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Abstract: The pathogenesis of sepsis is intricately linked to regulated cell death. As a novel form of regulated cell death, PANoptosis 
plays a critical role in driving the inflammatory response, impairing immune cell function, and contributing to multi-organ dysfunction 
in sepsis. This review explores the molecular mechanisms underlying PANoptosis and its involvement in sepsis. By activating multiple 
pathways, PANoptosis promotes the release of inflammatory cytokines, triggering a cytokine storm that disrupts immune cell 
homeostasis and exacerbates organ damage. Emerging therapeutic strategies targeting PANoptosis, including chemotherapeutic agents 
and herbal remedies, are showing potential for clinical application. The concept of targeting PANoptosis offers a promising avenue for 
developing innovative treatments for sepsis.
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Introduction
Sepsis is a life-threatening condition characterized by organ dysfunction caused by a dysregulated host response to 
infection. The 2016 Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) clarified this 
concept, highlighting the critical role of infection as a trigger and the importance of the host’s dysregulated response.1 

Sepsis remains a major global health challenge, with millions of cases reported annually. It is estimated that approxi-
mately 31.5 million cases of sepsis occur worldwide each year, leading to around 5.3 million deaths. Even survivors often 
experience long-term health complications.2 The incidence and mortality rates vary by region. In low-income countries, 
sepsis poses a heavier burden due to the high prevalence of infectious diseases such as malaria, Human 
Immunodeficiency Virus (HIV), and dengue fever. In high-income countries, despite advanced healthcare systems, sepsis 
remains a leading cause of mortality.2,3

Sepsis affects multiple organ systems, leading to a wide range of clinical manifestations. Patients with sepsis often 
experience arterial hypotension, which results from a combination of factors such as reduced blood volume, vascular tone 
loss, and myocardial suppression.4 Hypotension reduces cardiac output, leading to inadequate tissue perfusion and 
impaired organ function. Sepsis-induced myocardial injury manifests as decreased myocardial contractility and diastolic 
dysfunction.5,6 Increased apoptosis and necroptosis of cardiomyocytes are key contributors to cardiac dysfunction, likely 
driven by inflammatory cytokines, oxidative stress, and mitochondrial dysfunction.7,8 Respiratory abnormalities such as 
tachypnea and hypoxemia are also common in sepsis. Pulmonary inflammation damages the alveolar-capillary mem-
brane, disrupting gas exchange and causing respiratory distress. Severe cases may develop acute respiratory distress 
syndrome (ARDS), severely impairing lung ventilation and gas exchange, often requiring mechanical ventilation to 
sustain life.9,10 Sepsis frequently causes kidney damage, presenting as oliguria or anuria, along with elevated serum 
creatinine and blood urea nitrogen levels. Acute kidney injury (AKI) is a common complication, driven by inflammation, 
oxidative stress, apoptosis, and necrosis. AKI not only impairs renal excretory function but also exacerbates systemic 
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inflammation and multi-organ dysfunction, significantly increasing mortality.11–13 Beyond these, sepsis impacts the 
nervous, hematologic, and hepatic systems, contributing to its complex and multifaceted clinical presentation.14–17 In 
sepsis, various forms of regulated cell death (RCD)—including apoptosis, necroptosis, and pyroptosis—play critical roles 
in disease progression.18 PANoptosis, a recently proposed concept that integrates apoptosis, necroptosis, and pyroptosis, 
has also been found to be closely associated with sepsis. Apoptosis, a classical RCD pathway, is characterized by 
membrane blebbing, DNA fragmentation, and a lack of inflammatory response.19 Pyroptosis, on the other hand, involves 
inflammasome activation and membrane pore formation, leading to the release of inflammatory cytokines.20 Necroptosis 
features molecules like Receptor-Interacting Protein Kinase 1 (RIPK1), Receptor-Interacting Protein Kinase 3 (RIPK3), 
and Mixed Lineage Kinase Domain-Like Protein (MLKL), resulting in membrane rupture and inflammatory responses.21 

In contrast, PANoptosis represents a more intricate RCD pathway. It integrates key molecules from these pathways, such 
as inflammasome sensors, Caspase-8, RIPK1/3, and GSDMD, forming a multifunctional molecular platform known as 
the PANoptosome. This platform orchestrates the cell death process by regulating the interactions and cross-talk among 
these pathways.22 The molecular mechanisms of PANoptosis are significantly more complex, involving not only the 
activation of individual pathways but also their dynamic interplay. This interplay allows for a more precise and adaptive 
regulation of cell death, highlighting the unique role of PANoptosis in cellular processes.

Sepsis and Regulated Cell Death
RCD plays a critical role in the progression of sepsis. During the pathophysiology of sepsis, apoptosis is prevalent in 
various cell types, including lymphocytes, monocytes, neutrophils, endothelial cells, and epithelial cells.23–26 Factors 
such as pathogen infection, inflammatory cytokine release, oxidative stress, and mitochondrial damage can activate 
apoptotic pathways. Apoptosis has a dual role in sepsis: moderate levels help eliminate infected and damaged cells, 
reducing pathogen replication and alleviating inflammation.27 However, excessive apoptosis depletes cell populations, 
impairs immune function, increases infection risk, exacerbates tissue damage, and contributes to multi-organ 
dysfunction.25,28 Necroptosis, a regulated form of cell death with necrotic characteristics, combines the programmed 
nature of apoptosis with necrosis-like morphology.21,27 In sepsis, necroptosis pathways are activated, leading to cell 
death. Studies suggest that inhibiting necroptosis can reduce inflammation, limit cell death, improve organ function, and 
lower mortality, making it a potential therapeutic target.29 Pyroptosis, an inflammatory form of RCD, is mediated by 
inflammatory caspases (caspase-1, −4, −5, and −11).27 In sepsis, pathogen infections induce inflammasome assembly, 
activating these caspases to cleave substrates such as Gasdermin D (GSDMD) and Gasdermin D (GSDME). This results 
in cell swelling, rupture, and the release of inflammatory cytokines and intracellular contents, triggering inflammatory 
responses. While moderate pyroptosis helps control infection and clear pathogens, excessive pyroptosis leads to 
uncontrolled inflammation, worsening tissue damage.30,31 Pyroptosis is also closely linked to sepsis-associated organ 
dysfunction, including injuries to the kidneys, liver, and lungs.32

