic therapies. Unlike biologics, it is rapidly absorbed after oral administration of the immediate- 
release tablet and maintains consistent plasma concentrations without susceptibility to immunogenicity or disease activity. 
Comprehensive safety evidence for tofacitinib has been gathered in Phase 1–3 clinical trials and long-term extension studies. 
However, it carries risks such as infections, including herpes zoster and cellulitis, as well as elevated liver enzymes, thromboem
bolic events, and cardiovascular issues.278,280,281 Mechanistically, JAK inhibition by tofacitinib has been shown to reduce CD80/ 
CD86 expression and T cell stimulatory capacity by suppressing type I IFN signaling in human dendritic cells. Consequently, it 
not only hinders the differentiation of plasmablasts and Th1 and Th17 cells but also modulates innate immune responses, thereby 
reducing autoimmune inflammation. Additionally, low-density lipoprotein and high-density lipoprotein levels increase, while 
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blood neutrophil levels decrease during treatment.282 Despite these risks, tofacitinib remains a key option for patients 
unresponsive to other therapies, as demonstrated in short-term dose-ranging studies showing significant improvements in 
ACR20 response rates and surrogate markers of decreased disease progression within three months.280 The OCTAVE trials 
highlighted the efficacy of tofacitinib in managing ulcerative colitis. While the rate of serious infections was higher during 
induction trials compared to placebo, it was similar across treatment groups during maintenance trials. In SLE, studies in murine 
lupus models have demonstrated that tofacitinib effectively decreases anti-dsDNA levels, reduces proteinuria, alleviates nephritis 
symptoms, and improves skin rashes. Case studies of SLE patients treated with tofacitinib have shown rapid improvement in 
arthritis symptoms and partial improvement of skin rashes, although its effects on serological parameters were limited.283,284 In 
patients with RA and psoriasis, the drug has been associated with an increased risk of infections, particularly herpes zoster. 
Nevertheless, pharmacokinetic studies confirm its consistent efficacy without a decrease in plasma concentrations over time.281 

Tofacitinib has also been shown to mitigate the proinflammatory and profibrotic effects of T cells derived from amyopathic 
dermatomyositis-associated interstitial lung disease (ILD) in vitro.285 In patients with anti-melanoma differentiation-associated 
gene 5 (MDA5)-positive dermatomyositis, who also have refractory and rapidly progressive ILD, combination therapy with 
tofacitinib has been associated with significantly improved survival.286 Similar studies have demonstrated that tofacitinib 
improves survival following ILD onset and substantially enhances lung function, as assessed by high-resolution computed 
tomography.287 Based on these findings, a phase 1 clinical trial evaluating the safety and efficacy of tofacitinib in adults with 
active, treatment-refractory dermatomyositis was initiated [NCT03002649]. Preclinical studies have shown the effectiveness of 
tofacitinib in T-ALL patients with JAK-I/JAK-III mutations. However, its use in autoimmune diseases (AIDs), which relies on 
immune suppression, raises concerns about tumorigenesis. Therapy with tofacitinib has been reported to increase the risk of 
malignancy compared to tumor necrosis factor (TNF) inhibitors.288,289 JAK inhibition modifies the pro-inflammatory cytokine 
profile of psoriatic T cells, as tofacitinib dramatically inhibited IL-23, IL-17A, IL-17F, and IL-22 receptors in activated 
lymphocytes from psoriasis patients. In addition, tofacitinib reduced p-STAT-III, p-STAT-I, NF-κB p65, and increased SOCS- 
III and PIAS3 mRNA in PsA patients’ fibroblast-like synoviocytes and synovial tissue explants.290 Moreover, tofacitinib 
decreased spontaneous secretion of IL-6, IL-8, MMPs, and TIMP3, while without altering IP-10 or IL-10.291 Despite these 
concerns, a meta-analysis of observational studies found no increased malignancy risk in RA patients treated with tofacitinib 
compared to those receiving conventional synthetic disease-modifying anti-rheumatic drugs (DMARDs) or TNF inhibitors.292 

This underscores the controversial nature of the association between tofacitinib and tumorigenesis. In conclusion, tofacitinib 
represents an important therapeutic option for autoimmune and inflammatory conditions, targeting a distinct biochemical 
pathway that differentiates it from available biologics. While it offers significant clinical benefits, its associated risks necessitate 
careful monitoring and patient selection to optimize outcomes.

