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Purpose: Previous studies have shown altered paired brain functional connectivity (FC) in obstructive sleep apnea (OSA) patients, 
linked to cognitive impairment. This study utilized individual FC analysis to investigate the distinctive FC characteristics in OSA and 
evaluate their classification efficiency.
Methods: We included 82 moderate to severe OSA patients [41 OSA with normal cognition (OSA-NC), 41 OSA with mild cognitive 
impairments (OSA-MCI)] and 84 healthy control (HC). Resting-state fMRI data and clinical scale data were collected. Individual FC 
was derived using multi-task learning-based sparse convex alternating structure optimization, with feature selection via the least 
absolute shrinkage and selection operator. Support vector machine classifiers were used for OSA vs HC and OSA-NC vs OSA-MCI 
classification. The top 10 FC features contributing to classification were analyzed for group differences. A significance level of p < 
0.05 was considered statistically significant.
Results: The study results showed that individual FC achieved higher classification accuracy than traditional Pearson-based FC (OSA 
vs HC: 91.8% vs 79.5%; OSA-NC vs OSA-MCI: 81.3% vs 63.8%). The top 10 individual-specific FC networks contributing to 
classification were mainly located in the default mode network, attention network, showing significant inter-group differences in 
connectivity strength between the two groups.
Conclusion: This study identified static individualized FC characteristics in OSA patients with varying cognitive impairments. Based 
on individual FC, the classification accuracy of OSA-NC and OSA-MCI was significantly improved, the individual FC may serve as 
a potential neuroimaging marker for predicting OSA-MCI, providing an individual clinical diagnosis and treatment evaluation.
Keywords: obstructive sleep apnea, brain network, individual level, mild cognitive impairments, machine learning

Introduction
Sleep disorders is a major global public health issue, with obstructive sleep apnea (OSA) being one of the most common 
sleep disorders. The characteristics of OSA include chronic intermittent hypoxia, fragmented sleep, which may result in 
oxidative stress, neuroinflammation, and brain edema, leading to changes in neuroimaging markers such as brain gray 
matter volume, white matter integrity, brain functional activity, and network connectivity.1–3 Epidemiological studies 
have shown that untreated OSA can lead to cognitive impairments in learning, memory, executive function, attention, and 
visuospatial abilities.4 OSA is considered a potential independent risk factor for dementia, leading to severe decline in 
social function and quality of life.5 Therefore, early diagnosis and timely intervention are essential for improving 
prognosis of OSA patients. However, the significant heterogeneity in cognitive impairments among OSA patients 
poses challenging for early detection and timely intervention. As a result, the early personalized identification of 
cognitive impairments in OSA patients is critically importance for effective diagnosis and treatment.
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Neuroimaging techniques can reflect neurophysiological information, with resting-state fMRI being a commonly used 
neuroimaging technique. In recent years, many neuroimaging studies have found changes in brain functional activity and 
functional network connectivity in OSA patients. Previous studies have used amplitude of low-frequency fluctuation 
(ALFF) and regional homogeneity (ReHo) methods, and found abnormal spontaneous activity in multiple brain regions 
in OSA patients, primarily located in the frontal lobe, parietal lobe, cingulate gyrus, insula, thalamus, precuneus, and 
cerebellum, these abnormally brain active may be potential causes of cognitive impairments.6,7 Functional connectivity 
(FC) is a promising resting-state fMRI metric used to assess synchronization of neural activity between anatomically 
distinct brain regions. Seed-based FC analysis, which requires defining regions of interest (ROI) based on previous 
research or other experiments, was considered sensitive and reliable.8 Despite the need for a priori assumptions, seed- 
based FC was widely used to measure synchronous brain activity abnormalities in OSA patients. In previous OSA 
studies, seed regions were mainly concentrated in the posterior cingulate gyrus, hippocampus, insular cortex, and 
amygdala.9–11 These studies confirmed multiple FC changes in OSA patients, aiding in the understanding of cognitive 
impairments. In resting-state FC studies, previous research have found FC abnormalities between subregions of the insula 
and several other related brain regions, primarily involving cognition, emotion, and the sensorimotor network.12 