Sepsis involves additional forms of cell death, such as autophagy and ferroptosis, which also play significant roles in 
its progression.30,33 Research has shown that cuproptosis is associated with the onset of septic cardiomyopathy and 
immune infiltration.34 The pathological process of sepsis promotes cuproptosis in cardiomyocytes, resulting in cardiac 
toxicity.35 Cuproptosis also plays a critical role in the human immune response, with several key genes closely related to 
the prognosis of sepsis patients.36,37 Immune cells such as macrophages, T cells, and B cells undergo ferroptosis, which 
leads to their reduced number and function. Ferroptotic cells can be recognized by immune cells, triggering a cascade of 
inflammatory or specific immune responses.38 Ferroptosis also contributes to septic myocardial injury. Inhibiting 
ferroptosis can significantly alleviate LPS-induced cardiac damage and inflammation in mice.39 It has been confirmed 
that ferroptosis plays a key role in LPS-induced acute lung injury.40 Ferroptosis is also critically involved in diseases 
such as acute kidney injury and sepsis-associated encephalopathy (SAE).41 Autophagy, closely linked to inflammation 
and immunity, provides protective effects in sepsis by negatively regulating abnormal macrophage activation, modulating 
macrophage polarization, reducing inflammasome activation, and limiting the release of inflammatory cytokines.42,43 

Autophagy supports antigen presentation and T cell homeostasis, influencing T cell function and polarization.44 However, 
excessive autophagy may lead to autophagic death of macrophages, exacerbating the inflammatory response.42 Some 
studies have shown that autophagy also contributes to mitochondrial damage induced by sepsis, potentially resulting in 
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harmful effects on the body.45 Excessive autophagy increases regulated cell death.46 Enhanced autophagy in pulmonary 
endothelial cells can lead to increased vascular permeability, worsening septic lung injury.47 Understanding the mechan-
isms of RCD in sepsis is essential for identifying novel therapeutic targets.

PANoptosis and the Maintenance of Homeostasis
PANoptosis is a recently identified form of RCD, first proposed by Malireddi et al in 2019.48 This concept emerged from 
extensive research into cell death mechanisms, particularly the crosstalk between apoptosis, pyroptosis, and necroptosis 
(Figure 1). These three RCD pathways are not entirely independent but form an intricate network of interactions and 
regulatory mechanisms.49 The hallmark of PANoptosis is its involvement of key molecular components from these three 
pathways while defying full classification under any single one. Its introduction marks a significant breakthrough in 
understanding cell death mechanisms, establishing a new framework to study the role of cell death in diseases. Recent 
studies have demonstrated the crucial role of PANoptosis in the progression of various diseases, including infections, 
inflammation, and cancer. This emerging concept offers novel perspectives for exploring the impact of cell death on 
disease mechanisms and potential therapeutic interventions.

Figure 1 Molecular Mechanisms of Pyroptosis, Apoptosis, Necroptosis, and PANoptosis. (1) Pyroptosis: Pyroptosis involves inflammasome formation, typically the 
Nucleotide-Binding Domain, Leucine-Rich Repeat, and Pyrin Domain Containing Protein (NLRP) 3 inflammasome comprising the NLRP3 sensor, Apoptosis-Associated 
Speck-Like Protein Containing a CARD (ASC) adaptor, and Pro-Caspase-1. Activated inflammasomes cleave Caspase-1, which then processes Interleukin (IL)-1β/18 and 
Gasdermin D (GSDMD). The N-terminal fragment of GSDMD oligomerizes on the plasma membrane, forming pores that execute cell death. (2) Apoptosis: Apoptosis 
operates via extrinsic and intrinsic pathways: In the extrinsic pathway, external stimuli activate death receptors, forming the Fas-Associated protein with Death Domain 
(FADD)/Caspase-8/Receptor-Interacting Protein Kinase (RIPK1) complex. This activates Caspase-8, which cleaves Caspase-3/-7 to execute cell death. In the intrinsic 
pathway, mitochondrial outer membrane permeability changes, releasing cytochrome C. This promotes apoptosome formation, activating Caspase-9, which subsequently 
cleaves Caspase-3/-7 to execute cell death. (3) Necroptosis: When Caspase-8 is absent or inhibited, necroptosis occurs. Tumor Necrosis Factor-alpha (TNF-α) binding to its 
receptor forms the necrosome, containing RIPK1 and RIPK3. Phosphorylated RIPK1/RIPK3 recruits and phosphorylates Mixed Lineage Kinase Domain-Like Protein (MLKL), 
which disrupts membrane integrity to induce cell death. (4) PANoptosis: PANoptosis is mediated by the PANoptosome, integrating components from other cell death 
pathways. Pathogens activate sensors such as Z-DNA binding protein 1 (ZBP1), AIM2, RIPK1, or NLRP12, forming a PANoptosome complex that includes inflammasome 
components (eg, ASC), complex II elements (eg, Caspase-8), and necrosome components (eg, RIPK3). IRF1 further facilitates this process. The PANoptosome induces cell 
death by activating CASP1 (cleaving GSDMD and IL-1β/18), Caspase-3/-7 (cleaving Gasdermin E), and phosphorylating MLKL.
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PANoptosis plays a critical role in maintaining bodily homeostasis by eliminating pathogen-infected cells and 
triggering immune responses through the release of inflammatory cytokines, thereby protecting the host from infections. 
For instance, during viral infections, Z-DNA binding protein 1 (ZBP1) detects viral RNA and activates the 
PANoptosome, leading to the death of infected cells and limiting viral replication and spread.50 PANoptosis also 
contributes to the removal of damaged, aging, or cancerous cells, essential for tissue health and tumor suppression.51 