Ruxolitinib
Ruxolitinib is a selective inhibitor of JAK-I and JAK-II, originally identified as INCB018424 or INC424. It was approved by the 
FDA in 2011 and the European Medicines Agency (EMA) in 2012 for the treatment of myelofibrosis (MF) and later for 
polycythemia vera (PV) in 2014 and acute and chronic graft-versus-host disease (GVHD) in 2021.293 In addition to its established 
indications, ruxolitinib has shown potential applications in various malignancies and inflammatory disorders, highlighting its 
versatility in clinical practice. Ruxolitinib demonstrated significant clinical benefits in Applications in Myeloproliferative 
Neoplasms (MPNs), including reducing splenomegaly, alleviating constitutional symptoms, and improving patient conditions 
such as weight gain and general physical status. Mechanistically, it preferentially eliminated JAK-II²⁶ⁱ⁷ᴹ-mutant cells, reduced 
circulating inflammatory cytokines, and improved survival in a mouse model of JAK-II²⁶ⁱ⁷ᴹ-positive MPNs. The drug’s 
effectiveness is highly dependent on the inflammatory milieu, suggesting its utility in conditions where cytokine dysregulation 
is central. Ruxolitinib has shown efficacy in autoimmune diseases such as SLE. In MRL/LPR murine models of SLE, it 
suppressed the development of cutaneous lesions, reduced autoantibody production, and downregulated cytokines such as 
CXCL10, CXCL9, and MxA, which are associated with cutaneous lupus erythematosus.137,294–297 In PsA and plaque psoriasis, 
ruxolitinib modulates inflammatory cytokine profiles by targeting key pro-inflammatory mediators in the JAK/STAT pathway, 
offering therapeutic benefits in these chronic inflammatory conditions.291 Ruxolitinib’s immunomodulatory effects include 
inhibition of mast cell degranulation and cytokine production (eg, IL-6, TNF-α, MCP-1) in response to stimuli like codeine 
and substance P.298 These findings suggest crosstalk between the JAK-II-STAT-V pathway and GPCRs, with potential 
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implications for neoplastic mast cells through interactions with the PI3K and STAT-V pathways. The JAK/STAT signaling 
pathway is pivotal in tumorigenesis and immune regulation within the tumor microenvironment. By inhibiting JAK-I and JAK-II, 
ruxolitinib disrupts cytokine-mediated tumor progression. Ruxolitinib has shown significant anti-tumor efficacy across various 
cancers by targeting the JAK/STAT signaling pathway. In T-ALL, ruxolitinib demonstrated anti-tumor activity in xenograft 
models, particularly in cases with JAK-I, JAK-III, or STAT-V mutations, which are present in 20–30% of patients. Synergistic 
effects were observed when combined with venetoclax, a BCL-2 inhibitor.299 In pancreatic ductal adenocarcinoma (PDAC), 
ruxolitinib, when combined with MAPK/ERK inhibitors, enhances immune checkpoint therapy and helps overcome therapeutic 
resistance. In breast cancer, ruxolitinib exhibits synergistic effects in triple-negative and HER2-positive cancers when combined 
with calcitriol or SMO-GLI1/tGLI1 pathway inhibitors.300,301 Additionally, ruxolitinib showed modest efficacy in advanced 
Hodgkin lymphoma (HL), with a well-tolerated safety profile, supporting its potential for use in combination therapies. 
Additionally, ruxolitinib demonstrates efficacy in metastatic lung cancer, non-small-cell lung cancer, and hepatocellular carci
noma, either as monotherapy or in combination with other agents.302–304 Ruxolitinib’s diverse applications, spanning autoimmune 
diseases, inflammatory conditions, and cancers, highlight its broad therapeutic potential.151,305 Its ability to modulate cytokine 
production, inhibit mast cell activity, and target the JAK/STAT signaling pathway underscores its utility in addressing complex 
pathologies. Continued exploration of combination therapies and resistance mechanisms will be instrumental in expanding its 
clinical applications.