Additionally, abnormal FC between subregions of the hippocampus and the sensorimotor network and default mode 
network has been discovered, providing a new neuroimaging perspective on OSA-related cognitive and emotional 
impairments.13 However, using previously selected ROI as seed points may lead to biased results. In large-scale brain 
network analysis, studies have found abnormal connectivity in the default mode network, salience network, and central 
executive network in OSA patients.14 Independent component analysis (ICA) is a data-driven resting-state fMRI 
processing method that separates BOLD signals into multiple spatiotemporal components without requiring prior 
assumptions.15 Zhang et al employed ICA to identify seven brain networks and discovered that OSA selectively impacts 
resting-state FC within cognitive and sensorimotor-related brain networks, indicating its promising role as a valuable tool 
for monitoring neural impairments and tracking disease progression.16 Our previous studies combining ICA and dynamic 
FC analysis revealed altered temporal characteristics of dynamic FC in OSA with mild cognitive impairment patients, 
and the number of transitions was linked to cognitive status. Furthermore, OSA patients showed abnormal connectivity in 
high-level cognitive network, particularly in stronger connection states I involving the salience network, default mode 
network, and executive control network, which may provides new insights into cognitive dysfunction in OSA patients 
from the perspective of dynamic FC.17 However, this study ignored the impact of individual differences on brain 
networks. Based on the same sample size data of OSA patients, this study further explored the characteristics of 
individual FC networks, and conducted machine learning classification research based on individual functional networks. 
Graph theory analysis have shown that OSA patients have decreased clustering coefficients, local and global efficiency, 
and increased characteristic path length, aiding in understanding the disease from the perspective of the whole-brain 
functional network.18 Some researchers have used machine learning to classify OSA based on whole-brain network 
connectivity, finding that deep learning methods can assess brain network features related to OSA severity and daytime 
sleepiness, highlighting the importance of neuroimaging combined with machine learning in distinguishing OSA patients 
from healthy controls (HC).19 Researchers have classified based on whole-brain AAL 90 template FC in resting-state 
fMRI, achieving an accuracy rate of 83.33%, involving multiple internal and external resting-state functional networks.20 

Previous studies used voxel-based degree centrality features combined with machine learning methods to distinguish 
OSA patients with and without mild cognitive impairment. They found that the support vector machine (SVM) method 
achieved the highest classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic 
regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA 
patients with and without MCI.21 Machine learning has been applied to identify OSA patients, but these studies were 
conducted at the single-group level. These study results at the group level demonstrate changes in spontaneous brain 
activity, FC, and small-world properties, establishing brain-behavior relationships. These changes may reflect unique 
patterns of brain function in patients with OSA and could potentially serve as neuroimaging biomarkers for OSA. 
However, neurocognitive impairment in OSA patients represents a complex and multi-dimensional clinical problem. 
Currently, the assessment of different cognitive impairments primarily relies on subjective scales, which lack of 
individualized objective neuroimage markers.
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It is important to note that existing neuroimaging studies on OSA have produced inconsistent results due to the high 
variability of brain functional networks among individuals. Current fMRI studies on brain functional imaging in OSA 
patients predominantly rely on group-level analysis. While these analyses reveal significant relationships between brain 
connectivity and clinical characteristics, they fail to account for individual differences and cannot be used as imaging 
biomarkers for screening and diagnosis at the individual level. Studies have shown that when utilizing individual-specific 
functional region screening to characterize brain features, it is more reliable in capturing brain-behavior associations.22 

This individualized approach can more effectively capture the unique brain structure and function of each person, 
improving the understanding of brain-behavior relationships. However, if feature detection is based on traditional group- 
average brain templates, it may fail to accurately reflect differences between individuals. Some scholars have proposed 
that the Multi-Task Learning-based sparse Convex Alternating Structure Optimization (MTL-sCASO) method can 
resolve individual-specific FC in resting-state FC caused by individual differences.23 This approach can more accurately 
classify and predict individualized whole-brain FC patterns, and it has been reliably applied in Alzheimer’s disease 
classification. Therefore, we speculated that individual-level whole-brain FC may be a more effective biomarker for 
individual classification and diagnosis of OSA with different cognitive impairments.