In the context of disease, PANoptosis plays a dual role. It is involved in various pathological processes, including 
infectious diseases, inflammatory disorders, cancer, cardiovascular conditions, and neurodegenerative diseases. For 
example, in infectious diseases, pathogens such as bacteria, viruses, and fungi can induce PANoptosis, limiting pathogen 
spread. However, excessive PANoptosis can exacerbate tissue damage and inflammation, worsening disease 
symptoms.49,52 The process of PANoptosis also plays a crucial role in promoting intervertebral disc degeneration.53 In 
inflammatory diseases, PANoptosis-mediated immune cell death releases inflammatory cytokines, intensifying the 
inflammatory response.54 Simultaneously, it regulates immune cell activity and function, influencing immune modulation 
during inflammation.55,56 In cancer, PANoptosis also exhibits dual effects. Targeting PANoptosis-related molecules can 
induce cancer cell death and inhibit tumor growth. However, cancer cells may exploit PANoptosis activation to evade 
immune surveillance and resist chemotherapy.57

Molecular Mechanisms of PANoptosis
PANoptosome
The PANoptosome is the central molecular platform for executing PANoptosis, enabling cells to initiate PANoptosis 
instead of a single “classical” RCD pathway. The assembly of the PANoptosome involves three main categories of 
proteins: (1) sensors for Pathogen-Associated Molecular Patterns (PAMPs) or Damage-Associated Molecular Patterns 
(DAMPs), such as ZBP1, Absent in Melanoma 2 (AIM2), and Nucleotide-Binding Domain, Leucine-Rich Repeat, and 
Pyrin Domain Containing Protein (NLRP) 3; (2) adaptor proteins, including Apoptosis-Associated Speck-Like Protein 
Containing a CARD (ASC) and Fas-Associated protein with Death Domain (FADD); and (3) catalytic effectors, such as 
RIPK1, RIPK3, Caspase-1, and Caspase-8.52,58

Several PANoptosomes have been identified, including ZBP1-PANoptosome, AIM2-PANoptosome, RIPK1- 
PANoptosome, and NLRP12-PANoptosome.59–62 ZBP1 was the first PANoptosis sensor identified. It detects Z-DNA 
or Z-RNA during viral infections, triggering cell death signals. ZBP1 uses its Zα domain to bind the Receptor-Interacting 
Protein Homotypic Interaction Motif (RHIM) domain of RIPK3, facilitating PANoptosome assembly. AIM2 initiates 
PANoptosis by detecting cytosolic DNA fragments through its Hematopoietic Interferon-inducible Nuclear proteins with 
a 200-amino acid repeat (HIN200) domain. It recruits ASC, which activates Caspase-1, driving downstream cell death 
processes. RIPK1 acts as a central hub for PANoptosome formation and integrates cell death signals. It activates 
Caspase-8 via FADD to induce apoptosis or interacts with RIPK3 to drive necroptosis or pyroptosis, depending on the 
signaling context and molecular interactions. NLRP12 senses heme or PAMPs via its Leucine-Rich Repeat (LRR) 
domain and activates the Caspase-8/RIPK3 axis, assembling the PANoptosome and triggering inflammatory and cell 
death responses.63 The PANoptosome represents a highly flexible and efficient cell death platform, orchestrated through 
the precise cooperation of key proteins. Its dynamic adaptability allows cells to respond to diverse stressors with tailored 
cell death mechanisms.

Signaling Pathways of PANoptosis
The initiation of PANoptosis relies on a complex network of upstream signals. These networks detect PAMPs and 
DAMPs to activate multiple signaling pathways that induce cell death. Pattern recognition receptors (PRRs), such as 
Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), nucleotide-binding oligomerization domain-like receptors 
(NLRs), and ZBP1, are key sensors for PANoptosis.64,65 PRRs recognize viral RNA and other PAMPs, such as 
TLR7 detecting Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and RIG-I recognizing influenza 
virus (IAV) or hepatitis C virus (HCV) RNA.65–70 The amplification of these signals often depends on type 
I interferon signaling pathways, which induce ZBP1 expression through the Janus Kinase (JAK)/Signal 
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Transducer and Activator of Transcription (STAT) pathway. ZBP1, in turn, recognizes viral RNA via its Zα domain, 
activating the Nucleotide-Binding Domain, Leucine-Rich Repeat, and NLRP3 inflammasome and triggering 
PANoptosis.50 Cytokine signals, such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), can 
also induce nitric oxide production via the JAK/STAT1/Interferon Regulatory Factor(IRF) 1 axis, activating the 
caspase-8/FADD complex and driving PANoptosis.54 Additionally, TLRs directly activate NLRP3 and AIM2 
inflammasomes and regulate other cell death signals, such as the Stimulator of Interferon Genes (STING) pathway, 
which promotes ZBP1 and AIM2 activation by inducing IRF3 expression.71 The Transforming Growth Factor-β- 
Activated Kinase 1 (TAK1) signaling pathway plays a dual role in PANoptosis: it maintains NLRP3 in a resting state 
but triggers RIPK1-dependent or independent PANoptosis when inhibited or absent.48,72,73 Oxidative stress signals 
also link mitochondrial dysfunction to PANoptosis by activating the NLRP3 inflammasome.74–76 Through these 
interconnected networks, molecules and signaling pathways collectively integrate upstream signals to coordinate the 
induction of PANoptosis.

