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Abstract: Mitochondrial reactive oxygen species (mROS) are generated as byproducts of mitochondrial oxidative phosphorylation. 
Changes in mROS levels are involved in tumorigenesis through their effects on cancer genome instability, sustained cancer cell 
survival, metabolic reprogramming, and tumor metastasis. Recent advances in nanotechnology offer a promising approach for precise 
regulation of mROS by either enhancing or depleting mROS generation. This review examines the association between dysregulated 
mROS levels and key cancer hallmarks. We also discuss the potential applications of mROS-targeted nanoparticles that artificially 
manipulate ROS levels in the mitochondria to achieve precise delivery of antitumor drugs. 
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Introduction
Mitochondria, one of the first organelles discovered during endosymbiosis, is known as “the powerhouse of the cell”.1 

More than 98% of the oxygen is consumed to produce energy in the form of adenosine phosphate (ATP) by oxidative 
phosphorylation. In contrast, 1–2% of the electrons leak to oxygen to form reactive oxygen species (ROS).2,3 The major 
forms of ROS include free oxygen radicals, such as superoxide and hydroxyl radicals, and non-radical biomolecules, 
such as hydrogen peroxide.4 These different ROS can interconvert to maintain the redox balance in the cell. For example, 
superoxide anions are produced when electrons leak and react with oxygen in complexes I and III in mitochondria. 
Manganese superoxide dismutase (MnSOD), a mitochondrial superoxide scavenging enzyme, converts these superoxide 
anions into hydrogen peroxide, which is less reactive but can still cause oxidative stress if not managed.5 The role of 
mROS in cancer can be summarized in two aspects: First, increased mROS levels have been implicated in many tumor 
types by altering many biological mechanisms.6–9 Therefore, the novelty of our review is that we combined mROS 
alterations with related cancer hallmarks that explain the general process of neoplastic progression, as summarized by 
Hanahan and Weinberg, providing an approach to explore abnormal mROS levels with highly conserved principles in 
tumor progression.10 Second, alteration of mROS can also be used as a targeted therapy for cancer, either by an increase 
in ROS production in the mitochondria to induce cancer cell death or a reduction in mROS production to limit cancer cell 
proliferation.11 Significantly, the modulation of mROS can serve as a strategy to tackle multidrug resistance, a primary 
factor contributing to tumor relapse following conventional chemotherapy.12 For example, a mROS-targeted nanoparticle 
was evaluated for its antitumor efficacy in a multidrug-resistant ovarian cancer cell line. The generated ROS reduced the 
proton concentration gradient across the inner mitochondrial membrane, thereby inhibiting ATP-dependent efflux pumps 
in cancer cells. These pumps are a major reason why many antitumor drugs cannot be retained within cancer cells.13

In recent years, nanoparticles have emerged as a novel drug delivery system that utilizes 1–100 nm biomaterials to 
deliver therapeutic payloads into pathological tissues.14 Pioneer works have reported that targeting mitochondria shows 
great therapeutic potential to disrupt abnormal energy production,15 induces cellular apoptosis16 and overcomes drug 
resistance in tumorigenesis.17 In contrast to untargeted ROS inducer/suppressor, specifically modulation of ROS in 
mitochondria demonstrated improved antitumor activities and reduced side effects.18,19 However, guiding nanoparticles 
to reach mitochondria in clinical use still faces significant challenges compared to other emerging cancer therapies, such 
as immunotherapy and gene therapy. Recently, several nanoparticle formulations, including those based on gold, 
polymers, liposomes, and upconversion nanoparticles, have been developed to enhance mitochondrial targeting.20–23 

Also, functional modifications, such as mitochondrial-targeting peptides or ligands, enable nanoparticles to cross the 
mitochondrial membrane and accumulate specifically within the mitochondria.24 Nanoparticles can be engineered to 
target mitochondria with remarkable precision, delivering mROS-inducing agents to induce cell death through apoptosis, 
necroptosis, ferroptosis, pyroptosis, and cuproptosis or by disrupting antioxidant defenses specifically within the 
mitochondria of cancer cells. By harnessing the unique role of mROS in cancer biology, nanoparticle-based therapies 
hold promise for advancing cancer treatment, offering a novel and selective approach for tumor eradication. This review 
discusses the role of mROS in the normal cellular environment and the effect of mROS alterations in promoting cancer 
cell growth, genome instability, metabolic reprogramming, and cancer cell metastasis. In addition, we summarize mROS- 
targeted nanoparticles that induce cell death via five cell death mechanisms or deplete ROS generation in mitochondria 
via a series of “Mito” products, providing a promising future for targeted cancer therapies.

mROS Generation in Normal Homeostatic Environment
In normal physiological environments, ROS are produced from three major sources: membrane-associated NADPH 
oxidases (NOXs), peroxisomes, and the mitochondria.25 NOXs were first recognized by Iyer et al in 1961 as a source of 
ROS generation in phagocytes.26 ROS are directly generated by enzymes in phagocytes to kill microorganisms and are 
essential for protecting cells and preventing inflammation. Conventionally, ROS-mediated oxidant signaling activated 
NOXs.27–29 However, in the last two decades, many researchers have found that mitochondrial ROS also plays a role in 
many cellular processes, such as proliferation,9 stem cell generation,30 cellular plasticity,31 and cell cycle control.32
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Mitochondria produce ROS as byproducts of oxidative phosphorylation. As the final step of cellular respiration, the 
mitochondrial electron transport chain converts more than 90% of oxygen into water, which requires intricate interplay with 
the tricarboxylic acid (TCA) cycle.33,34 The TCA cycle generates a series of biomolecules including citric acid, succinyl-CoA 
succinate, fumarate, and oxaloacetate. It also produces building blocks that enter the ETC chain, such as nicotinamide adenine 
dinucleotide (NAD+) and flavin adenine dinucleotide (FAD). NAD+ and FAD are reduced into NADH and FADH2 by “giving 
up” electrons from complex I to complex IV. However, approximately 1–2% of the electrons leak out in the ETC chain, which 
transfers electrons to oxygen, thus creating a highly reactive oxygen radical superoxide (12). At the ultrastructural level, 
complex I (ubiquinone oxidoreductase) and complex II (Succinate dehydrogenase) in the ETC produce O2

·− in the mitochon-
drial matrix, whereas complex III (cytochrome c oxidoreductase) creates O2

·− in both the mitochondrial matrix and the 
intermembrane space (Figure 1).35,36 The exact site of ROS generation has not yet been determined, but the employment of 
specific site inhibitors has elucidated site IQ, which contributes to most ROS generation in mitochondria.37,38

These highly reactive oxygen species include oxygen free radicals such as superoxide (O2·−) and hydroxyl (OH), and 
non-free radicals such as hydrogen peroxide (H2O2). The transport of one electron to O2 produces O2·−, which has a 
relatively weak oxidant property.39 Additional electron donation converts O2

·− to H2O2 via MnSOD. H2O2 can also be 
converted to hydroxyl radicals with transition metals, such as Cu+ and Fe2+.

These free radicals play a central role in signaling cascades by acting as intermediates. The increase in mROS levels 
directly recapitulates the level of one cyclin-dependent kinase (CDK2), thereby promoting cell proliferation.25 mROS 
levels also correlate with cellular differentiation in hair follicle cells. Ablation of mitochondrial transcription factor A 
(TFAM) interrupts mROS generation, thus inhibiting downstream Notch/β-catenin–dependent transcription.40 ROS not 
only promote an analytical cycle of other biomolecules but also induce the ROS regenerative cycle in mitochondria, 
named ROS-Induced ROS Release (RIRR).41 Previously produced ROS triggered the induction of permeability transition 

Figure 1 Schematic representation of ROS generation in mitochondria. ROS generation has three major sources: mitochondria, NADPH oxidase, and peroxisome. In 
mitochondria, mROS is generated as a byproduct of the electron transport chain. Complex I and III in the electron transport chain generate superoxide from oxygen. 
Manganese superoxide dismutase converts superoxide and hydrogen peroxide, and glutathione converts hydrogen peroxide to water. Created in BioRender. Wang, X. (2025) 
https://BioRender.com/t14f418.
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pore (PTP) in mitochondria. Subsequently, PTP activation forms a positive feedback loop that results in an elevation in 
ROS levels in both the mitochondria and cytosol. In the latter condition, cytosolic ROS further activates ROS production 
in the neighboring mitochondria. This adaptive change is efficient in removing damaged cells and inducing apoptosis 
under pathological conditions.42 Apart from the functions discussed above, other roles of mROS in normal cellular 
environments have been summarized by Dunn et al.43

Production of mROS in Cancer Progression
The production of mROS is thought to play a pivotal role in cancer progression. Therefore, the molecular mechanisms 
underlying the appropriate control of mROS concentrations have been a focus of research. Increased mROS levels, 
accompanied by damaged antioxidant defense systems, enable tumors to acquire hallmark capabilities including genome 
instability, sustained cancer cell survival, metabolic reprogramming, and cancer metastasis (Figure 2). The following 
sections explain the relationship between mROS generation and these key regulatory processes.

mROS Generation and Genome Instability
Genome instability, including chromosomal instability (CIN), microsatellite instability (MSI), epigenetic-mediated 
instability, and instability of the DNA repair system, is recognized as one of the hallmarks of cancer in the next 
generation (Figure 2).44,45 With a series of gene mutations, tumorigenesis is a multistep progression that acquires 
successive ‘cancer driver mutations’ and finally develops into cancer cell lines.10

Figure 2 The role of mitochondrial ROS in cancer progression. From left to right: increased mROS generation could affect genome instability, maintain sustained cell survival, 
mediate metabolic reprogramming and keep tumor metastasis ability. Details are mentioned in each part. Created in BioRender. Wang, X. (2025) https://BioRender.com/1673kb1.
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High levels of mROS production in cancer cells promote mutations in the nuclear DNA, amplifying the genomic instability 
that drives cancer progression. For example, the P53 gene is the most well-known tumor suppressor gene that maintains 
stability in the human genome. Mutations in the P53 gene and expression of tumor protein 53 (TP53) have been observed in 
more than 50% of cancer types.46,47 Whole-genome sequencing of 48 ovarian cancer (OVCA) revealed a novel p53 mutation, 
the TP53I3 p.S252X variant (rs145078765, MAF = 0.0016), which may decrease ROS production and dampen mitophagy in 
apoptosis, thus affecting the efficacy of several cytotoxic agents that target mROS production to induce apoptosis of tumor 
cells (33). In contrast, P53 gene also affects mROS generation, which contributes to cancer cell proliferation, migration, and 
differentiation.48 The wide-type P53 gene maintains genomic instability of mitochondrial DNA by supporting DNA repair 
functions and interacting with mitochondrial polymerase γ to reduce mitochondrial DNA mutations. In P53+/+ cells, knockout 
of P53 by 100 nM and 500 nM rotenone reagent increased ONN levels to 150% and 210% of control levels, respectively, 
suggesting loss of P53 gene leads to increased mROS production and loss of mitochondrial respiration.49

Apart from control mutant genotypes in cancer, mROS also affects CIN by disrupting micronuclei integrity.50 CIN is 
the most common type of genomic instability, including changes in the number or structure of chromosomes.10,51,52 Mis- 
segregation of nuclear chromosomes forms micronuclei, which is a feature of CIN.53 Micronuclei are precarious 
structures with fragile nuclear envelope. Rupture of micronuclei exposes chromatin and induces complex chromatin 
rearrangement, named chromothripsis.54 A pan-cancer genome-wide association study identified 2,658 tumors from 38  
cancer types related to chromothripsis, with mutations such as oncogene activation, tumor suppressor science, and 
mismatch repair mutation.55 Recently, Martin et al discovered that mROS plays a crucial role in promoting micronuclei 
collapse, thus pointing to mitochondrial oxidative damage and genome instability (Figure 3).50

Figure 3 Molecular mechanisms of mROS drive micronuclei and chromosome instability. (A) CIN refers to an increased rate of changes in chromosome structure or 
number within cancer cells. The formation and collapse of micronuclei is a highly conserved activity of CIN. (B) Normal micronuclear envelope integrity is maintained by 
coordination between ESCRT-III complex (endosomal sorting complex required for transport III), CHMP7 (ESCRT-II/ESCRT-III hybrid protein Cmp7p) and LEMD2 (LEM 
(Lap2-Emerin-Man1) Domain Nuclear Envelope Protein 2). Created in BioRender. Wang, X. (2025) https://BioRender.com/l1hwbvr.
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ESCRT-III plays a role in microautophagy, a process where lysosomes directly engulf parts of the cytosol without the 
need for an autophagosome, which are responsible for the delivery of damaged cellular material. Mitochondria ROS 
disrupt micronuclei integrity by inducing oligomerization of CHMP7, aberrant binding of CHMP7 to LEMD2, and 
autophagy-related protein P62 aggregation.