Based on these, this study hypothesizes that individual-level whole-brain FC patterns can better distinguish between 
OSA and HC, as well as between OSA patients with normal cognition (OSA-NC) and MCI (OSA-MCI). To address this 
scientific question, we first utilized the MTL-sCASO technique to dissect individualed FC in OSA patients. We then 
employed machine learning methods to classify and identify HC, OSA-NC, and OSA-MCI. Next, we extracted the top 10 
FC features that contributed significantly to classification and compared inter-group differences in FC strength. This 
study offers unprecedented individual-level neuroimaging insights into FC alterations, addressing a critical gap in prior 
research. The findings may potential to serve as a novel neuroimaging biomarker for OSA, thereby the way for 
innovative approaches in personalized diagnosis and therapeutic interventions.

Materials and Methods
Subjects
All participants were recruited from the Sleep Monitoring Room of the Respiratory or Otorhinolaryngology Department 
at the First Affiliated Hospital of Nanchang University between May 2015 and June 2023. The diagnostic criteria for 
OSA followed the guidelines established by the American Academy of Sleep Medicine.

The inclusion criteria for OSA patients were as follows: 1) male, aged 20–60 years, right-handed; 2) Diagnosed with 
moderate to severe OSA as determined by polysomnography (PSG), with an apnea-hypopnea index (AHI) greater than 
15 events per hour; 3) First diagnosis of OSA, with no prior history of continuous positive airway pressure (CPAP) 
therapy or surgical intervention. For the healthy controls (HC), inclusion criteria were: 1) male, aged 20–60 years, right- 
handed; 2) PSG examination indicating an AHI of fewer than 5 events per hour.

Exclusion criteria for both OSA patients and HC included: 1) Presence of other sleep disorders; 2) History of diabetes, 
hypertension, hyperthyroidism, hypothyroidism, or other significant underlying conditions; 3) History of alcohol abuse, illicit 
drug use, or consumption of psychoactive medications; 4) Presence of central nervous system disorders such as epilepsy, 
dementia, schizophrenia, etc.; 5) Abuse of illegal substances or consumption of psychoactive agents; 6) Presence of organic 
lesions, including brain tumors or strokes, as identified through routine MRI scans; 7) MRI contraindications, such as the 
presence of a pacemaker or claustrophobia.

Polysomnography (PSG)
Prior to undergoing polysomnography (PSG) monitoring, all participants were advised against consuming alcohol or 
coffee. Each subject participated in overnight PSG, which took place from 10:00 PM to 6:00 AM the following morning, 
utilizing the Respironics LE series physiological monitoring system (Alice 5 LE, Respironics, Orlando, FL, USA). The 
PSG monitoring encompassed standard electroencephalography, electrocardiography, electromyography, snoring pat-
terns, body posture, nasal and oral airflow measurements, chest and abdominal respiratory movements, and oxygen 
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saturation (SaO2). Additionally, it recorded total sleep time, sleep latency, sleep efficiency, different sleep stages, arousal 
index, and respiratory events. For comprehensive details, please refer to our prior study.24

In accordance with the guidelines established by the American Academy of Sleep Medicine, hypopnea is characterized as 
a reduction in airflow by at least 30% lasting a minimum of 10 seconds, accompanied by a decrease in oxygen saturation of 4% 
or more. Sleep apnea is defined as a significant reduction in airflow of at least 90% lasting for at least 10 seconds. The apnea- 
hypopnea index (AHI) represents the total number of apnea and hypopnea events occurring per hour during sleep.