Baricitinib
Baricitinib is the second medication in its class and has been proven efficacious for the treatment of RA. Due to concerns about 
adverse effects associated with baricitinib, it is recommended for patients who have failed one or more tumor necrosis factor 
inhibitors (TNFis). Baricitinib functions by inhibiting the JAK-I and JAK-II proteins, which target the stimulation of cytokine 
and growth factor receptors, consequently diminishing downstream immune cell activity. Four trials have shown the efficacy of 
baricitinib, both alone and in combination with methotrexate, in patients who are naïve to disease-modifying antirheumatic drugs 
(DMARDs) as well as in those who have had an inadequate response to or intolerance of conventional and biological 
DMARDs.306 Baricitinib (Olumiant™) is an oral small-molecule Janus kinase (JAK) inhibitor, developed by Eli Lilly and 
Incyte Corporation, for the treatment of RA, atopic dermatitis, and SLE. JAKs facilitate the transmission of intracellular signals 
from cell surface receptors for numerous cytokines and growth factors associated with inflammation and immune function, 
indicating that JAK inhibitors could offer therapeutic advantages in inflammatory disorders. Baricitinib has been recently 
approved for the treatment of specific autoimmune disorders. Through JAK-I/JAK-II inhibition, baricitinib is expected to 
demonstrate efficacy for SLE by impacting the release of pro-inflammatory cytokines such as IL-12, IL-6, and type I interferon, 
subsequently downregulating signal pathways associated with disease pathogenesis.307 Baricitinib represents a small molecular 
weight reversible JAK inhibitor with excellent selectivity and potency for JAK-I and JAK-II. It can easily diffuse into cells and 
competitively inhibit this pathway, suppressing type-I interferon to modulate dendritic cells of the innate immune system. 
Additionally, it modulates B and T cells of adaptive immunity by blocking signals from IL-23, IL-2, IL-12, and type-I interferon. 
Blocking JAK prevents the production of several cytokine signaling pathways that are upregulated in SLE, explaining 
baricitinib’s potential role in improving SLE-associated manifestations. Baricitinib was approved as a monotherapy for the 
treatment of RA in 2017 by the European Medicines Agency (EMA) and in 2018 by the FDA.277,308 It is also approved for use in 
combination with methotrexate.309 Furthermore, baricitinib was authorized as a treatment for COVID-19 under Emergency Use 
Authorization (EUA) in 2020 and received full FDA approval in 2022.310 The efficacy of baricitinib as a cancer therapy has 
rarely been explored. One study reported that baricitinib did not induce apoptosis in T-ALL, while synergistic effects were 
observed when combined with docetaxel in androgen-receptor-negative prostate cancer cells. Potential effects on the risk of 
tumorigenesis have also been evaluated. While one study reported a high malignancy rate among RA patients treated with 
baricitinib, the rate was not significantly different from that of the general population or patients treated with TNF inhibitors.311 

Long-term safety data for baricitinib in RA patients indicate no increased risk of malignancy.312 In summary, baricitinib is 
a selective Janus kinase inhibitor that has demonstrated efficacy in treating RA, SLE, and other autoimmune disorders. Despite its 
potential adverse effects, such as an increased risk of infections, its role in modulating inflammatory and immune pathways offers 
significant therapeutic benefits in autoimmune and inflammatory conditions. Apart from these, numerous other inhibitors have 
been developed, as outlined in Table 2.

https://doi.org/10.2147/ITT.S485670                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ImmunoTargets and Therapy 2025:14 540

Parveen et al                                                                                                                                                                        

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Table 2 Provides a Comprehensive List of Clinically Approved JAK Inhibitors for Autoimmune Diseases and Cancer. (Www.clinicaltrials.com)

S. No. Drug Indications IC50 Status

1. Tofacitinib Juvenile Rheumatoid arthritis, Psoriatic Arthritis, 
Rheumatoid arthritis, ulcerative colitis

JAK-I: 112 ηM 
JAK-II: 20 ηM 

JAK-III: 1 ηM

Approved (2012)

2. Ruxolitinib Vitiligo, Graft-versus-host disease (GVHD), Atopic 

Dermatitis (AD), Myelofibrosis (MF), Polycythemia vera

JAK-I: 3.3 ηM 

JAK-II: 2.8 ηM

Approved (2011)

3 Baricitinib Rheumatoid arthritis JAK-I: 5.9 ηM 

JAK-II: 5.7 ηM

Approved (2017)

4. Pacritinib Myelofibrosis JAK-II: 23 ηM 

JAK-IIV617F: 19 ηM FLT3: 22 ηM 
FLT3D835Y: 6 ηM

Approved (2022)

5. Fedratinib Myelofibrosis JAK-II and JAK-IIV617F: 3 ηM Approved (2019)

6. Delgocitinib Atopic Dermatitis (AD) JAK-I: 2.8 ηM 

JAK-II: 2.6 ηM 
JAK-III: 13 ηM 

TYK-II: 58 ηM

Approved (2020)

7. Abrocitinib Atopic Dermatitis (AD) JAK-I: 29 ηM 

JAK-II: 803 ηM

Approved (2021)