The presence of mitochondria and micronuclei showed significant colocalization. Subsequently, micronuclei close to 
the mitochondria had a higher rupture rate. It was found that mROS interferes with the regular activity of the ESCRT-III 
complex and the autophagy-related protein p62, which are essential for maintaining micronuclei integrity.56 Most tumor 
cells accumulate more mROS under hypoxic conditions. Therefore, this study also tested the link between hypoxia and 
micronuclei catastrophe. Over 10% enhanced micronuclei collapse was observed after HeLa cells were cultured in a 
hypoxic environment. Typically, the tumor core is the most hypoxic in the tumor microenvironment, with insufficient 
oxygen supply.57 This study tested micronuclei rupture in tumor cores in human high-grade serous ovarian cancer 
(HGSOC) and human papillomavirus-induced (HPV+) head and neck squamous cell carcinoma (HNSCC) and found 
higher micronuclei rupture, supporting this notion in many cancer types.

mROS and Sustained Cell Survival
Self-sufficiency of cell growth factors is a fundamental hallmark of cancer progression (Figure 2). Although mROS 
production is primarily recognized as detrimental to cell survival, elevation of ROS generation also has a mitogenic effect 
on cancer cells.58 Immortalized murine embryonic fibroblasts (MEFs) demonstrate a decreased cell proliferation rate 
after treatment with mitochondria-targeted antioxidants, suggesting the role of mROS in promoting cell growth. This 
effect is mediated by ERK-MAPK signaling, consistent with previous studies showing that the activation of ERK-MAPK 
promotes carcinoma development.59 Mitochondrial nitric oxide (MCP and MCTPO) can abolish mROS by acting as a 
superoxide dismutase mimetic and scavenger. Phosphorylation of ERK isoforms 1 and 2 was enhanced after treatment 
with mitochondria-targeted MCP and MCTPO.60 Therefore, mROS dampens ERK-MAPK phosphorylation and increases 
the mitogenic ability of tumor cells.

Similarly, mROS drives hepatocellular carcinoma (HCC) growth and metastasis. This promoting effect is mediated by 
the activation of transcription elongation factor of mitochondria (TEFM), a nucleus-encoded transcription factor for 
mitochondrial elongation.61 More than 83% of HCCs were observed with TEFM overexpression, leading to lower overall 
survival (OS) and recurrence-free survival (RFS) in patients with higher TEFM.62 Analysis of mROS levels in both 
TEFM-overexpressing and TEFM-knockdown HCC cell lines revealed that mROS levels were positively associated with 
tumor cell proliferation in HCC cell lines. Furthermore, treatment with ROS scavengers significantly reduced ERK 
signaling in HCC cell lines. Collectively, these results suggest that the mROS/ERK signaling pathway promotes HCC 
cell growth and metastasis.63

In addition to activating proliferation signaling cascades, mROS promote cancer cell survival via mitochondria 
transfer.9 Mitochondria transfer is a preventive strategy in cancer cells to receive “mitochondria donation” from the 
tumor microenvironment, allowing cancer cells to restore oxidative phosphorylation to generate ATP.64 For example, 
bone marrow stromal cells (BMSC) transport mitochondria to acute myeloid leukemia (AML) cells to improve AML cell 
survival.65 Several cellular structures are linked to the donor and recipient cells, such as extracellular vesicles,66 

tunneling nanotubes (TNTs),67 and gap junctions.68

Intriguingly, some transferred mitochondria are dysfunctional with high levels of mROS production 9. These 
dysfunctional mitochondria accumulate high amounts of mROS and significantly increase the proliferation of tumor 
cells. Subsequent analysis revealed that mROS accumulation leads to downstream ERK signaling, suggesting activation 
of downstream proliferation signaling in an mROS-ERK-mediated manner.69 Cancer-associated fibroblasts (CAFs) in the 
tumor microenvironment are essential for cancer cell survival. In lung cancer, primary tumor cells transfer damaged 
mitochondria to normal fibroblasts (NFs) via extracellular vesicles. The presence of damaged mitochondria triggers the 
production of mROS in NFs, driving the transformation of NFs into CAFs.66 Other roles of mROS in transferred 
mitochondria are summarized in Table 1.

However, most studies of mROS signaling focus on its apoptotic effects in mediating cancer cell death, but there is a 
lack of studies to demonstrate the role of mROS in cancer cell survival.7,72–75 In contrast, the mitogenic effect mediated 
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by mROS has been reported in normal cell proliferation, with its activity activating cyclin family members. For example, 
mROS prompts cardiomyocyte proliferation in mice by controlling the downstream phosphorylation of Akt, GSK-3β, β- 
catenin, and cyclin, thus activating cell proliferation signaling cascades.76 mROS can be recruited to neural precursor 
cells (NPCs) for lineage specification and activate downstream signaling for proliferation in cells with higher ROS levels, 
such as cyclin E1 (CCNE1), cyclin A2 (CCNA2), and CDK2. In particular, mROS targets cell cycle progression during 
proliferation and is coupled with CDK2.25,77 These findings collectively indicate that mROS may play a role in mediating 
ordinary cell multiplication through various signaling cascades. However, different tumor cells in distinct tumor types 
have dramatically different mitochondrial ROS levels, leading to diverse oxidative stress responses. For example, some 
cancer subpopulations exhibit proliferative ability with lower mitochondrial ROS levels. Compared to other tumorigenic 
progeny, maintaining low ROS levels is essential for self-renewal in cancer stem cells in cancer types such as 
glioblastoma and breast cancer cells.78,79 Therefore, whether mROS production promotes cancer cell division or how 
to determine the level of mROS that mediates cell death and cell survival is a question to be addressed in future studies.

mROS and Metabolic Reprogramming
Cancer cells are characterized by uncontrolled proliferation that requires large amounts of oxygen and nutrients to adapt to 
rapid cell division. Therefore, redox systems forficate homeostatic systems to counteract the metabolic effects of oncogene 
activation, tumor suppressor gene loss, and other stressors, known as metabolic reprogramming.10 The Warburg effect is a 
classic example of a reprogrammed metabolic pathway in cancer, in which cancer cells transform glucose to lactate 
regardless of oxygen availability.80 The consequent low oxygen supply, also known as hypoxia, is one of the hallmarks of 
solid tumors and tumor metastasis in the tumor microenvironment (Figure 2).81,82 The Warburg effect is often promoted 
under low-oxygen conditions (hypoxia) and regulated by factors such as hypoxia-inducible factors (HIFs).83

Chronic hypoxia has also been reported to increase mROS generation in the electron transport chain.84 Specifically, 
mROS stabilizes the transcriptional activity of HIF-1α. HIFs are formed by two subunits, oxygen-regulated HIF-1α and 
constitutively active HIF-β. The coordination of HIF-1α and HIF-β acts as a complex to control the transcription of many 
enzymes, including those involved in cell metabolism.85 Under normoxic conditions, HIF-1 levels are strictly controlled 
by the degradation of the HIF-1α subunit. Hydroxylation of proline 462 and proline 564 of HIF-1α by the enzyme prolyl 
hydroxylase (PHD) leads to the formation of a covalent bond between HIF-1α and von Hippel-Lindau tumor suppressor 
protein (pVHL), thus resulting in the proteolytic degradation of HIF-1α.86,87 As HIF-1α is constitutively degraded in the 
cytosol, HIF cannot translocate to the nucleus and induce a downstream transcriptional response. However, the 

Table 1 Mitochondria Transfer in Tumorigenesis and the Roles of mROS in Mitochondria Transfer

Cancer Types Recipient Cell Types Mechanism of 
Mitochondria Transfer

Function of mROS Mitochondria 
Donor

Reference

Lung cancer 95C and 95D cells EVs packed miRNAs  
(miR-1290) into high 
metastatic potential lung 
cancer cells

mROS production enhance mtDNA 
transportation

Cancer- 
associated 
fibroblasts

[66]

Colon cancer human CC cell lines 
SW480, HCT116, RKO, 
HT29, and SW620

EVs transported complete 
circular mtDNA into CC 
cells

mROS activates the NF-κB signaling, 
promoting protein synthesis and 
tumor progression

Normal colonic 
epithelial cell 
(CEC)

[70]

Osteosarcoma K7m2 osteosarcoma 
cells 

Unknown mROS contribute to 
osteosarcoma metastasis and 
invasiveness

Platelet [71]

T cell acute lymphoblastic 
leukemia (T-ALL)

Bone marrow 
mesenchymal stem cells 
(MSCs)

Tunneling nanotubes 
transfer to abolish 
chemotherapy resistant 
cells

mROS protect T-ALL cells from 
chemotherapy through activation of 
ERK signaling

Jurkat cells 
(Human T-ALL 
cell line)

[68]

Multiple cancer types 
(malignant melanoma, breast 
cancer, human leukemia)

MDA-MB-231 cells, 
MDA-MB-468 cells, 
A375 cells

Unknown mROS activate ERK to promote 
cancer cell survival

Macrophage [9]
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accumulation of oncometabolites, including mROS, nitric oxide, and succinate, can inhibit the catalytic activity of PHD 
in hypoxic tumor microenvironments. Therefore, it enables accumulation of the HIF-1α subunit and HIF complex 
formation.88 The stabilization of HIF-1α and HIF-β isoforms has been reported in many cancer types, including gastric 
cancer,89 lung cancer90 and melanoma.91 Notably, the combination of HIF-1α and HIF-β regulates hypoxia at the 
transcriptional level by binding to the hypoxia response element (HRE) in the cancer cell nucleus and activating genes 
involved in glycolysis to support cancer cell survival in oxygen-poor environments92 (Figure 4).