At the downstream level, PANoptosis integrates and executes multiple RCD pathways through the coordinated 
activation of various signaling cascades. The caspase signaling pathway plays a pivotal role, with Caspase-1, Caspase- 
8, and effector caspases (Caspase-3/7) being key mediators. These caspases not only activate inflammasomes but also 
directly execute apoptosis and necroptosis.77 The RIPK1/RIPK3/MLKL pathway, central to necroptosis, involves the 
formation of the necrosome complex through RIPK1-RIPK3 interactions. This activates MLKL, which oligomerizes 
upon phosphorylation, forming membrane pores that disrupt membrane integrity and lead to cell death.78 Pyroptosis is 
mediated by inflammasomes such as NLRP3 and AIM2, which detect viral invasion and activate Caspase-1. Caspase-1 
cleaves GSDMD, whose pore formation causes cell lysis while releasing pro-inflammatory cytokines like IL-1β and IL- 
18.79,80 A defining feature of PANoptosis is the crosstalk between these pathways. For instance, the ZBP1-PANoptosome 
complex detects viral RNA and recruits the NLRP3 inflammasome to activate Caspase-1. Simultaneously, it triggers the 
RIPK1/RIPK3 axis to activate Caspase-8, integrating pyroptosis, necroptosis, and apoptosis into a unified response.81 

Additionally, PANoptosis relies on key effector molecules such as GSDMs and MLKL, which execute membrane 
disruption in pyroptosis and necroptosis, respectively, ultimately resulting in cell death. These interwoven signaling 
pathways form a tightly coordinated network, regulated through platforms like the PANoptosome, ensuring efficient 
execution of PANoptosis.

PANoptosis in Sepsis
PANoptosis Related Genes and Sepsis
Research on PANoptosis-related genes (PRGs) in sepsis has identified 16 genes that determine sepsis subtypes. By 
examining molecular clustering and prognostic features based on PANoptosis, the immune landscape and prognosis 
of sepsis patients can be predicted. It was also found that PRGs exhibit different expression patterns in various 
immune cells.82 One study confirmed that PANoptosis-related genes show significant predictive power for sepsis, 
with the differential expression of these genes being strongly associated with sepsis prognosis and leading to organ 
dysfunction.83 Another study found that PRGs are highly useful in the early detection of pediatric septic shock. This 
is crucial for understanding the role of immune cell infiltration in the pathophysiology of pediatric septic shock, 
though further confirmation through basic and clinical research is needed.84 A diagnostic prediction model based on 
PRGs was able to effectively distinguish between septic ARDS patients and general sepsis patients. NDRG1 was 
identified as a potential therapeutic target, and subsequent research in a sepsis mouse model confirmed that 
inhibiting NDRG1 could alleviate lung injury.85 A study combining bioinformatics analysis and experimental 
validation suggested that four PANoptosis genes—CD14, GSDMD, IL-1β, and Fas—are highly involved in the 
immune response and multiple inflammatory pathways during sepsis-induced acute lung injury.86 In addition to 
studies on the association between PANoptosis-related genes and sepsis, PANoptosis is also linked to sepsis through 
its role in exacerbating inflammatory responses, impairing immune function, and contributing to organ dysfunction 
(Table 1).
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Table 1 Studies Related to PANoptosis in Sepsis

Disease Result References

Sepsis Prediction of the Immune Landscape and Prognosis in Sepsis Patients Based on Molecular Clustering and Prognostic 
Features of PANoptosis

[82]

Sepsis The differential expression of PANoptosis-related genes (PRGs) is significantly associated with the prognosis of sepsis [83]

Sepsis PANoptosis-related genes play a crucial role in the early detection and diagnosis of pediatric septic shock patients. [84]

Sepsis Constructing a diagnostic prediction model based on PRGs can effectively differentiate between sepsis-associated 

ARDS patients and non-ARDS sepsis patients, while also identifying potential therapeutic targets.

[85]

Sepsis Bioinformatics analysis and experimental validation studies indicate that four PANoptosis feature genes are highly 

involved in the immune response and multiple inflammatory pathways of sepsis-induced ALI.

[86]

Sepsis High expression levels of S100A8/A9 induce mitochondrial dysfunction by downregulating Nrf1 expression, activating 

PANoptosis in endothelial cells during sepsis.

[87]

Sepsis Lactic acidosis promotes the release of macrophage-derived eCIRP, which mediates ZBP1-dependent PANoptosis in 

pulmonary endothelial cells during sepsis.