8. Ritlecitinib Alopecia areata JAK-III: 33.1 ηM Approved (2023)

9. Upadacitinib Rheumatoid arthritis JAK-I: 43 ηM Approved (2019)

10. Peficitinib Rheumatoid arthritis JAK-I: 3.9 ηM 

JAK-II: 5 ηM 
JAK-III: 0.7 ηM 

TYK-II: 4.8 ηM

Approved (2019)

11. Filgotinib Rheumatoid arthritis, Ulcerative colitis JAK-I: 10 ηM 

JAK-II: 28 ηM 

JAK-III: 810 ηM 
TYK-II: 116 ηM

Approved (2020)

12. Pacritinib Myelofibrosis JAK-II23 ηM 
JAK-IIV617F: 19 ηM FLT3: 22 ηM 

FLT3D835Y: 6 ηM

Approved (2022)

13. Golidocitinib Non-small cell lung cancer (NSCLC), cutaneous T-cell 

lymphoma (CTCL), and peripheral T-cell lymphoma 

(PTCL)

JAK-I: 73 ηM 

JAK-II: 14.7 μM 

JAK-III: 30 μM

Phase II clinical 

trials

14. Zotiraciclib Glioblastoma, brain cancer, gliosarcoma, and 

astrocytoma.

JAK-II: 73 ηM 

CDK2: 13 ηM 
FLT3: 56 ηM

Phase II clinical 

trials

15. Brepocitinib Dermatomyositis. JAK-I: 17 ηM 
TYK-II: 23 ηM 

JAK-II: 77 ηM 

JAK-III: 6.49 μM

Phase III clinical 
trials

(Continued)
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Efficacy of Jakinibs in Autoimmune Diseases and Cancers
The efficacy and safety of Jakinibs (Janus kinase inhibitors) have been extensively studied, beginning with the FDA- 
approved tofacitinib and advancing to next-generation Jakinibs. These agents have transformed the management of 
autoimmune and inflammatory diseases, representing a significant advancement over earlier therapies.310 Biologics, 
including monoclonal antibodies and recombinant proteins targeting cytokines such as TNF-α, IL-6, and IL-1, have been 
pivotal in this progress.313 However, targeting a single cytokine often fails to fully address the complexity of autoimmune 
diseases for all patients. Moreover, issues such as reduced efficacy over time due to immunogenicity and the challenges 
of intravenous or subcutaneous administration present limitations to their widespread utility. Tofacitinib has demonstrated 
remarkable long-term efficacy in treating moderate to severe RA.314 The ORAL Sequel study, involving over 4,000 
patients, showed sustained clinical improvement over 48 months, as evidenced by key metrics such as ACR 20/50/70, 
DAS28-4-ESR, and HAQ-DI.315 A long-term extension trial further reinforced these findings, highlighting improved 

Table 2 (Continued). 

S. No. Drug Indications IC50 Status

16. Momelotinib 

Dihydrochloride

Myelofibrosis JAK-I: 11 ηM 

JAK-II:18 ηM 
JAK-III: 155 ηM

Approved (2022)

17. Itacitinib Graft-versus-host disease (GVHD) JAK-I: 2 ηM Phase III clinical 
trials

18. Ivarmacitinib Atopic Dermatitis (AD), Rheumatoid arthritis JAK-I Phase III clinical 
trials

19. Lorpucitinib Colorectal cancer (adenomatous polyposis, FAP), STAT-III Phase I clinical 
trials

20. Gandotinib Hematologic malignancies JAK-II: 68 nM 
JAK-IIV617: 55 nM ηM

Phase II clinical 
trials

21. Ilginatinib Myelofibrosis JAK-II: 0.72 ηM 
JAK-I: 33 ηM 

JAK-III: 39 ηM 

TYK-II: 22 ηM

Phase II clinical 
trials

22. Nezulcitinib Pneumonia and novel Coronavirus infection pan-JAK inhibitor Phase II clinical 
trials

23. Izencitinib Ulcerative colitis (UC) JAK-I, JAK-II, JAK-III, and TYK-II Phase III clinical 
trials

24. Lestaurtinib Leukemia, ALL, and precursor T-lymphoblastic lymphoma 
leukemia.

JAK-II, STAT-V, and STAT-III Phase III clinical 
trials

25. Povorcitinib Hidradenitis suppurativa (HS). JAK-I Phase III clinical 
trials

s26 Decernotinib Rheumatoid arthritis JAK-III: 50–170 ηM In-vivo

27 Solcitinib Autoimmune diseases, including psoriasis and ulcerative 

colitis.