Figure 4 Cellular responses to oxygen levels, comparing conditions of normoxia (normal oxygen levels) and hypoxia (low oxygen levels). In normoxia, abundant oxygen 
allows the enzyme PHD to hydroxylate HIF-α. The hydroxylated HIF-α is recognized by pVHL, which binds to it and targets it for degradation. Without HIF-α, there is no 
binding to HIF-β and no activation of HRE, preventing the transcription of HIF-targeted genes. Hypoxia can lead to increased production of mROS. As a result, HIF-α is not 
marked for degradation. HIF-α accumulates and binds to HIF-β, forming a complex. This HIF-α/HIF-β complex binds to HRE on DNA, initiating the transcription of HIF- 
targeted genes. Created in BioRender. Wang, X. (2025) https://BioRender.com/8v6165z.

https://doi.org/10.2147/IJN.S510972                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 6092

Wang and Xiong                                                                                                                                                                    

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/8v6165z


Furthermore, many studies have identified multiple upstream signaling of mROS/ HIF-1α in different tumor micro-
environments. In murine lung cancer carcinoma, downregulation of the tumor suppressor genes PDZ and LIM domain 2 
(PDLIM2) constitutively activates succinate dehydrogenase (SDH) in the mitochondrial respiratory chain. This enables 
mitochondrial dysfunction, including accumulation of mROS and succinate. Additionally, mROS accumulation stabilizes 
HIF-1α, facilitating the translocation of HIF into the nucleus.93 In 5-fluorouracil (5-FU)-resistant colorectal cancer cells, 
damaged mitochondria induce metabolic reprogramming by shifting oxidative phosphorylation to alternative aerobic 
glycolysis, thereby increasing mROS generation and lactate metabolism. mROS further upregulates HIF-1α, driving 
further changes in glycolytic enzymes.94 OMA1 is an ATP-independent zinc metalloprotease that cleaves ubiquinol- 
cytochrome c reductase complex assembly factor 3 (UQCC3) in the mitochondrial complex III. OMA1 is downregulated 
in hypoxic hepatocellular carcinoma, thereby increasing UQCC3 expression in cancer cells. In turn, UQCC3 forms a 
positive feedback loop with mROS to initiate hypoxic signaling with stabilization of HIF-1α and high glucose uptake in 
cancer cells.95

While interactions between HIF-1α and mROS help cancer progression, the overproduction of mROS leads to cell 
apoptosis. Under these conditions, HIF-1α acts as a negative feedback regulator of the mROS levels. This property has 
been exploited in antitumor therapies. Cardamonin is an antitumor drug used to treat Triple-negative breast cancer 
(TNBC). Cardamonin treatment reduced the production of HIF-1α, thus enhancing mROS production and inducing 
apoptosis in triple-negative breast cancer cell lines.96

mROS and Cancer Metastasis/Invasion
Metastasis is the seeding of tumor cells away from primary sites to other parts of the body, and is the primary cause of 
mortality in more than 90% of cancer patients (Figure 2).97 The interaction between cancer cells and mROS in the tumor 
microenvironment allows the cancer cells to precede the dissemination process. Epithelial-mesenchymal transition 
(EMT) is the initial stage of cancer metastasis, in which epithelial cells at the primary tumor site acquire motility and 
transform into a mesenchymal phenotype. Complex I in the respiratory chain is one of the main sites for mitochondrial 
ROS production. Complex I was downregulated in CMS4 human colorectal cell lines compared with that in CMS1 
human colorectal cell lines. Clinically, CMS4 subtypes have poor prognosis and prominent EMT activation. However, the 
contribution of the signaling pathways between the two CMS subtypes remains unclear. It has been reported that CMS4 
cell lines have significantly higher expression of ROS than CMS1 cell lines, while the expression of the mROS- 
scavenging enzyme SOD2 was much lower than that in CMS1 cells. We assessed the correlation between mROS 
expression and EMT. Surprisingly, both inhibition and activation of mROS production can inhibit CMS4 CRC cell 
migration, indicating that CMS4 cells finely orchestrate mROS levels to a favorable level that facilitates tumor 
migration.98

Mechanistically, EMT involves reconstruction of the cytoskeleton, and epithelial tissues contain basement membranes 
that communicate with the extracellular matrix (ECM).99 Cancer cells must break the link between the basement 
membrane and ECM to evade the primary site. Matrix metalloproteinases (MMPs) been implicated in tumor progression 
and metastasis. Breaking down ECM barriers enables cancer cells to invade nearby tissues and to spread to distant 
organs.100 A TGFβ-derived protein, HIC-5, has been implicated in EMT and invadopodia formation during breast cancer 
metastasis. When HIC-5 -/- MDA-MB-231 breast cancer cells were implanted into mice, HIC-silenced cells formed more 
lung metastasis nexus than the control groups. HIC-5 expression is sensitive to redox changes in mROS.100,101 When 
breast cancer cells were treated with mitochondria-targeted antioxidants to abolish mROS generation, the enhancement of 
MMP9 expression was diminished. Altogether, these results indicate that HIC-5 controls EMT through the mROS- 
mediated modulation of MMP9. Other MMPs also induce mesenchymal changes in breast cancer; for example, MMP-3 
triggers EMT via the activation of the Rho GTPase family, Rac1b. In mouse mammary epithelial cells, either expression 
of Rac1b or treatment with excessive MMP-3 enhances ROS production in mitochondria.102

Depletion of mROS by Antioxidant Systems
Antioxidants are chemical compounds that protect cells from ROS-induced damage. In both normal and cancer cells, the 
mitochondria maintain a dynamic redox balance between ROS generation and ROS depletion by antioxidants. The 
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antioxidative defense system for mROS involves both endogenous antioxidants, naturally synthesized in the body to 
protect mitochondrial function, and exogenous antioxidants, obtained through diet and supplements, to support mito-
chondrial antioxidant defenses.103,104

Endogenous Antioxidant
Manganese Superoxide Dismutase (SOD2)
As the most well-known ROS scavenger, Superoxide Dismutases exerts its effects by converting O2

•− to H2O2 and O2. 
There are three types of SOD distributed in cells: SOD1/ Cu–Zn-SOD that localizes in the cytosol, SOD2/ Mn-SOD 
present specifically in the mitochondria, and SOD3/ EC-SOD as an extracellular enzyme.105 Evidence has suggested that 
increased oxidative stress due to lower SOD2 levels can trigger signaling pathways (such as NF-κB and HIF-1) that 
promote cancer cell growth; therefore, many cancers such as lung cancer, colorectal cancer, esophageal cancer, and 
leukemia cells have low or undetectable SOD2 levels.106

While low levels of SOD2 enhance mROS generation at a sublethal high level, high levels of SOD2 play a role in 
suppressing cancer progression.107 High CD44 expression is a marker of cancer stem cells (CSC) in head and oral 
cancers. The EMT process, which transforms the CD44L epithelial phenotype to the CD44H mesenchymal phenotype, is 
related to the upregulation of SOD2. Additionally, the knockdown of SOD2 altered the distribution of CD44H 
mesenchymal cells in the cell culture media of CD44H and CD44L cells. SOD2 knockdown also decreased EMT 
efficiency in CD44L cells compared to that in the control groups with regular SOD2 expression.

Further analysis of mROS expression in the whole CSC culture found that mROS reached the highest level in cell 
subpopulation with mediate CD44 expression between CD44L and CD44H cells, which was suspected as ‘transition 
cells’ in response to SOD2 changes.108 According on the transformation of cancer cells in response to SOD2 change, the 
role of SOD2 in cellular motility was further investigated. In ovarian cancer cells, tumor invasion is accompanied by 
spheroid formation with cytoskeletal anchorage. SOD-2 knockdown in ES-2 cells (ovarian cancer cell line) reduced 
spheroid body size. H2O2 levels increased by 50% in SOD2 knockdown groups compared to control groups, while cancer 
cell migration was significantly slowed, indicating the role of SOD2 in abrogating mitochondrial H2O2 to control tumor 
invasion.109 Reduced SOD2 levels are accompanied by low levels of anchorage-independent spheroid outgrowth in 
ovarian cancer cells, potentially by shifting steady-state H2O2 levels in the mitochondria.109 Another study further 
elucidated the mechanism between SOD2 increase and anchorage independence during metastasis: SOD2-dependent 
H2O2, production triggers the expression of MMP family members MMP2 and MMP9, and EMT-related proteins such as 
E-cadherin in lung adenocarcinoma, all of which are related to tumor progression and migration.110

Peroxiredoxin III (PRDX III)
Peroxiredoxins (PRDXs) are another kind of antioxidants that facilitate the conversion of H2O2 to H2O, and hydroper-
oxides to alcohols. There are six isoforms of PRDXs characterized by their distribution in subcellular structures: PRDX 
V distributed throughout the cell; PRDX I, II, and VI in the cytoplasm; PRDX IV in the ER; and PRDX functions 
explicitly in mitochondria. PRDX and its mitochondrial electron donors, Trx and Trx reductase (TrxR), could serve as 
critical defense mechanisms against H2O2 generated by the mitochondrial respiratory chain. In the presence of H2O2, 
PRDX catalyzes the conversion of a peroxidative cysteine to a sulfenic acid (–SOH) intermediate. Another cysteine 
residue in the adjacent site forms a disulfide bond with oxidized cysteine. In a typical physiological environment, PRDX 
is reactivated by Thioredoxin 2 (TRX2) to exert its antioxidant function.111 Overexpression of PRDX III in the cytosol 
has been observed in many carcinomas, including breast,112 gastric,113 and lung cancer.111 In contrast, the production of 
mitochondrial oxidants (90% H2O2) was significantly reduced in human malignant mesothelioma cells (HM) after PRDX 
III knockout, indicating a therapeutic option for inhibiting PRDX III function to induce cancer cell death.

Glutathione Peroxidase 1 (GPX1)
Glutathione peroxidase 1 (GPx1) are a selenoprotein ubiquitously expressed in the cytoplasm and mitochondria, 
converting H2O2 and other lipid hydroperoxides into nontoxic products.114 GPx1 plays a complex role in cancer because 
of its dual effects on oxidative stress and cell survival. Elevated GPx1 levels have been observed in certain cancers, 
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where it enables cells to avoid apoptosis (programmed cell death) by reducing ROS, allowing cancer cells to proliferate 
even under stressful conditions (see115 for review). Mechanistically, Gpx1 interacts with tumor necrosis factor receptor- 
associated factors (TRAF2 and TRAF6) to interfere with their binding to apoptosis signal-regulating kinase 1 (ASK1).116 

Under normal conditions, ASK1 remains inactive and binds to redox-active thioredoxin 1. However, ROS generation can 
dissociate ASK1 and induce subsequent apoptosis.117 GPx1 maintains cellular redox homeostasis by controlling ROS, 
which suppresses the activation of ROS-mediated apoptotic pathways.