[88]

Sepsis Piezo1 plays a crucial role in calcium-mediated PANoptosis in Sepsis-induced cardiomyopathy. The inhibition of Piezo1 

diminishes LPS-induced PANoptosis by limiting calcium release in cardiomyocytes.

[89]

Sepsis Dachaihu Decoction alleviates sepsis-induced Acute Lung Injury by inhibiting PANoptosis through the regulation of the 

PI3K/AKT/NF-κB pathway.

[90]

Sepsis Inhibition of cIAP1/2 leads to the upregulation of PANoptosis, including apoptosis, necroptosis, and pyroptosis, in 

sepsis.

[91]

Sepsis The PANoptosis pathway regulates the oligomerization of neural injury-induced protein 1. Inhibiting the molecule can 

effectively reduce platelet activation and membrane rupture, thereby suppressing the platelet cascade and contributing 
to anti-thrombosis and anti-DIC effects in sepsis.

[92]

Sepsis Platelets in sepsis patients undergo PANoptosis, and Myricetin mitigates platelet PANoptosis, which can delay the onset 
of disseminated intravascular coagulation.

[93]

Sepsis The mechanisms linking PANoptosis and other forms of cell death not only lead to cell death but also increase vascular 
permeability, disrupt tissue integrity, and recruit inflammatory cells, exacerbating septic lung injury.

[94]

Sepsis MiR-29a-3p can inhibit PANoptosis in alveolar epithelial cells, alleviating acute lung injury. [95]

Sepsis Dachengqi Decoction Dispensing Granule can suppress excessive inflammation and PANoptosis, thereby alleviating 

LPS-induced acute lung injury.

[96]

Sepsis TLR9 activates PANoptosis through the p38 MAPK signaling pathway, leading to an increased incidence of sepsis- 

associated encephalopathy and higher mortality.

[97]

Sepsis PANoptosis in tubular epithelial cells plays a key role in septic acute kidney injury. Inhibiting AIM2-mediated PANoptosis 

can alleviate kidney injury caused by sepsis.

[98]

Sepsis Echinacea polyphenols inhibit the PANoptosis pathway, improving acute lung injury induced by LPS. [99]

Sepsis Ursodeoxycholic acid alleviates sepsis-induced lung injury by suppressing PANoptosis through STING pathway 

inhibition.

[100]

Sepsis In sepsis, immune cells, including T lymphocytes, B lymphocytes, monocytes, and macrophages, exhibit significant 

reductions in either quantity or function due to PANoptosis-driven impairment.

[54]

Sepsis In sepsis-induced cardiomyopathy, activation of the PANoptosis drives cardiomyocyte loss, impairing cardiac function. 

XiaoChaiHu Decoction mitigates this pathological process by suppressing PANoptosis, thereby ameliorating sepsis- 
associated myocardial injury.

[101]
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Effects of PANoptosis on Inflammatory Responses
PANoptosis triggers the release of inflammatory cytokines through multiple mechanisms, leading to inflammatory 
storms. Under conditions of infection or cellular stress, intracellular PRRs, such as ZBP1 and NOD-like receptor family 
CARD domain-containing protein 4 (NLRC4), detect PAMPs or DAMPs. This activates inflammasomes, including 
NLRP3, which leads to the autocleavage and activation of Caspase-1. Activated Caspase-1 catalyzes the maturation and 
secretion of interleukin (IL)-1β and IL-18 while inducing GSDMD cleavage to form membrane pores that drive 
pyroptotic cell death.81,102 These inflammatory cytokines amplify the local and systemic inflammatory responses, playing 
a significant role in conditions such as infections, trauma, and autoimmune diseases.103 Second, the combined action of 
TNF-α and IFN-γ has been shown to induce PANoptosis by activating the IRF1 and nitric oxide synthase 2 (NOS2) axis. 
This triggers the cleavage of GSDM family members, including GSDMD and GSDME, intensifying cell death and 
cytokine release.54 Additionally, the necroptosis pathway mediated by RIPK1/RIPK3 results in the phosphorylation and 
activation of MLKL. Activated MLKL disrupts membrane integrity by forming pores, and releasing cellular contents, 
including inflammatory cytokines.104 Caspase-8, apart from its role in apoptosis, also contributes to pyroptosis and 
necroptosis, influencing the production and release of inflammatory cytokines through its interactions with other 
apoptosis-related proteins.21,105 The excessive production of these inflammatory cytokines not only exacerbates local 
inflammatory responses but can also spread systemically, resulting in a full-scale inflammatory storm.

PANoptosis-induced activation of inflammasome and necroptosis leads to the release of inflammatory cytokines such 
as TNF-α, IL-1β, and IL-6, which are elevated in the serum of sepsis patients.106 These cytokines amplify inflammation, 
exacerbate tissue damage, and create a vicious cycle. Excessive production of inflammatory cytokines such as IL-1β, IL- 
6, and TNF-α during a cytokine storm not only directly damages tissues but also disrupts vascular barrier function. These 
cytokines activate endothelial cells, increase vascular permeability, and promote thrombosis, leading to severe complica-
tions like pulmonary edema and ARDS.107 Additionally, they activate immune cells, particularly neutrophils, which 
release large amounts of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs), further exacerbating 
tissue damage.108,109 Research has demonstrated the critical role of ZBP1, a key component of the PANoptosis in 
sepsis.110 The activation of PANoptosis leads to the release of inflammatory cytokines, contributing to AKI and 
exacerbating renal dysfunction.98,111 PANoptosis also drives acute lung injury (ALI) through pro-inflammatory pathways 
and inhibition of PANoptosis has been shown to alleviate ALI symptoms.94–96,99,100 Moreover, PANoptosis has been 
implicated in sepsis-associated intestinal dysfunction, myocardial suppression, liver dysfunction, and the development of 
multiple organ dysfunction syndrome (MODS), significantly increasing mortality in sepsis patients.54,97,101,111 In addition 
to pro-inflammatory cytokines, PANoptosis alters the secretion of anti-inflammatory cytokines. IL-10 and Transforming 
Growth Factor-beta (TGF-β) are known for their immunosuppressive and anti-inflammatory roles. Increased TGF-β 
expression during PANoptosis in gastric cancer, indicates the complexity of this process.112 Understanding the mechan-
isms of PANoptosis and its role in cytokine storms is crucial for developing effective therapeutic strategies to mitigate the 
severe outcomes of sepsis.