JAKs: 33–76 ηM Phase III clinical 

trials

29 PF-04965842 Moderate-to-severe atopic dermatitis (eczema) JAK-I: 29 ηM 

JAK-II: 803 ηM 
JAK-III: > 10,000 ηM

Approved (2022)

30 WHI-P131 Immunosuppressive effects. JAK-III: 78 μM Approved (2018)
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physical function and consistent relief of disease signs and symptoms in patients treated with tofacitinib. Advancements 
in Jakinibs continued with baricitinib, which progressed to Phase III studies and demonstrated significant efficacy in 
patients with RA unresponsive to methotrexate.312 Phase IIb trials revealed dose-dependent benefits, with improvements 
in clinical symptoms and musculoskeletal MRI findings over 12 to 24 weeks. Subsequent Phase III trials solidified 
baricitinib’s position as a superior treatment option, notably outperforming adalimumab in the RA-BEAM study, an 
achievement unmatched by other disease-modifying agents.316 Long-term data from these studies highlighted its ability 
to prevent progressive joint damage and maintain clinical efficacy, while early response rates enabled better patient 
stratification and minimized unnecessary drug exposure for non-responders. Despite their success, first-generation 
Jakinibs like tofacitinib have been associated with adverse effects such as cytopenias due to their nonselective pan- 
JAK blockade.317 This limitation has driven the development of next-generation Jakinibs with selective activity for 
specific JAK pathways, aiming to reduce side effects while retaining efficacy. However, increased selectivity can 
sometimes limit therapeutic effectiveness, given the diverse cytokines reliant on the JAK–STAT pathway.318 The 
potential of Jakinibs extends beyond RA, with promising applications in diseases characterized by elevations in JAK- 
dependent cytokines. Conditions such as SLE, myositis, scleroderma, and primary Sjögren’s syndrome are under 
investigation, alongside type I interferonopathies like SAVI, where baricitinib has shown efficacy.319 These findings 
are complemented by emerging evidence supporting the use of Jakinibs in skin-related conditions such as alopecia and 
vitiligo, offering new hope for patients with limited treatment options. As Jakinibs are increasingly used to treat a wide 
array of diseases, understanding their mechanism of action within cytokine biology becomes crucial. Not all cytokines 
are JAK dependent, and while over 200 factors fall under the cytokine umbrella, only a subset engages the JAK–STAT 
pathway. This distinction is essential to optimize therapeutic strategies while mitigating potential side effects. The 
ongoing development of Jakinibs reflects the growing recognition of their therapeutic potential. By addressing both 
efficacy and safety considerations, these agents continue to redefine treatment paradigms for autoimmune diseases and 
cancers, offering the possibility of better outcomes for patients worldwide.

Conclusion and Future Prospective
The Signal Transducer and Activator of Transcription (STAT) and Janus kinase (JAK) pathways are essential signaling 
pathways that control a wide range of biological functions, such as hematopoiesis, immunological responses, cell 
survival, and proliferation. The scope of JAK/STAT pathways studies is varied and bright in several ways because of 
their pivotal function in cell signaling and their participation in numerous diseases, especially inflammatory conditions, 
autoimmune disorders, and cancers. Research on the JAK/STAT pathway has a bright future ahead of it, with potential 
uses in both diagnosis and treatment. JAK/STAT modulation may transform the treatment of numerous inflammatory, 
autoimmune, and oncological conditions as a result of growing knowledge of how these pathways govern healthy and 
diseased states and the ongoing development of targeted small molecule inhibitors, biologics, and combination therapies. 
Numerous JAK inhibitors, such as tofacitinib and baricitinib, have demonstrated considerable progress in the treatment of 
autoimmune disorders, including RA and ulcerative colitis. Future research should prioritize the development of next- 
generation JAK inhibitors that exhibit enhanced specificity and reduced side effects. The combination of JAK inhibitors 
with other immunomodulatory agents, including biologics (eg, TNF inhibitors, autophagy inhibitors, apoptosis inhibitors, 
and various signaling pathway inhibitors), may improve efficacy and expand treatment options for patients with complex 
autoimmune or inflammatory diseases. Analyzing the genetic profiles of patients alongside the specific abnormalities in 
the JAK/STAT pathway may facilitate personalized treatments, enhancing the efficacy of JAK inhibitors while mini
mizing adverse effects. The JAK/STAT pathway engages with various other signaling networks, such as the PI3K/Akt, 
NF-kB, and MAPK pathways. Comprehending the intricate interactions among these pathways could facilitate the 
creation of advanced therapeutic strategies that simultaneously target multiple molecular mechanisms. The JAK/STAT 
signaling system is integral to autoimmune disorders and cancer, rendering it a viable therapeutic target. JAK inhibitors 
(Jakinibs) have demonstrated considerable efficacy in autoimmune disorders.9 Tofacitinib, the inaugural FDA-approved 
Jakinibs for rheumatoid arthritis, has facilitated the treatment of other autoimmune illnesses.9 Multiple other Jakinibs are 
undergoing clinical trials for ailments including psoriasis and inflammatory bowel disease.9 In cancer treatment, targeting 
the JAK/STAT pathway has emerged as a viable option due to its role in fostering aggressive tumor traits.320 STAT3 has 
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been recognized as a viable target for molecular therapies in many solid cancers.320 The inhibition of JAK/STAT 
signaling has demonstrated promise in gastric cancer, squamous cell carcinoma, and ovarian cancer.320 Notably, certain 
JAK inhibitors originally approved for autoimmune disorders are being investigated for their anti-tumor properties.302 