Exogenous Antioxidant
Exogenous antioxidants are compounds obtained from external sources, such as diet or supplements, which help neutralize 
free radicals and reduce oxidative stress in the body. Unlike endogenous antioxidants, which are naturally produced within 
cells, exogenous antioxidants are ingested and distributed to various tissues to maintain cellular health and protect against 
damage from mROS. Vitamin C (Ascorbic Acid) is a water-soluble antioxidant that neutralizes free radicals in the aqueous 
environment of cells and the blood. Vitamin C functions as an antioxidant at low levels but becomes a pro-oxidant at higher 
concentrations, which increases the complexity of its use to inhibit tumor growth.118 One study tested the effect of antioxidant 
supplementation (β-carotene, vitamin C, and vitamin E) on skin cancer risk in a large cohort of French adults and found that 
women in the antioxidant group had a higher incidence of skin cancer, with a hazard ratio of 1.68 (95% confidence interval: 
1.02–2.77), indicating a 68% increased risk of developing skin cancer among women taking antioxidants.119 Another type of 
antioxidant is mineral antioxidant, which contributes to an exogenous antioxidant defense system by acting as a cofactor for 
antioxidant enzymes or stabilizing cell structures to prevent oxidative damage. Some minerals, such as selenium, copper, and 
manganese, are cofactors for endogenous antioxidants that reduce hydrogen peroxide and organic hydroperoxides, thus 
protecting cells from oxidative stress.120–122 Cerium, particularly in the form of cerium oxide (CeO2), is known for its 
antioxidant properties. Cerium ions (Ce3+ and Ce4+) can alternate between oxidation states, continuously neutralize ROS, and 
regenerate active sites, thereby making them a potential application in treating diseases with higher than normal ROS levels, 
such as cancer, ischemia-reperfusion injury (IRI), and neurodegenerative diseases.123–125

The Design of Nanoparticle Carriers to Target ROS in Mitochondria
Selectively targeting mitochondria and altering their redox signaling during the generation of mROS is one of the most 
effective pathways for delivering drugs to mitochondria. Due to the negative potential in the inner membrane of 
mitochondria, the mitochondrial uptake of drugs covalently linked to positive anions is high. Three major types of 
biomolecules have been used to assemble encapsulated nanoparticles targeting mROS (Figure 5).

First, artificial mito-targeted nanoparticles utilize synthetic molecules to precisely manipulate drug design. However, 
these drugs are at risk of immune clearance and have the lowest biocompatibility. Secondly, biological mito-targeted 
nanoparticles directly use cell membranes derived from red blood cells, platelets, or cancer cells to evade immune 
recognition. These drugs possess the highest biocompatibility but lack the ability to target mitochondria precisely. Third, 
hybrid metal-organic nanoparticles that contain metal ions and multiple organic linkers, for example, a series of 
developments in Metal-organic frameworks, provide a novel strategy for targeting mROS for antitumor therapy.

Artificial Nanoparticle
Mitochondria-targeted Triphenylphosphonium (TPP) is the most commonly used artificial nanoparticle carrier. The 
accumulation of drugs depends on the structure of the mitochondria, which are the only animal organelles that contain 
both inner and outer membranes. In oxidative phosphorylation reactions, the transportation of electrons drives the 
accumulation of protons in the mitochondrial matrix, thus producing a positively charged matrix and negatively charged 
inner membrane.126 As a lipophilic cation, TPP can localize to the mitochondria in two stages. First, TPP passes through 
a negatively charged (30mv-50mv) inner cell membrane to enter the cytoplasm; second, a stronger mitochondrial 
membrane potential of 150–180 mV (negatively charged inner membrane) pulls them into the mitochondria, completing 
the second enrichment phase. TPP uptake concentration depends on the Nernst equation:
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At standard temperatures (298 K or 25°C), the concentrations of TPP inside and outside the membrane were 
determined by the potential on the membrane. According to the inner cell and inner mitochondrial membranes, TPP 
concentration increases by 3~5 folds in the cytoplasm and 100~1000 in the mitochondria, making TPP an ideal 
compound to target mitochondria.127

Biological Nanoparticle
Nanoparticles must camouflage themselves to prevent phagocytosis by the immune system. Recent studies have utilized 
biomimetic membranes, including cancer cells, red blood cells, and platelet membranes, for immune evasion.128,129

As the most abundant cell type in circulation, erythrocytes have become ideal drug carriers. Moreover, membrane 
proteins on red blood cells (RBCs) such as CD47, membrane cofactor protein, and C8 binding protein (C8bp) release 
“don’t eat me” signals to phagocytic cells, thus preventing the decomposition of drugs.130 Huang et al designed RBC- 
coated nanoparticle with the chemotherapeutic agent doxorubicin (Dox), which was linked to the RBC membrane 
through glutaraldehyde (Glu), to treat uterine sarcoma, named Dox-gluRDV. Because the RBC-encapsulated membrane 
does not have specificity, this study used an indirect pathway to induce mROS release through the lysosomal-mitochon-
drial axis.131 In multidrug-resistant human uterine sarcoma cells, Dox-gluRDVs exhibited a half-maximal inhibitory 
concentration (ICso) of approximately 0.5 µM. In contrast, free Dox had an ICso exceeding 10 µM, indicating a 
significantly enhanced cytotoxicity effect of targeted therapy. While previous studies have found that calcium release 
from lysosomes can stimulate mROS production, the treatment also increased the intracellular calcium concentration 
released from lysosomes to mitochondria.

Moreover, Inhibition of key enzymes in the mitochondrial ETC chain, such as 2-oxoglutarate dehydrogenase 
(OGDH), significantly decreased the cytotoxic effect of Dox, indicating that Dox induces cytotoxicity via mROS 
production.131 The same strategy used in another study achieved a similar apoptotic effect of Dox-gluRDVin in three 

Figure 5 Nanoparticles can be classified into three main types: artificial, biomimetic, and hybrid mito-targeted nanoparticles. Artificial nanoparticles are synthetically 
engineered particles, designed for specific functions, often using materials like metals, polymers, or silica. Biomimetic nanoparticles are inspired by biological structures and 
aim to mimic natural properties, such as cell membranes, to improve biocompatibility and targeting. Hybrid nanoparticles combine elements of both artificial and biomimetic 
particles, integrating synthetic materials with biological components, to enhance functionality and versatility in applications like drug delivery, diagnostics, and imaging. Created 
in BioRender. Wang, X. (2025) https://BioRender.com/f1f98qo.
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other cancer cell lines via mROS production. Critical regulators of cellular apoptotic processes, such as ERK 1/2 and 
caspase 3, are activated, whereas in free Dox treatment, activation of these molecules is weaker.132 The lipophilic 
property of RBC membranes of another nanoparticle, Cy5-labeled Ang-MNPs@(Reg/Cy5), also facilitates drug delivery 
across the blood-brain barrier (BBB) in some brain tumors, such as glioblastoma. After 24 hours of Cy5-labeled Ang- 
MNPs@(Reg/Cy5), these targeted nanoparticles achieved a cumulative transport ratio of 20.4%, which was 1.6x higher 
than that of non-targeted drugs.133

Platelets are another important component of the circulation that can be used to design mROS-targeted nanoparticles. 
Mai et al developed platelet membrane-packed multifunctional nanoparticle for breast cancer treatment. The study 
effectively killed tumor cells using two methods: IR780, as a photodynamic agent, produces a toxic level of ROS to kill 
the cells. Meanwhile, the introduction of metformin (Met) reduces the function of the mitochondrial respiration chain, 
subsequently leading to a hypoxic TME and mROS generation.134

The cancer cell membrane is another source of nanoparticle that ensures efficient endocytosis and ROS accumulation. 
B16F10@CaCO3–CU@MnO2 was formed by dual ions of Mn2+ and Ca2+ bound to the B16F10 cancer cell membrane. As 
mentioned above, an intracellular increase in Ca2+ stimulates the mitochondria to generate more ROS and execute 
immunogenic cell death, which results in about 60% cancer cell death at 50 μg/mL CM NP concentration. Similarly, 
Mn2+ promotes hypoxia in the TME, further inducing mROS generation and cancer cell death.135

Apart from the use of natural membranes derived from cells, recent studies have combined cellular membranes with 
subcellular organelle membranes to achieve higher accuracy in targeting specific organelles such as the ER and 
mitochondria. Gboxin is an oxidative phosphorylation inhibitor that disrupts mitochondrial function by compromising 
oxygen consumption and inhibiting ATP synthase activity, leading to reduced energy production in GBM cells. 
Moreover, the mechanism of Gboxin involves targeting of the mitochondrial ETC, which is linked to the production 
of ROS as a byproduct of ATP production. Mitochondrial PTP can mitigate mROS, suggesting that the effects of Gboxin 
may also influence mROS levels in GBM cells. Gboxin increases mROS production by disrupting mitochondrial 
function, contributing to its cytotoxic effects on cancer cells.136 However, it has a half-life of less than 5 min and 
poor BBB penetration. Recently, a study adopted a ‘Trojan horse strategy’ to pack Gboxin in nanoparticle camouflaged 
by both cancer cells and mitochondrial membranes.22 By fusing cancer cells and mitochondrial membranes, Gboxin 
(HM-NPs@G) can target both cancer cells and mitochondria in cancer cells. Moreover, the drug core included one ROS- 
responsive drug, PEG-PHB, which releases Gboxin from nanoparticles in the presence of high levels of ROS (86.6% at 
1 mM H2O2, 50.2% at 0.1 mM H2O2 after 24h incubation), leading to the collapse of ETC and cell apoptosis.

The drug complex Ca@GOx is another nanoparticle that integrates cancer cells and mitochondrial membranes to 
deliver drugs that are composed of calcium phosphate and glucose oxidase. The target of mROS is achieved by 
incorporating agents that induce calcium overload in the mitochondria, which increases mROS through the fine 
regulation of ETC enzymes.137 Upregulation of Ca2+ in the mitochondria can be achieved in nanoparticles with other 
chemotherapeutic agents to exert a synergistic effect in generating mROS and mitochondrial dysfunction. The nanoplat-
form generates ROS through a Fenton reaction by tannic acid (TA) in the acidic environment of the tumor, which disrupts 
mitochondrial calcium buffering capacity. Subsequently, near-infrared (NIR) irradiation facilitates the formation of the 
IP3R-Grp75-VDAC1 channel to transport Ca2+ from the ER directly into the mitochondria. This synergistic effect 
further enhances mitochondrial dysfunction and mROS release during cell death.138

Hybrid Nanoparticle
Biological ions such as Mn2+, Ca2+, Cu+, and Fe2+ play key roles in normal physiological environments.139 Ion 
overloading may be an effective treatment option for inducing cell death in the tumor environment. Metal-organic 
frameworks (MOFs) are designed with metal ions or clusters connected by organic ligands, which can lead to 
mitochondrial damage, mROS production, and cell death. FMUP nanoagents comprise a core MOF shell and upconver-
sion nanoparticles (UCNPs).140 The shell is created using a metal ion called Fe3+ (iron), which connects with other 
molecules called carboxyl groups from substances like BTC (1,3,5-benzenetricarboxylic acid) and folic acid. Folic acid 
helps nanoagents target cancer cells more effectively. When the FMUP nanoagents are exposed to NIR light of 808nm, 
they release H+, which makes the TME more acidic in releasing excess Ca2+ in the mitochondria, and Fe3+ helps 
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generate large amounts of ROS in the proximity of the mitochondria. This dual effect of Fe3+ and Ca2+ reinforces 
mROS production and cell death in HeLa cells. Under 808 nm laser irradiation, UCMT-treated cells exhibited a marked 
reduction in viability, dropping to 27.0%, 1.9 times lower than the viability observed in UCM-treated cells. Another 
MOF compound, UCMTs, is a stepwise nanoplatform that triggers the production of mROS. Nanoparticle combine with 
TPP, which is used to target mitochondria, and lanthanide-doped upconversion nanoparticles (UCNPs), which can 
activate ROS generation in mitochondria with NIR light. In mouse breast cancer cells, UCMTs demonstrated significant 
reactive oxygen species (ROS) in the mitochondria upon 808 nm NIR laser irradiation.20 However, most of these 
nanoparticles are still in progress based on preclinical trials, and some have shown conflicting results in animal models, 
warranting further investigation of their efficacy in tumors.

mROS-Targeted Therapy with Nanoparticles in Cancer Therapy
Previous studies have summarized mROS as a ‘double-edged sword’ for cancer cell survival and apoptosis. While we 
have summarized above that a moderate increase in mROS is beneficial to tumor progression, the artificial elevation of 
mROS levels to kill cancer cells or inhibition of mROS generation to inhibit tumor growth are both current therapeutic 
approaches in the targeted therapy of mROS. The advent of nanoparticles has enabled selective production of ROS in 
mitochondria, contributing to precision-targeted therapy in cancer treatment (Figure 6).