Neurocognitive Assessment
All participants underwent assessments using the Montreal Cognitive Assessment (MoCA) and the Epworth Sleepiness 
Scale (ESS). The MoCA evaluates a wide range of cognitive domains, including naming, visuospatial abilities, executive 
function, attention, language, delayed recall, abstraction, and orientation, serving as a measure of cognitive function. The 
maximum score for the MoCA is 30 points. For individuals with fewer than 12 years of education, one additional point is 
awarded to account for educational level. A MoCA score exceeding 26 indicates normal cognitive function, while scores 
between 18 and 25 suggest MCI.25 The ESS is a straightforward self-assessment questionnaire designed to evaluate 
daytime sleepiness. It consists of eight distinct scenarios, each rated on a scale from 0 to 3, yielding a total possible score 
between 0 and 24. A score greater than 6 on the ESS signifies the presence of excessive daytime sleepiness.26

MRI Data Scanning
All participants underwent imaging with a 3.0T MRI system equipped with an 8-channel phased array head coil 
(Siemens, Skyra, Germany). Prior to the MRI scan, subjects were instructed to close their eyes, refrain from engaging 
in any thoughts, and avoid falling asleep. Foam pads and earplugs were utilized to minimize head movement and reduce 
scanner noise during the imaging process. Throughout the scanning procedure, snoring was monitored, and participants 
were interviewed about any occurrences of sleep afterward.

Initially, conventional axial T2-weighted images were acquired with the following parameters: TR = 4000 ms, TE = 113 
ms, slice thickness = 5 mm, inter-slice gap = 1.5 mm, field of view (FOV) = 220×220 mm, matrix = 64, and number of slices 
= 19. Subsequently, three-dimensional high-resolution T1-weighted images were obtained using a different set of para-
meters: TR = 250 ms, TE = 2.46 ms, slice thickness = 5 mm, inter-slice gap = 1.5 mm, FOV = 220×220 mm, matrix = 64, 
and number of slices = 19. Finally, blood oxygen level-dependent (BOLD) fMRI data were collected using echo planar 
imaging sequences, with parameters set to TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, inter-slice gap = 1.2 mm, 
FOV = 230×230 mm, matrix = 64, and a total of 240 volumes. The acquired images were reviewed by two senior 
radiologists to exclude the presence of any macroscopic lesions or motion artifacts.

fMRI Data Preprocessing
The preprocessing of fMRI data was performed utilizing Statistical Parametric Mapping (SPM 12, https://www.fil.ion.ucl.ac. 
uk/spm/software/spm12/) and Data Processing & Analysis for Brain Imaging (DPABI, http://rfmri.org/DPABI) software, both 
of which were running on MATLAB 2018b (Mathworks, Natick, MA, USA). The preprocessing workflow comprised several 
key steps: 1) Conversion of imaging data from DICOM format to NII format; 2) Exclusion of the first 10 time points to 
facilitate participant adaptation to the scanning environment; 3) Application of slice timing correction and head motion 
correction, with the exclusion of subjects exhibiting maximum head motion displacement (x, y, z) exceeding 2.0 mm and 
maximum angular rotation (x, y, z) greater than 2.0 degrees; 4) Anatomical registration of the three-dimensional T1-weighted 
images was conducted using the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) 
method, which involved segmentation into gray matter, white matter, and cerebrospinal fluid; 5) Normalization of fMRI 
images to Montreal Neurological Institute (MNI) space was achieved using DARTEL, with resampling to voxel dimensions of 
3 mm × 3 mm × 3 mm; 6) Spatial smoothing of the images was performed using a 6 mm full width at half maximum (FWHM) 
Gaussian kernel, accompanied by removal of noise from the blood oxygen level-dependent (BOLD) signal through band-pass 
filtering in the frequency range of 0.01 to 0.08 hz. Ultimately, eight OSA patients were excluded based on head motion criteria, 
leading to the final analysis of 82 male OSA patients and 84 male HC.
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Functional Connectivity Construction
Based on the Dosenbach 160 atlas, the brain was divided into 160 ROIs. This atlas has been shown to ensure the 
functional significance of brain region nodes and reduce interference from signals of other functional brain regions. The 
coordinates of the center of each ROI were extracted as the center of a sphere with a radius of 5 mm, and the average 
time series of all voxels within this sphere were considered as the time series of that brain region. Using resting-state 
fMRI data, the Pearson correlation was calculated between the time series of every pair of brain regions to construct 
a whole-brain connectivity matrix, resulting in a whole-brain FC mapping.