Effects of PANoptosis on Immune Cells
PANoptosis occurs in various pathological conditions, including sepsis and autoimmune diseases, and is often associated 
with a reduction in the number of immune cells. For instance, in sepsis, the numbers and functions of immune cells such 
as T lymphocytes, B lymphocytes, monocytes, and macrophages are significantly diminished due to PANoptosis.54 These 
cells are critical for immune responses and inflammation regulation, and their depletion impairs immune function, 
negatively affecting patient outcomes.25,106 PANoptosis not only reduces the overall number of immune cells but also 
impacts their differentiation. In systemic lupus erythematosus (SLE), for example, regulatory T cells (Tregs) decrease, 
while effector T cells increase, leading to immune imbalance. CD8+ T cells, known for their cytotoxic activity, often 
exhibit dysfunction in SLE patients, increasing their susceptibility to infections.113 Studies suggest that PANoptosis in 
T cells may contribute to the immune dysregulation seen in SLE.114 Antigen-presenting cells (APCs), such as macro-
phages and dendritic cells (DCs), are also affected by PANoptosis. DC depletion due to PANoptosis impairs antigen 
uptake, processing, and presentation, hindering T cell activation and immune responses.115 For example, DCs induce 
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cytokine production and PANoptosis while presenting cancer antigens to T cells.116 In sepsis, DC numbers in peripheral 
blood are reduced, compromising their antigen-presenting function and impairing T cell proliferation and 
differentiation.117,118 B cell subsets are also selectively depleted in sepsis, accompanied by selective Caspase-1, 3, 8 
expression.119 The Caspase family is known to be closely associated with PANoptosis.105,120

The mechanisms underlying immune cell exhaustion or dysfunction are complex and multifaceted. Dysregulation of cell 
death signaling pathways plays a crucial role. Under stimuli such as infection or tissue damage, excessive activation of 
inflammasomes increases the sensitivity of immune cells to PANoptosis, accelerating immune cell depletion.54 Key molecules 
in the inflammasome signaling pathway, including NLRP3, ASC, and Caspase-1, are often implicated. Mutations or abnormal 
expression of these molecules can disrupt inflammasome pathways, impairing immune cell survival and function. For 
instance, NLRP3 mutations are strongly associated with autoimmune diseases and can lead to hyperactivation of inflamma-
somes, resulting in immune cell exhaustion.52,121 Immune cell metabolic dysregulation is another contributing factor. The 
metabolic state of immune cells is essential for their function and survival. During PANoptosis, immune cell energy 
metabolism may become disrupted, leading to reduced Adenosine Triphosphate (ATP) production and mitochondrial 
dysfunction.74,75,122 As the primary energy source for cellular activities, ATP depletion affects immune cell proliferation, 
differentiation, and functionality. Mitochondrial dysfunction further exacerbates the situation by increasing ROS production, 
which damages cellular structures and functions. PANoptosis may also impact the synthesis and breakdown of metabolites 
such as amino acids and nucleotides, which are critical for protein synthesis, DNA replication, and repair.123,124 Dysregulation 
of these processes can impair immune cell functions and promote exhaustion. In addition, changes in the immune micro-
environment play a significant role. PANoptosis-induced cytokine storms result in the excessive release of inflammatory 
cytokines, altering the immune cell microenvironment.54 This suppresses immune cell proliferation and differentiation while 
accelerating exhaustion.125 PANoptosis may also lead to immune cell exhaustion, such as in T cells, B cells, and macrophages, 
thereby affecting their interactions. Immune cell interactions are crucial for maintaining immune homeostasis, and their 
disruption can lead to functional impairment and exhaustion.

PANoptosis in Organ Dysfunction
In addition to contributing to organ damage through cytokine storms, PANoptosis leads to multi-organ dysfunction via 
other complex mechanisms (Figure 2). In cardiomyocytes, PANoptosis is activated by PRRs such as ZBP1, which detect 