Nanoparticles to Increase ROS Production in Mitochondria
Many nanoparticles are designed to increase mROS levels inside cancer cells, which can lead to oxidative stress, DNA 
damage, and ultimately, cell death (Figure 7).

Increased mROS to Enhance Apoptosis
Apoptosis is a type of programmed cell death that occurs in both normal and cancerous cells (Figure 7A). Apoptosis is 
initiated by two main pathways: (1) the extrinsic pathway (also known as the death receptor pathway), which relies on 
the interaction between proapoptotic death receptors in the cell membrane, such as Fas, TNFR1, TNFR2, and TRAIL 

Figure 6 Schematic representation of mROS-targeted nanoparticles as therapeutic strategies in cancer. The figure is divided into two panels: mROS enhancing nanoparticles 
(left) and mROS scavenging nanoparticles (right). mROS-enhancing nanoparticles induce oxidative stress, leading to various regulated cell death pathways including apoptosis, 
necroptosis, ferroptosis, pyroptosis, and cuproptosis. mROS-scavenging nanoparticles, such as triphenylphosphonium-based core-shell nanoparticles loaded with agents like 
Mito-E, Mito-Q, and cerium oxide, scavenge excess mROS to inhibit tumor growth via anti-angiogenesis, anti-proliferation, and anti-hypoxia effects. Created in BioRender. 
Wang, X. (2025) https://BioRender.com/14ki86j.
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Figure 7 Continued.
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receptors, and their ligands FasL, TNF, and TRAIL, to form a death-inducing signaling complex (DISC).141 (2) the 
intrinsic pathway (also known as the mitochondrial pathway), which includes mitochondrial participation, and 
Proapoptotic Bcl-2 proteins (Bax and Bak) are central regulators of intrinsic apoptosis and act as anti-apoptotic protein, 
helping cells to avoid undergoing apoptosis in response to various stress signals. Upon cellular stress stimulation, a 
process controlled by the Bax and Bak family proteins generates mitochondria outer membrane permeabilization 
(MOMP). This conformational change in the mitochondria allows the release of proapoptotic factors (cytochrome c) 
from the inner membrane of the mitochondria into the cytosol. Subsequently, cytochrome c forms a complex called the 
apoptosome with apoptotic peptidase activator 1 (APAF1), recruiting caspase 9 as an initiator for mitochondria-directed 
apoptosis.142,143 Caspases are initially generated as inactive enzyme precursors, known as procaspases, which require 
dimerization or oligomerization to become active. During activation, the protease effector domains of these procaspases 
are split into large and small subunits, which combine to form complexes that perform enzymatic functions.144,145

Chemotherapeutic agents are frequently used in cancer therapy to induce apoptosis by directly damaging the DNA or 
inhibiting cell division. Agents, such as alkylating agents, topoisomerase inhibitors, and antimetabolites, cause DNA 
damage and activate intrinsic apoptotic pathways. Drugs such as paclitaxel and vincristine inhibit mitosis to apoptosis via 
mitotic checkpoint failure.146–148 However, apoptosis induced by chemotherapy is often a byproduct of stress or damage 
to cancer cells rather than the precise modulation of apoptotic pathways, which makes them lack the specificity to target a 
single apoptosis pathway. The application of mitochondria-targeted chemotherapeutic nanoparticles facilitated mROS 
production and disrupted the intrinsic cell apoptosis pathway, with high biocompatibility (Table 2).

Different from chemotherapeutic nanoenzymes which are primarily focused on improving the delivery and efficacy of 
existing cancer drugs, radiotherapy nanosensitizers are also inducers for mROS generation in cancer cell apoptosis, 
thereby achieving a. Studies have shown that AuNPs sensitize cancer cells to radiation via strong attenuation of photons 

Figure 7 Role of mROS-targeted nanoparticle in inducing cell death (A–E): mROS-targeted nanoparticle that induces apoptosis, necroptosis, ferroptosis, pyroptosi,s and 
cuproptosis. (F) Schematic representation of nanoparticles used to increase mROS and cell death. Created in BioRender. Wang, X. (2025) https://BioRender.com/d34lt7f.
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by high-Z atoms.158 Additionally, AuNPs exhibit effects similar to glucose oxidase (GOx), which oxidizes glucose into 
H2O2 and gluconic acid.159,160 One study constructs a novel TPP-conjugated AuNPs to enhance both X-ray radiation and 
photodynamic therapy: 4 Gy radiation treated human colon adenocarcinoma HCT 116 cells have equivalent controlled 
growth compared to 12 Gy radiation without AuNPs, which is caused by enhanced production of mROS and disrupting 
MPP. Treatment of TPP-conjugated AuNPs results in a substantial increase in the apoptotic cell population (from 
5.3 ± 1.8% to 37.4 ± 4.7%), whereas nanoparticles alone or X-rays alone induce a much lower apoptosis rate of 
8.9 ± 2.9% and 7.8 ± 3.5%, respectively. Moreover, mice treated with AuNPs experienced less weight loss after irradia-
tion. Together, these results indicate the synergistic effects of combining AuNPs with.161 dAuNP-TPP is another 

Table 2 Chemotherapy-Based Nanoparticles to Elevate mROS Production in Apoptosis

Nanoparticle Name Mechanism of Apoptosis and mROS 
Production

Chemotherapy 
Drugs

Cancer Type/Cell lines Ref

(CBNs)-Pluronic F127-DOX 

(CPD)

Increased mROS production and alteration in 

MPP to regulates the expression levels of 

Caspase-3, p53, and Bcl-2 gene in apoptosis

Doxorubicin 4T1 cells (mouse breast cancer 

cell line)

[149]

TPP-LND-DOX NPs Combination of DOX and LND increase mROS 

production and activation of intrinsic 
mitochondrial pathway

Doxorubicin DOX-resistant MCF-7/ADR 

cells

[150]

Rhein–DOX nanogel DOX specifically attaches to the cardiolipin 

component of the inner mitochondrial 

membrane to induce mROS generation with 
higher apoptotic rate.

Rhein and 

Doxorubicin

HepG2 hepatoma cells [151]

Lys-Phe-PEAcou-PEG micelle Micellar DOX produced more ROS and activated 
Caspase 3/7 to initiate apoptosis

Doxorubicin HCT116 human colon cancer 
cells and HeLa cells

[152]

GNPs-P-Dox-GA Mitochondria-targeting signal peptides and 
lipophilic cations release high dose of Dox-GA to 

generate large amounts of mROS and induce 

apoptosis by mitochondria dysfunction

Doxorubicin Multiple drug resistant HepG2 
cell line (HepG2/ADR) and 

Human hepatoma cell line 

(HepG2)

[153]

TPP-DTX@FA-chol-BSA NPs TPP–DTX accumulate in mitochondria showed 

considerable cytotoxicity in cancer cells through 
ROS, mitochondrial depolarization and apoptosis

Docetaxel MCF7 breast cancer cells [153]

D/D NPs Tumor-specific drug release in an acidic 
environment achieves synergistic effect to induce 

mROS production and release of cytochrome c 

release from mitochondria

Docetaxel 4T1 cells (mouse breast cancer 
cell line)

[154]

NIR/GSH/pH-sensitive CPT- 

ss-BBR/ICG NPs

Targeted delivery of berberine and camptothecin 

enhance mROS release and apoptosis

Camptothecin 

(CPT)

A549 cell (human lung 

adenocarcinoma cell line)

[155]

HA/CPT-TPP, HCT Release of camptothecin (CPT) in mitochondria 

disrupted mitochondrial function, leading to 
increased reactive oxygen species (ROS) levels, 

leading to activation of caspase-3 and caspase-9 

and apoptosis

Camptothecin 

(CPT)

A549 cell (human lung 

adenocarcinoma cell line)

[156]

RCPCPT CPT promotes the generation of H2O2 in 

tumors, which in turn facilitates cascade CPT and 
CO release, CO reduce cytochrome c oxidase 

activity by inducing mitochondrial disruption and 

apoptosis

Camptothecin 

(CPT)

4T1 cells (mouse breast cancer 

cell line)

[157]
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mitochondria-targeted AuNP with 5.22-fold higher mitochondrial accumulation than free AuNP-TPP. After treating 
dAuNP-TPP for 24h in 4T1 cells, morphological analysis demonstrated that dAuNP-TPP-treated cells had dysfunctional 
mitochondria with membrane fragmentation, and apoptosis-regulated factors, Bax and Bcl-2, were also expressed at 
higher levels than those in control cells. Finally, in vivo, photoacoustic (PA) imaging was used to assess radiotherapeutic 
enhancement by dAuNP-TPP in 4T1 tumor-bearing mice, and dAuNP-TPP treated mice demonstrated the strongest PA 
signals compared to other untreated groups.162

Increased mROS to Enhance Necroptosis
Necroptosis is a caspase-independent type of cell death that triggers multiple organelle dysfunction, cell swelling, and 
membrane rupture, ultimately inducing cell death (Figure 7B). It acts as a backup for cells that lack apoptosis-related 
factors: the production of TNFα can initiate the activation of various cellular receptors, including death receptors (Fas) 
and toll-like receptors (TLRs).163 The binding of TNFα to its receptor TNFR1 in cell membrane promotes the formation 
of TNFR1 signaling complex–complex I, which is composed of multiple adapter proteins such as FAS-associated death 
domain protein (FADD), TNFR1-associated death domain (TRADD) and receptor-interacting protein [RIP] kinase 1 
(RIPK1), named as complex I. At this point, the central regulator of cell death is RIPK1, which is deubiquitinated by 
other proteins to limit the cell survival and NF-κB pathways. Complex II (necrosome) is formed by RIPK1, RIPK3, and 
caspase-8, and recruits MLKL to induce cell rupture.164,165 RIPK3 activation during necroptosis is related to the 
production of mROS via activation of pyruvate dehydrogenase (PDH), thereby enhancing aerobic production and 
mROS generation.166 In contrast, mROS production could also induce the RIPK1/RIPK3/MLKL signaling pathway to 
promote necroptosis, providing a potential for nanotechnology to induce cell death.167 CPT/MT-NG is a redox-sensitive 
nanoparticle that resulted in the elevation of mitochondria oxidative stress to enhance synergistic cancer cell death. 
Encapsulating NG with mitochondria-targeting monomer (MT monomer) can lead to the accumulation and release of the 
anticancer drug camptothecin (CPT) to induce mitochondrial ROS generation. In MDA-MB-231 human breast cancer 
cells, CPT/MT-NGs reduced cell viability to approximately 34%, compared to 58% observed with mono-therapeutic 
CPT-NGs, highlighting a synergistic enhancement in anticancer activity. Notably, treatment with either an apoptosis 
inhibitor or necroptosis inhibitor (Nectastatin-1) could significantly reduce the population of dead cells, confirming that 
CPT/MT-NG efficiently activates both cell death pathways and enhances antitumor therapy.168