These pharmaceuticals have exhibited efficacy in both hematological and solid neoplasms.302 Nevertheless, it is crucial to 
acknowledge that although JAK/STAT inhibition demonstrates potential in both autoimmunity and oncology, meticulous 
evaluation is required due to the pathway’s intricate involvement in immune regulation and its possible dualistic impact 
on cancer progression.6,304 Future treatments that are customized to each patient’s unique genetic and molecular profile 
are also suggested by the expanding field of precision medicine and new discoveries into the molecular pathways behind 
JAK/STAT signaling.

Abbreviation
AD-HIES, Autosomal dominant hyperimmunoglobulin E syndrome; ALL, Acute lymphocytic leukemia; alpha-SMA, 
Alpha smooth muscle actin; AML, Acute myeloid leukemia; AUF-1, AU-binding factor 1/ AU-rich element RNA-binding 
protein 1; Blk, B-lymphoid tyrosine kinase; CCL5, Chemokine (C-C motif) ligand 5; CIS, Cytokine-induced SH-2 protein; 
CXCL11, C-X-C Motif Chemokine Ligand 11; EGF, Epidermal Growth Factor; EPO, Erythropoietin; EpoR, 
Erythropoietin Receptor; ET, Essential thrombocytosis; Fgr, Feline Gardner-Rasheed sarcoma viral oncogene homolog; 
Fra-1, Fos-related antigen 1; Fyn, Fyn-related kinase; G-CSF, Granulocyte Colony-Stimulating Factor; GF, growth factors; 
GH, Growth hormone; GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor; Gp130, Glycoprotein 130; GPCR, 
G Protein-Coupled Receptors; GSK3B, Glycogen synthase kinase 3 beta; GVHD, Graft-versus-host disease; HGF, 
Hepatocyte growth factor; HP1, Heterochromatin protein-1; IFNs, Interferons; IFN-γ, Interferon-γ; IL-6, Interleukin-6; 
ILs, Interleukins; IRF9, interferon regulatory factor 9; IRF9, Interferon Regulatory Factor 9; ISGF3, Interferon-Stimulated 
Gene Factor 3; JAKs, Janus kinases; LGL, Large granular Lymphocytic Leukemia; LPE, Lysophosphatidylethanolamine; 
Nmi, N-myc-interactor; PDGF, Platelet-Derived Growth Factor; PIASs, Protein Inhibitors of Activated STATs; PKCδ, 
Protein kinase C delta type; PMF, Primary myelofibrosis; PRL, Prolactin; PTTG1 Pituitary tumor-transforming gene-1; PV, 
Polycythemia vera; RA, Rheumatoid Arthritis; RANKL, Receptor activator of nuclear factor kappa-B ligand; RTKs, 
Receptor Tyrosine Kinases; SCID, Severe combined immunodeficiency; SDF-1, Stromal cell-derived factor 1; SFK, Src 
family tyrosine kinase; SH2, Src homology 2; SLE, Systemic Lupus Erythematosus; SOCSs, Suppressors of Cytokine 
Signaling; STAT, Signal Transducer and Activator of Transcription; StlP, stomatin-like protein; T-ALL, T-cell acute 
lymphoblastic leukemia; TGF-beta 1, transforming growth factor beta 1; TNF-R1, Tumor necrosis factor receptor 1; 
TNF-α, Tumor necrosis factor alpha; TPO, Thrombopoietin; TYKs, Tyrosine Kinases.
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