Figure 2 The immunogenic effects of PANoptosis and its role in sepsis. In sepsis, PANoptosis plays a critical role. It triggers an inflammatory cytokine storm, leading to the 
massive release of inflammatory factors such as IL-1β, IL-6, and TNF-α into the peripheral blood. It also causes a significant reduction in the number of immune cells in the 
peripheral blood and spleen, accompanied by functional impairment. Additionally, PANoptosis contributes to multi-organ dysfunction, with conditions such as myocardial 
depression, lung injury, and kidney injury being closely associated with its effects.
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viral-derived Z-nucleic acids or endogenous nucleic acids. This triggers inflammatory cell death, reducing cardiomyocyte 
numbers and releasing pro-inflammatory mediators that exacerbate local inflammation and impair cardiac function.101 In 
sepsis-induced ALI, PANoptosis is driven by the activation of ZBP1, RIPK1, NLRP3 inflammasomes, and STING 
pathways. This process induces metabolic dysfunction and oxidative stress, exacerbates inflammation and tissue damage, 
disrupts lung barrier integrity, increases vascular permeability, and leads to pulmonary edema, severely impairing gas 
exchange. Inhibition of PANoptosis with drugs can reduce inflammation and alleviate ALI.94–96,99,100 PANoptosis also 
plays a critical role in AKI. In renal tubular epithelial cells, PANoptosis is primarily mediated by the AIM2- 
PANoptosome. The formation of the PANoptosome consisting of ZBP1, ASC, and RIPK1 was involved in the 
development of kidney injury.98,111 Loss of tubular epithelial cells compromises tubular function, disrupting electrolyte 
balance and waste excretion, thereby exacerbating kidney failure. Studies have shown that PANoptosis plays a role in 
sepsis-associated encephalopathy. TLR9 activates PANoptosis through the p38 mitogen-activated protein kinase signal-
ing pathway, leading to the progression of SAE and increased mortality.97 In summary, PANoptosis significantly impacts 
organ function by inducing various forms of cell death in sepsis, ultimately worsening patient outcomes.

Therapeutic Strategies Targeting PANoptosis
Drug Development and Applications
Efforts to develop chemical drugs targeting key molecules or signaling pathways of PANoptosis are ongoing. Significant 
progress has been made in designing inhibitors for multiple pathways, reducing cell death.126

Several small-molecule compounds targeting RIPK1 and RIPK3 have been developed to inhibit necroptosis. 
Necrostatin and its derivatives (Necrostatin-3, Dimethyl Oxazolone, Necrostatin-4 Series) are specific RIPK1 inhibitors 
with significant effects in necroptotic diseases and inflammatory conditions.127–131 Other RIPK1 inhibitors include 
Sunitinib, Tozasertib, Butylated Hydroxyanisole, KW-244, and Benzoxazepine derivative GSK2982772.127,132–135 

Compounds such as GNF-7, GSK481, and ZJU-37 target both RIPK1 and RIPK3 to suppress necroptosis.136–138 

Molecules like GSK840, GSK843, GSK872, and AZD5423 regulate the RIPK3/MLKL pathway, further expanding the 
drug repertoire for necroptosis modulation.139,140 Disulfiram, Dimethyl fumarate (DMF), necrosulfonamide (NSA), and 
Bioorthogonally ACtivatable Base editor target GSDMD and GSDME to suppress pyroptosis in diseases including 
sepsis.94,141–144 VX765 and Acetyl-Tyrosine-Valine-Alanine-Aspartic Acid-Chloromethylketone (Ac-YVAD-CMK) inhi-
bit Caspase-1 activity.145,146 Additionally, Dickkopf-related protein 1 blocks GSDMD, Caspase-3, and RIPK3 to suppress 
PANoptosis.147

Drugs targeting PANoptosome components have shown promise in reducing cell death and inflammation. Melatonin 
suppresses PANoptosis by reducing the expression of key components such as NLRP3, ASC, caspase-1, GSDMD, 
RIPK1, RIPK3, and MLKL.148 Cucurbitacin E modulates PANoptosis in Adenoid Cystic Carcinoma cells by interacting 
with the PANoptosome in a ZBP1-dependent manner.149 Penehyclidine hydrochloride (PHC) decreases myocardial 
enzyme release and inhibits ZBP1 to alleviate PANoptosis.150 MiR-29a-3p down-regulates ZBP1, GSDMD caspase-3, 
caspase-8, and MLKL Reduces alveolar epithelial cell PANoptosis and down-regulates inflammatory factor expression 
such as TNF-α, IL-1β and IL-6 in the lung.95 OLT1177, MCC950, Tranilast, β-hydroxybutyrate, and 
3,4-Methylenedioxy-β-Nitrostyrene (MNS) effectively inhibit NLRP3 inflammasome activation.151–156 J114 disrupts 
NLRP3/AIM2 interactions with ASC, inhibiting inflammasome oligomerization.157 Obovatol suppresses NLRP3, 
AIM2 inflammasome activation and mitochondrial ROS production.158 AR1D1 interacts with ZBP1’s Zα2 domain to 
block its interaction with RIPK3 to inhibit PANoptosis, and drugs targeting this target are worth developing.159 Drugs 
targeting inflammatory signaling pathways also inhibit PANoptosis. TNF-α and IFN-γ neutralizing antibodies protect 
against sepsis and cytokine storm-related damage by preventing their synergistic effects.125 Emricasan, a broad-spectrum 
caspase inhibitor, reduces cell death and protects tissues in multiple diseases.160,161 Inhibitors of the JAK/STAT signaling 
pathway are considered potential therapeutic targets for PANoptosis. Among them, the JAK1/2 inhibitor Baricitinib, 
approved for Coronavirus Disease 2019 treatment, has demonstrated significant improvements in patient survival 
rates.162,163 Myricetin alleviates disseminated intravascular coagulation (DIC) in sepsis by reducing platelet activation 
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and PANoptosis.93 1-Methoxy-5-Methylphenazinium Methyl Sulfate (MPMS) and DMF inhibit mitochondrial DNA 
oxidation and PANoptosome formation, mitigating sepsis-related pathology.111