Overproduction of ROS in the mitochondria also causes oxidative DNA damage in cancer cells, subsequently 
activating the DNA damage response (DDR) via ataxia-telangiectasia mutated/checkpoint kinase 2 (ATM/Chk2), 
which leads to programmed cell death.169 One study developed a small nanosphere TPA-N-n with superior antiproli-
ferative performance, while another developed a small nanosphere TPA-N-n with superior antiproliferative performance: 
First, according to Pearson’s correlation coefficient (PCC) values with MitoTracker Green (0.818 and 0.805), two kinds 
of TPA-N-n nanoparticles (TPA-N-4, TPA-N-8) exhibit strong mitochondrial targeting ability. Then Aggregation 
Emission (AIE) molecules localize in mitochondria and begin to promote mROS generation. In addition, Chk2 
phosphorylation was upregulated after treatment, with an elevation in RIP3 expression, suggesting the presence of 
mROS-mediated necroptosis.170

Increased mROS to Enhance Ferroptosis
Ferroptosis is a type of iron-dependent cell death characterized by dysfunctional mitochondria that are smaller than the 
average size, increased mitochondrial membrane density, accumulation of mitochondrial ROS, and lipid peroxidation in 
the cytoplasm (Figure 7C).171 In tumor cells, accelerated metabolic rates enhance the production of mROS, making them 
intrinsically susceptible to ferroptosis.172 Therefore, the development of nanoparticles that enhance mROS production is 
a potential therapeutic option for inducing tumor ferroptosis. A multifunctional mitochondrion-targeted liposomal 
nanoparticle, Mito@Lip/R162/IR780 (MLipRIR NPs), is able to disrupt glutaminolysis pathway in mitochondria to 
induce redox imbalance and ferroptosis in 4T1 breast cancer cell lines: after TPP-based nanoparticle accumulate in 
mitochondria, first a glutamate dehydrogenase 1 (GDH1) inhibitor, R162, are released into cytoplasm to inhibit 
endogenous antioxidant enzyme (GPx) activity to trigger ferroptosis via increase in lipid peroxidation.173 Furthermore, 
IR780-mediated ultrasound (US) exposure for 1 minute leads to ROS enrichment in mitochondria, which in turn depletes 
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glutathione and aggravates ferroptosis.174 Following IR irradiation, cell viability significantly decreased to 16.4% in 
MLipRIR nanoparticle-treated groups. By contrast, tumor cell eradication by MLipRIR without US only causes moderate 
cytotoxicity with more than 75% cell viability, indicating synergistic effects of loaded R162 and IR780. As mentioned 
above, mROS accumulation is related to the hypoxic tumor microenvironment. Previous studies have reported that HIF- 
1α in a hypoxic environment aggravates ferroptotic cell death by upregulating transferrin receptor 1 in non-small cell 
lung cancer and glioblastoma cell lines, providing a novel method to manipulate hypoxia and induce ferroptosis in 
tumor.175–177 Based on this principle, Tian H et al reported mitochondria-targeted HL/MOS@M780 and LOD nanopar-
ticles to activate ferroptosis in 4T1 tumor-xenografted mice; once the nanoparticles reached the tumor area, mROS 
generated by mitochondria-targeted IR780 (M780) and lactate depletion by lactate oxidase (LOD) played dual roles in 
depleting oxygen and further upregulating transferrin to activate ferroptosis. Altogether, the overexpression of mROS 
heralds a new path for designing nanoparticles to activate ferroptosis in tumor cell death.178

Increase mROS and Pyroptosis
Increased ROS production may trigger pyroptosis, an inflammatory type of programmed cell death (Figure 7D). 
Pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), together with 
nucleotide-binding oligomerization domain-like receptors (NLRs) assemble inflammasomes to activate downstream 
caspase 1. Caspase 1 further cleaves the pivotal gasdermin D (GSDMD) protein into the N and C domains, resulting 
in cell pore formation and swelling of the cell, which eventually leads to cell rupture and the release of cellular 
contents.16,179 Yang et al constructed a tumor-targeting nanoparticle (CS-HAP@ATO NPs) to target mouse colorectal 
cancer cell lines via the mitochondria-mediated pyroptosis pathway; once the nanoparticle was internalized into tumor 
cells, atorvastatin (ATO) was released to hamper mitochondrial membrane potential and ATP production, while the other 
two components in the nanoparticle, chondroitin sulfate (CS) and hydroxyapatite (HAP), caused calcium overload in the 
mitochondria. These synergistic effects trigger mROS production and fragmentation of mitochondrial DNA, promoting 
aggregation of the NLRP3 inflammasome and recruitment of caspase-1, eventually leading to pyroptosis. In the following 
tumor volume analysis, CS-HAP@ATO nanoparticles administration showed a 93% inhibition rate, and tumor weight 
measurements on day 15 indicated an 85% reduction in the nanoparticle group compared to the control.180 Similar results 
were also observed in NIR-II Z1 nanoparticles and DPITQ nanoparticles, combining photodynamic therapy to induce 
mROS generation and further activate caspase-1 to induce both apoptosis and pyroptosis to kill tumors effectively.16,179 

In the analysis of immunogenic cell death (ICD) in response to mROS generation triggered by Photocatalytic CDs, the 
study also found immune preventive effects caused by nanoparticle-induced pyroptotic cancer cells (PCIPs). After 
injecting PCIPs into mice with breast cancer, the number of T helper cells (memory T cells) was significantly increased in 
the lymph nodes and spleen, suggesting the potential to develop photocatalytic CDs for cancer vaccine.181 Recently, a 
mitochondria-dependent non-canonical pathway was found to be associated with mitochondrial dysfunction. 
Mitochondrial abnormalities further induce MOMP and the overproduction of mROS, leading to the activation of 
caspase 3 and GSDMD cleavage. Peng et al developed a mitochondria-targeted nanoparticle (Th-M) that induces 
pyroptosis in tongue squamous cell carcinoma. Fluorescence intensity measurements demonstrated that cells treated 
with Th-M for 5 minutes have markedly increase in fluorescence, with cells in the control group only showed minimal 
fluorescence, suggesting Th-M specifically induced robust mROS generation. Active caspase 3 and protein levels of 
GSDME-N were increased in tongue squamous cell carcinoma, whereas full-length GSDMD was reduced under light 
irradiation, demonstrating the potential of Th-M to initiate pyroptosis.182

Increased mROS and Cuproptosis
In 2022, Tsvetkov et al identified copper-dependent cell death and apoptosis as new forms of cell death that are highly related 
to the mitochondrial respiratory pathway (Figure 7E).183 Unlike ferroptosis, which induces cell death by increasing lipid 
peroxidation, cuproptosis is triggered by direct accumulation of excessive copper or copper ionophores.184 Overloading Cu 
subsequently alters a series of enzymes in the TCA cycle through lipoylation (a post-transcriptional process), such as 
dihydrolipoamide S-acetyltransferase (DLAT) and iron-sulfur (Fe–S) cluster proteins, resulting in mitochondrial dysfunction 
and cell death.185 Therefore, the development of novel nanoparticles that induce both mROS generation and Cu overload in 
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tumor cells could be beneficial for inducing cancer cell death. D@HCC-CuT is a Ca/Cu bimetallic nanoplatform that 
combines calcium and copper overload that leads to dual effects in two cancer cell lines (4T1 and MCF-7): First, calcium 
carbonate (CaCO3) triggers endogenous stress and induces Ca2+ outflow from the ER to mitochondria, leading to the 
production and release of apoptosis-related factors. Meanwhile, the copper coordination polymer (CuT) shell releases Cu2+ 

provokes DLAT aggregation and loss of the Fe-S cluster in the mitochondria. Furthermore, Cu2+ significantly exacerbates 
mROS production via Fenton-like reactions that convert H2O2 to •OH. D@HCC-CuT caused a tremendous decrease in ATP 
levels, reducing it to 21.4% of the control level, which is related to a significant impairment of mitochondrial energy 
metabolism (Figure 8).186 In tumor cells, cuproptosis is often restricted because of insufficient endogenous copper levels 
and overexpression of the antioxidant glutathione (GSH).187 To address the gap in Cu levels, another study designed an Fe/Cu 
bimetallic nanoplatform (DSF3@HMCIS2-PEG-FA) to achieve ferroptosis-cuproptosis for potent antitumor therapy. Robust 
ferroptosis not only produces large amounts of H2O2 in the mitochondria but also disrupts cellular antioxidant GPX 
production, promoting copper overload and cuproptosis.188

Nanoparticles to Depletes ROS Production in Mitochondria
Increased mROS levels have been implicated in many tumor types. Therefore, it is reasonable to postulate that mROS 
reduction inhibits cancer cell growth. Many preclinical and clinical studies have suggested that reducing mROS 

Figure 8 mROS-targeted nanoparticle (D@HCC-CuT) to induce cuproptosis in two cancer cell lines, (A) schematic representation of D@HCC-CuT construction and delivery. 
Calcium carbonate (CaCO3) induces cellular stress by causing Ca²N release from the ER to mitochondria, triggering apoptosis. Simultaneously, the CuT shell releases Cu2+, which 
promotes DLAT aggregation, disrupts mitochondrial Fe-S clusters, and enhances mROS production. (B) Ca2+ overload and ROS production in mitochondria after D@HCC-CuT 
administration. (C) D@HCC-CuT injection leads to mitochondrial dysfunction in cancer cells. (D) anti-tumor efficacy of D@HCC-CuT demonstrated as changes in tumor 
volume. Reprinted (adapted) with permission from Xu, Weijun et al. Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via 
Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ACS nano. vol. 18,43 (2024): 30,053–30068. based on cc By License, copyright 2024 
American Chemical Society.186
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production may have clinical benefits in preventing cancer incidence (Table 3). Despite growing evidence supporting the 
anticancer activity of reducing mROS, the controversy surrounding its role in cancer may arise from its redox properties 
and the dynamic interconversion of these drugs to inhibit cancer cell proliferation and promote tumor progression. For 
example, several randomized clinical trials have revealed that treatment with NAC promotes tumorigenesis in various 
types of cancer, including lung cancer,189,190 melanoma,191 colorectal cancer192 and hepatocellular carcinoma.193 One 
possible reason for the lack of efficacy is that these general antioxidants suffer from poor localization in the mitochon-
dria, which limits their ability to effectively combat oxidative stress. Conventional antioxidants, such as green tea and 
vitamins C and E, are widely dispersed throughout the body, and only a small percentage of drugs reach the mitochondria 
to function.194 Therefore, mitochondria-targeted antioxidants can overcome this limitation by specifically accumulating 
in the mitochondria, providing more potent protection against oxidative damage.

Several antioxidants exist in the form of nanoparticles that dampen mROS production and are used in anticancer 
therapy. Mito E and Mito Q is two mitochondrial-targeted antioxidants have been used in many animal models and 
clinical trials. Mito E2 was the first mitochondria-targeted antioxidant (vitamin E) developed by Smith in 1999.202 This 
study increased the level of antioxidant vitamin E (α-tocopherol) more than 80 folds in the mitochondria of human 
osteosarcoma 143 B cells. However, in this study, vitamin E was found in the lipid bilayer of the mitochondrial inner 
membrane, whereas TPP entered the mitochondrial matrix, thereby, encapsulation of Mito E in TPP-based nanoparticles 
might have influenced the efficacy of vitamin E.