While these drugs have shown efficacy in preclinical models, challenges remain in translating them into clinical use. 
Diseases may require tailored combination therapies to target specific pathways effectively. Long-term effects and potential 
interference with normal immune responses need careful evaluation. For example, while TNF-α and IFN-γ antibodies reduce 
inflammation, their immunosuppressive effects may increase infection risk. The NLRP3 inhibitor MCC950 has demonstrated 
strong anti-inflammatory effects across various inflammatory disease models, effectively reducing cell death.152 Inhibitors 
targeting key PANoptosome components, such as Necrostatin, have shown therapeutic potential in models of ischemia- 
reperfusion injury, neurodegenerative disorders, and lung injury. Promising results in animal models may not directly apply 
to humans, necessitating rigorous clinical trials. In conclusion, although substantial progress has been made in PANoptosis- 
targeted drug development, further research is needed to optimize therapies for safe and effective clinical application.

The Potential Role of Traditional Chinese Medicine
In recent years, traditional Chinese medicine (TCM) and its active components have shown significant potential in 
regulating PANoptosis due to their multi-target and multi-pathway mechanisms. For instance, XiaoChaiHu Decoction 
(XCHD) has demonstrated protective effects in sepsis-induced cardiomyopathy. Active components of XCHD have been 
identified through network pharmacology as potential targets for PANoptosis, significantly suppressing LPS-induced 
myocardial inflammatory cytokines (eg, IL-6, IL-1β, TNF-α) and reducing PANoptosis-related gene expression.101 

Similarly, ursodeoxycholic acid (UDCA) alleviates sepsis-induced ALI by blocking the STING pathway, accompanied 
by suppression of PANoptosis.100 Other TCM components, such as baicalin and ginsenosides, exhibit antioxidant, anti- 
inflammatory, and anti-cell exhaustion effects. These properties help mitigate sepsis-induced tissue damage and improve 
prognosis. Baicalin blocks mitochondrial DNA release and oxidation, reducing intracellular ROS and mitochondrial ROS 
during PANoptosis. It also inhibits ZBP1-related PANoptosome assembly. In macrophages (Kupffer cells), PANoptotic 
signaling activation leads to liver damage in hemophagocytic lymphohistiocytosis (HLH) mouse models, which baicalin 
effectively mitigates by suppressing PANoptosis.59 Ginsenosides suppress NLRP3 inflammasome activation, reduce ASC 
oligomerization, and downregulate apoptosis, inflammation, and oxidative stress in sepsis models.164,165 Duhuo Jisheng 
Decoction may exert its effects in intervertebral disc degeneration by inhibiting the processes of apoptosis, necrosis, and 
pyroptosis.166 Scutellarin, another TCM component, protects against systemic inflammation, multi-organ damage, and 
PANoptosis in HLH mice by inhibiting mitochondrial damage and mtROS generation.122 Similarly, Shengxian Decoction 
(SXD) alleviates bleomycin-induced pulmonary fibrosis by inhibiting ZBP1-mediated PANoptosis. It targets pyroptosis, 
apoptosis, and necroptosis, effectively delaying or reversing early pathological changes.167 Achyranthes aspera extract, 
which downregulates genes and pathways related to DNA damage, oxidative stress, inflammation, and PANoptosis, while 
promoting survival-related signaling.168 Dachengqi Decoction (DDG), which inhibits excessive inflammation and 
PANoptosis, particularly upstream regulators like ZBP1 and RIPK1, to protect against LPS-induced ALI.96 Cranberry- 
derived exosomes significantly suppress PANoptosis in mice by suppressing ROS release and cytokine expression.169

In summary, TCM offers a promising approach for regulating PANoptosis and mitigating inflammation-related 
diseases by targeting multiple pathways and key molecules.

Conclusion and Future Perspectives
Sepsis, a critical global public health challenge, is closely linked to RCD. As an emerging form of RCD, PANoptosis 
plays a pivotal role in the pathophysiology of sepsis, influencing inflammation, immune cell function, and multi-organ 
damage. Targeting PANoptosis pathways has thus become a promising direction for developing new therapeutic 
strategies for sepsis. Both chemical drugs targeting key molecules or signaling pathways of PANoptosis and traditional 
Chinese medicines with multi-target, multi-pathway mechanisms have shown potential in regulating PANoptosis.

Despite these advances, the precise regulatory mechanisms of PANoptosis remain incompletely understood. Critical 
questions, such as the specific triggers of PANoptosis under different conditions, the assembly process of the 
PANoptosome, and its interactions with other cell death pathways, require further investigation. Further research is 
also needed to identify more precise molecular targets. The development of effective PANoptosis-targeted drugs is 
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another priority. Although some compounds have shown potential in inhibiting PANoptosis, their mechanisms of action 
remain unclear, and their safety and efficacy in clinical settings need validation. Future research should focus on 
identifying high-efficacy, highly specific PANoptosis inhibitors and evaluating their therapeutic potential through animal 
models and clinical trials. Additionally, integrating advanced technologies such as single-cell transcriptomics and 
bioinformatics will provide deeper insights into the role of PANoptosis in personalized medicine. This approach could 
pave the way for precision-targeted therapies, offering tailored treatment options for sepsis patients. In conclusion, as our 
understanding of PANoptosis continues to grow and innovative technologies advance, targeting PANoptosis holds the 
potential to significantly improve sepsis treatment outcomes and patient prognosis, offering hope in addressing this 
global health challenge.
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