In addition, MitoQ10 extends the accuracy of drugs via target to ubiquinol portion of coenzyme Q in the electron 
transport chain. Compared to untargeted ubiquinone analogs, MitoQ10 demonstrates a superior potential to accumulate in 
the mitochondria up to 1000 folds.203 In animal models, MitoQ10 has been proven not only to decrease mROS 
production but also to inhibit cancer cell proliferation. In aggressive triple-negative and HER2-positive human breast 
cancer cell lines, MitoQ10 treatment has cytostatic effects on human breast cancer cells, reducing MDA-MB-231 cell 
numbers. Researchers have explored the use of nanoparticles that encapsulate MitoQ (nMitoQ) in treating prenatal 
hypoxia. As a result, nMitoQ treatment increased fetal blood space area under hypoxic conditions in the female placenta, 
suggesting the therapeutic potential of nanoparticle-encapsulated MitoQ to combat ROS.204

Recently, researchers developed an antioxidant (Cerium oxide) based nanoparticle (Nanoceria) for melanoma 
management. In vitro experiments demonstrated that Nanoceria exhibits unique redox properties that enable them to 
scavenge excess ROS production, which is related to a dose-dependent decrease in the expression level of HIF- 
1α and vascular endothelial growth factor (VEGF), contributing to anti-angiogenic cancer treatments.205 Moreover, the 
scavenging effect of Nanoceria is related to nanoparticle size, treatment duration, and specific cancer cell type. Larger 

Table 3 Antioxidants Used in Preclinical and Clinical Trials to Combat ROS Generation and Cancer Progression

Drug name Tumor Type Cellular Mechanism Reference

Metformin Human HCT116 p53−/− colon 
cancer cells

Metformin inhibit complex I and III activities to reduce mROS production and decreased 
the stabilization of HIF-1α protein under low-oxygen conditions.

[195]

MDA-MB-231 Breast Cancer 
Cells

Metformin inhibit mROS production to block COX2 and ICAM1 expression and prevent 
cancer metastasis

[196]

N-Acetylcysteine (NAC) Triple-negative breast cancer 
(TNBC)

NAC inhibits the activation of HIF-1α via reduce mROS generation [197]

Colorectal carcinoma cells 
(CRCs)

NAC decrease ROS production in p53-independent manner [198]

Curcumin Experimentally induced lung 
cancer in mice

Together with quercetin reduce ROS production and restore SOD function [199]

Diethylnitrosamine induced 
hepatocellular carcinoma

Prevent ROS generation [200]

Cancer-associated fibroblast- 
driven prostate cancer

Reduce ROS production induced by CAFs, via the MAOA/mTOR/HIF-1α signaling 
pathway to prevent EMT

[201]
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nanoceria particles (94 nm) showed a greater capacity to scavenge ROS than smaller particles (7 nm), and the results of 
cell internalization were distinct in two colon cancer cell lines.206

Nanoparticles Targeted mROS Production as Enhanced Photodynamic 
Therapy
In the past two decades, photodynamic therapy (PDT) has emerged as a promising antitumor therapy. It relies on the 
generation of ROS by photosensitizers to exert cytotoxic effects and to induce cell death. Conventional photodynamic 
therapies involve two stages: First, the Photosensitizers induce the generation of detrimental free radicals after absorbing 
light. Two major photosensitizers can either react with biomolecules to release ROS (type I), or directly interact with 
oxygen to generate ROS (type II)207 (Figure 9). Second, near-infrared (NIR) lasers release the appropriate wavelengths to 
activate photosensitizers. Normally, light with a higher wavelength has better tissue penetration ability, referred to as a 
“near-infrared window”.208,209

PDT selectivity of PDT is originally achieved by the location of light irradiation at the tumor sites. However, PDT has 
a limited tissue penetration (5 mm). This restricts its use to surface or shallow tumors, such as skin or oral cancers, 
making it less effective for deep-seated cancers.210,211 In addition, a lack of selectivity can cause prolonged sensitivity to 
light, leading to photosensitivity reactions that may last for days or even weeks. ROS release may activate many 
cytokines including IL-1β, IL-2, IL-6, and IL-8, which induce pain, inflammation, and allergic reactions.212 Moreover, 
common sensitizers, such as phthalocyanine, phthalocyanine, and chlorine, are only slightly soluble in water, prolonging 
the retention of drugs localized in cell membranes and limiting their efficacy.208,213

Hence, when PDT is combined with mROS-targeted nanotechnology, its effectiveness is amplified by specifically 
disrupting mitochondrial function and elevating mROS levels, leading to enhanced oxidative stress within cancer cells. 
LinTT1-HFtn is a mitochondria-targeted nanoparticle encapsulated in photosensitizers with ROS-generating abilities. 
When compared with free PDT-treated groups, LinTT1-HFtn demonstrated the highest mitochondrial ROS level and 
prominent release of cytochrome c from the mitochondria, demonstrating better therapeutic effects after direct ROS 
generation in the mitochondria. Fluorescence analysis showed that 64.4% of HepG2 cells underwent apoptosis after 
treatment with LinTT1-HFtn-AIE nanoparticles, which is higher than other control groups.214 Compared to free photo-
sensitizers, photosensitizers with an nanoparticle design demonstrated a slight decay after 30 minutes of irradiation.215 As 

Figure 9 Type I and type II photodynamic therapy mechanism to induce robust mROS generation by nanoparticles. In the type I process, PDT-based nanoparticles produce mROS from 
biomolecules; in the type II process, PDT-based nanoparticles generate singlet oxygen from existing oxygen. Created in BioRender. Wang, X. (2025) https://BioRender.com/knynrm3.
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mentioned above, limited penetration is one of the biggest challenges for phototherapy applications in deep tumors such as 
liver, pancreatic, and gallbladder cancers. Several studies have reported sustained NIR-emitting luminescence using 
photosensitizer-incorporated nanoparticles. Juengpanich S et al developed tumor-targeted photodynamic nanoparticles 
(STPNs) the treatment of gallbladder cancer. To prolong the luminescence of photosensitizers, the study used up-conver-
sion nanoparticles are a class of luminescent nanomaterials that can absorb low-energy photons, typically in the near- 
infrared (NIR) range, and convert them into high-energy emissions in the visible or ultraviolet (UV) range. This study 
identified exceptional antitumor activities in gallbladder cancer cell lines after treatment, demonstrating higher ROS 
generation and significant activation of the apoptotic pathway in tumor cells.216 For brain tumors, the presence of the 
blood-brain barrier is another important issue that influences many photosensitizers. For example, Indocyanine green (ICG) 
serves as a water-soluble photosensitizer, which limits its use in brain tumors. Recently, Liang et al designed a biomimetic 
nanocarrier containing ICG to target glioblastoma. The mitochondria-targeted nanoparticle surface was loaded with low- 
density lipoprotein receptor-related protein-1 (LRP1), a member of transferrin (TF) that can pass through the BBB. After 
dissociation, ICG was released into the mitochondria and significantly increased ROS production.217

Evidence has shown that mitochondria-targeted photodynamic therapy can induce innate immunity via activation of 
cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway.218,219 Therefore, mitochondria- 
targeted photodynamic therapy which generates mROS to induce cell death, and immunotherapy, which induces ICD, 
play a synergistic role in cancer treatment. ALA&Dz@ZIF-PEG, designed by Zhao et al, is a mitochondria-targeted 
nanoparticle that exhibits the dual effects of photodynamics and immunotherapy. Once the nanoparticle accumulates in 
the mitochondria of cancer cells, 5-aminolevulinic acid (ALA) is released to induce the photodynamic effect of mROS 
generation and mitochondrial dysfunction. These changes subsequently drive the release of double-stranded mitochon-
drial DNA into the cytoplasm, initiating activation of the cGAS-STING pathway and activation of immune cells such as 
T natural killer (NK) cells, dendritic cells (DCs), and T lymphocytes (CTLs).220

mROS Targeted Nanoparticles vs Other Targeted Cancer Therapies
mROS Targeted Nanoparticles vs Immunotherapy
Among all other targeted treatment options, immunotherapy is currently the most innovative method that eliminates 
tumors via the host immune system. Significant progress has been made in preventing tumor immune evasion. FDA has 
approved many immune checkpoint inhibitors for future clinical trials, yet mROS-targeted nanoparticles have seen 
slower clinical translation.221 In the past decade, although numerous nanoparticles that promote ROS generation in 
mitochondria have been investigated, only one type of reactive oxygen species (ROS)-generating nanoparticle, ferumox-
ytol, has received FDA approval for treating iron deficiency anemia.222 Immunotherapy also faces significant challenges, 
including a very low response rate and the potential for severe side effects; under this circumstance, the combination of 
mROS-targeted nanoparticles and immunotherapy may achieve a “1+1>2” effect in tumor treatment. For example, one 
multifunctional nanoparticle contains curcumin (CU), a Ca2+ enhancer, co-loaded with CaCO3 and MnO2 to promote 
mROS generation that induces immunogenic cell death (ICD). Moreover, When combined with anti-PD-1 (immune 
checkpoint inhibition) therapy, the nanoparticle significantly enhances antitumor efficacy, suggesting its potential as a 
combinational strategy in immunotherapy.135

mROS Targeted Nanoparticles vs Gene Targeted Therapy
Cancer gene therapy has revolutionized cancer treatment over the past few decades by replacing tumor suppressor genes, 
silencing oncogenes, and introducing silencing suicide genes.223 In recent years, chimeric antigen receptor (CAR)-T cell therapy 
combines cancer immunotherapy and gene engineering of T cells to restore the host immune system and to attack cancer cells. 
Markedly, the success of CAR-T therapy has been observed in many types of cancers, especially hematological cancers such as 
non-Hodgkin lymphoma and leukemia.224,225 For example, enhanced CAR-T cells were effective in patients with relapsed/ 
refractory aggressive B cell non-Hodgkin lymphoma with an 87.5% remission rate and negligible adverse events.224 By contrast, 
mROS-targeted nanoparticles remain in the “pre-clinical” stage. Although most studies reported selective cancer cell death and 
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excellent biosafety in animal models, there are no documented ongoing clinical trials, and translating mROS-targeted nanopar-
ticle therapies into clinical use requires further research to establish their safety and efficacy.

mROS Targeted Nanoparticles vs Untargeted ROS Inducers/Suppressors
Tumor heterogeneity significantly influences how mROS affect tumor growth within or across tumor types. On the one hand, 
variation of mROS in cancer cells across tumors can lead to vastly different outcomes: elevated mtROS is often observed in some 
solid tumors such as colon cancer and breast cancer, enhancing cell proliferation and tumor growth.60 However, hematologic 
cancers generally have lower baseline mitochondrial ROS, which depends on mitochondrial oxidative phosphorylation to 
prevent ROS-mediated apoptosis.226 On the other hand, tumor heterogeneity also results in variations of mitochondrial ROS 
within the same tumor types. Researchers discovered that glioblastoma CSCs maintain lower mROS levels than bulk tumor cells 
through the action of prohibitin (PHB), while knockout of the PHB gene could suppress CSCs’ self-renewal. Also, CSCs of acute 
myeloid leukemia have an inverse correlation between mROS levels and stemness potential.227

The dynamism of mROS between and within tumors may change therapeutic sensitivity and bring unpredictability to 
tumor responses when treated with untargeted mROS inducers/suppressors. For example, a potent ROS inducer, 
elesclomol, leads to CSCs copper dependent cell death in CSCs of glioblastoma, suggesting that elevation in mROS 
of CSCs could potentially lead to tumor eradication.228 However, elevated levels of mROS in CSCs contribute to 
metastasis formation in 4 different tumor cell lines via activation of MAPK signaling and subsequent EMT 
transformation.229 Likewise, the use of antioxidants was initially recognized to inhibit ROS generation that potentially 
inhibits cancer cell proliferation, but antioxidants such as vitamin C and vitamin E could paradoxically trigger tumor 
progression in patients with stage III/IV tumors.230

Fine-tune mROS levels within specific tumor compartments precisely destroy cancer cell mitochondria by altering 
redox homeostasis. A “Trojan horse” nanoparticle system has been developed that can initiate or halt mROS production in a 
controlled manner by adjusting the NIR wavelengths, which helps to limit damage to healthy cells while maximizing cancer 
cell death. The nanoregulator PIHR adjusts the mROS levels by responding to different NIR laser wavelengths. At 808 nm, 
it produces ROS to kill cancer cells, whereas at 1064 nm, it releases hydrogen (H2) to eliminate excess ROS to protect 
normal cells.231 mROS-targeted nanoparticles become increasingly favored in modern approaches to address the potential 
adverse effects of untargeted mROS modulations. For example, compared to single elesclomol to induce intracellular ROS, 
these nanoparticles encapsulate with elesclomol to generate a higher level of ROS and induce more antitumor activities.19 

Additionally, nanoparticles that reduce mROS production by encapsulating antioxidants derived from coenzyme Q10 (Mito 
Q) suppress breast cancer and glioma cell proliferation, which suggested opposite results compared to free antioxidants.18 

One explanation for this difference may be attributed to the poor mitochondrial accumulation of general antioxidants that 
limit their ability to alleviate oxidative stress, which is critical in limiting cell proliferation.

Challenges of mROS-Targeted Nanoparticles in Clinical Translation
FDA-regulated new drugs must “be safe and effective”, with confirmed benefits exceeding associated risks.232 Despite 
the growing number of nanoparticle-based therapies entering clinical trials and the increasing number of FDA-approved 
nanomedicines for cancer treatment, there are currently no clinical trials specifically focused on mROS-targeted 
nanoparticles in cancer therapy. Therefore, we searched for nanoparticles approved by the FDA in the recent decade 
and analyzed their significant clinical benefits and potential risks (Table 4) (http://www.clinicaltrials.gov). While some 
nanoparticles such as Onivyde™ and Vyxeos® show manageable toxicity profiles in cancer patients, other formulations 
like Apretude® and Aristada Initio® exhibit adverse events, including injection site reactions, stroke, or ischemic 
attacks.233–236 These examples underscore the unresolved challenges in nanoparticle clinical translation. Herein, we 
analyze three major challenges behind the clinical translation of mROS-targeted nanoparticles.

Biosafety and Toxicity
The biosafety and toxicity of mROS-targeted nanoparticles remain a major concern to clinical translation in cancer 
therapy. Many mROS-targeted nanoparticles incorporate mineral components to facilitate ROS generation; however, 
metal-based nanoparticles, such as those containing gold or silver, can be cytotoxic at higher doses, necessitating 

https://doi.org/10.2147/IJN.S510972                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 6108

Wang and Xiong                                                                                                                                                                    

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.clinicaltrials.gov


biocompatible coatings or alternative materials that reduce toxicity. As the primary detoxifying organ, nanoparticles are 
more likely to accumulate in the liver and induce various adverse events.238 One mROS-targeted nanoparticle, CPD, 
exhibits an increase in alkaline phosphatase (ALP) with aspartate aminotransferase (AST), which are markers of potential 
liver injury.149 The injection of Ag-NPs markedly increased liver inflammatory factors such as TNF-α and IL-6 and 
decreased GSH levels in rats, suggesting the induction of inflammation and ROS-induced damage.239 Additionally, the 
accumulation of ROS-responsive nanoparticles modulates immune activities by shifting macrophage polarization from 
the M1 state to the M2 state and inhibiting pro-inflammatory factors, including IL-1β, IL-6, and TNF-α in the injured 
liver, suggesting a potential interaction between mROS-targeted nanoparticles and immune system.240,241

Although numerous nanoparticles that promote ROS generation in mitochondria have exhibited excellent biocompatibility 
and imperceptible systemic injury in vitro and in vivo studies, the administration of nanoparticles may have long-term 
toxicities to organs. While commonly assumed to be non-toxic in the short-term, selenium nanoparticle administration in the 
long term raised atherosclerosis and caused liver and kidney damage in murine models.242 Yet, there is a critical need to define 
toxicity thresholds based on mROS-targeted nanoparticle dose and size to ensure future clinical application.243,244 For future 
studies to optimize mROS-targeted nanoparticles therapeutic windows and prevent toxicological side effects, several 
strategies that precisely control the characterization of nanoparticles and target accuracy are key to extend selectivity: Han 
and colleagues prepared three sizes of ROS- scavenging nanoparticles with PC-1 (~575 nm), PC-2 (~729 nm), and PC-3 
(~1071 nm) to examine the influence of nanoparticle to therapeutic efficacy. PC-2 achieved the highest lung-to-liver 
fluorescence ratio in mice with hyperoxia-induced acute lung injury, demonstrating the lowest liver deposition rate.245 

Another X-ray responsive nanoparticle (DMSNs@AO) incorporates diselenide bonds into silica nanoparticles. Diselenide 
bonds are cleavable in the presence of both oxidative stress and X-ray conditions, thereby ensuring the target release of 
nanoparticles to tumor tissues. Mice that administered DMSNs@AO showed less dose-dependent weight loss compared to 
free AO groups, indicating low systemic toxicity.246

Biodistribution Variation
Biodistribution directly influences the spread, release, and clearance of mROS-targeted nanoparticles throughout the 
body after administration. Yet, among all the studies mentioned above, only a few discussed organ biodistribution of 
mROS-targeted nanoparticles due to the lack of in vivo studies. Moreover, the lack of measurement techniques to 
measure how nanoparticles reach mitochondria in specific organs or tissues also contributes to a poor understanding of 
distribution profiles.247 The degree of nanoparticle distribution varies significantly depending on the kind of animal 
models and the type of tumor.248,249 A comparative study using different murine models for breast cancer showed 
varying spatial biodistribution of nanoparticles, which were related to varied tumor stromal cells in the tumor micro-
environment, highlighting a poor understanding of the complex interplay of nanoparticle and host-dependent 

Table 4 FDA-Approved Nanoparticles

Year of 
Approval

Nanoparticle Name Clinical Use Toxicity & Biosafety Reference

2024 Onivyde™ (liposome nanoparticle) Metastatic pancreatic 

cancer

Low rates of haematological treatment- 

emergent adverse events

[234]

2021 Apretude® (Nanocrystals) HIV Pre-Exposure 

Prevention

Injection site reaction, obese [233]

2015 Adynovate® (Polymer-protein 

conjugated nanoparticle)

Hemophilia Headache, diarrhea, nausea, dizziness [236]

2018 Aristada Initio® Schizophrenia Stroke, ischemia attack [237]

2017 Vyxeos® Acute Myeloid 

Leukemia

Fever, rash, nausea [235]
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differences.250 Apart from the difference in biodistribution in animal models, in vitro models could also affect the extent 
of nanoparticle distribution. In a study using ceria-based nanoparticles to induce ROS-mediated antitumor activities in 
melanoma spheroids, significant differences in mROS generation were observed between 2D and 3D models, pointing 
out the current limitations of current in vitro 2D cell culture studies.251

Off-Target Obstacles
For nanoparticles to target cancer cells or even subcellular organelles such as mitochondria, research has mainly focused on 
either enhanced permeability and retention (EPR) effect to target cancer cell mitochondria passively or modulate nanoplatform 
surface to make them “recognizable” for cancer cells.252 Although several designs of nanoparticle carriers, such as TPP-based 
nanocarriers and biomimetic design, were utilized to ensure the drug reaches the mitochondria, there is still undesirable 
deposition of nanoparticles in major organs apart from tumor sites. HM-NPs@G is a mROS-targeted nanoparticle that 
hybridizes cancer cell membrane and mitochondria membrane to promote higher deposition of ROS-responsive drugs. 
Compared to the free drug group with a 0.47-hour half-life, HM-NPs@G exhibited a prolonged circulation half-life of 
approximately 4.9 hours. Moreover, it could effectively cross the BBB, which remains to be a major limitation in the treatment 
of brain carcinoma. However, the accumulation of HM-NPs@G was also observed in the spleen and liver, which are two 
organs that are primarily involved in NP clearance, indicating a potential risk of organ injuries.22

Discussion
The knowledge of ROS generated from mitochondria and the related mechanisms in cancer has increased in recent years. 
Elevated levels of mROS can activate signaling pathways that promote cancer cell proliferation, survival, and metastasis. 
As ROS scavengers, antioxidants prevent the oxidation of other molecules by neutralizing ROS and other free radicals. In 
the context of cancer, while low or undetectable levels of antioxidants could promote tumorigenesis, higher than normal 
levels of antioxidants may encourage cancer metastasis and prevent cancer cell apoptosis.253,254 Importantly, mROS in 
cancer serves as a potential target for cancer therapies. Nanoparticles with mROS-regulating properties have been 

Figure 10 Overview of mitochondrial ROS (mROS) and mROS-targeted nanoparticle strategies in cancer therapy. This schematic summarizes the dual roles of mROS in 
cancer progression and therapeutic intervention. The left panel outlines the generation of mROS and its association with cancer hallmarks, as well as the role of endogenous 
and exogenous antioxidants in mROS depletion. The right panel illustrates current strategies for leveraging mROS-targeted nanoparticles in cancer therapy. The figure also 
highlights key design approaches for mitochondria-targeted nanoparticles, comparisons with other cancer therapies and major translational challenges. Created in BioRender. 
Wang, X. (2025) https://BioRender.com/z7e7ibg.

https://doi.org/10.2147/IJN.S510972                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 6110

Wang and Xiong                                                                                                                                                                    

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/z7e7ibg


exploited as ROS modulators in mitochondria to suppress cancer progression. Unlike untargeted ROS modulators, which 
may produce unpredictable effects due to tumor heterogeneity and cancer stem cell plasticity, mROS-targeted nanopar-
ticles potentially minimize off-target toxicity and enhance therapeutic efficacy.19 There are two major strategies to 
modulate mROS with nanoparticles: (1) Increase ROS production to lethal levels that trigger cell death via several 
mechanisms such as apoptosis, necroptosis, ferroptosis, pyroptosis, and cuproptosis. (2) Inhibit mROS production to 
inhibit cancer progression. In addition, photodynamic therapy-based nanoparticles to mitochondria is a therapeutic 
strategy to produce ROS in the mitochondria artificially. Unfortunately, the role of mROS in inducing cell death and 
promoting tumorigenesis remains poorly understood. Some studies have reported that a “moderate level” of ROS could 
promote tumorigenesis and that “excessive” ROS exerts an antitumor effect.255 However, the boundaries between these 
two levels still require clarification. Compared to other emerging therapeutic therapies like immunotherapy and gene- 
targeted therapies, mROS-targeted nanoparticles remain in the early stages of development, with no clinical trials 
currently ongoing/under recruitment (https://clinicaltrials.gov/). Several barriers must be addressed, including biosafety 
and long-term toxicity, variation in biodistribution and clearance, and challenges in achieving mitochondrial specificity in 
heterogeneous tumor environments.

In conclusion, the regulation of mitochondrial ROS by nanoparticles in cancer still heralds precise drug delivery 
approaches, and future studies are required to pave the way for more antitumor strategies (Figure 10).
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