In this study, the MTL-sCASO model was employed to estimate FC between brain regions within a regularized 
learning framework. Furthermore, these FC are decomposed into components that are shared among individuals and 
components that are specific to individuals. The model comprises three aspects: partial correlation estimation, convex 
alternating structure optimization, and sparse regularization. The formula for this model is as follows:

here, yn
p ¼ yn

p 1ð Þ; yn
p 2ð Þ; . . . :; yn

p tð Þ
h i

represents the representative time-series with t time points of the p th ROI for the 

n th subject; X n
p ¼ yn

1; . . . ; yn
p� 1; yn

pþ1; . . . ; yn
M

h i
is the set of all representative time series except for the p-th ROI, and 

Wp ¼ w1
p;w2

p; . . . :;wn
p

h i
is the weight vector representing the partial correlation between the p-th ROI and the other ROIs 

of the n-th subject. un
p 2 R M � 1ð Þ�1 denotes the individual-specific connection for the p-th ROI of the n-th subject. The 

regularization parameter ρ1 controls the brain network correlation; ρ2 represents the L2-norm regularization of the 
model, controlling the complexity of the model to prevent overfitting; ρ3 is a regularization parameter used to control the 
sparsity of functional brain networks. Detailed computational methods can be found in previous literature, which also 
validated the stability of individual-specific connections and shared connections.23

After obtaining the whole-brain FC map calculated by traditional Pearson correlation method and the individual- 
specific FC by MCL-SCASO, this study converted the Pearson-related FC and individual-specific FC of each subject by 
Fisher z value to obtain a whole-brain FC map satisfying the normal distribution.

Feature Extraction and Machine Learning Classification
After preprocessing, the data from the 160 ROIs used in this study resulted in 25,600 FC features, which may not be ideal 
for training classifiers. In order to identify features that contribute significantly to the classification structure, LASSO was 
used for feature dimensionality reduction and selection. This method automatically selects features that impact the target 
variable, shrinks the coefficients of irrelevant or redundant features to zero, achieving feature selection. The L1 
regularization term encourages sparsity in model parameters, reducing the number of features and achieving feature 
dimensionality reduction. It can also improve model efficiency and generalization ability, reduce over-fitting, and is 
a commonly used feature selection method.

Following LASSO feature dimensionality reduction and selection, this study employs linear SVM as the classification 
algorithm. The SVM is a supervised learning method that allows for extracting feature weights and demonstrating resilience to 
over-fitting. The SVM classifier was used for binary classification tasks such as HC vs OSA, and OSA-MCI vs OSA-NC. The 
classifier’s accuracy was measured using metrics such as accuracy, sensitivity, specificity, F1 score, and the Area Under the 
ROC Curve (AUC). Ten-fold cross-validation was adopted in this study, where the 166 subjects were divided into ten equal 
parts. Nine of these parts were randomly selected as the training set for model training, while the remaining part serves as the 
validation set. This process was repeated ten times to complete one full ten-fold cross-validation.

Functional Connectivity Feature Display
In SVM classifiers, each FC strength was assigned a weight that reflects its contribution to the classification, with higher 
weights indicating greater importance. The top 10 FCs contributing most significantly to the classification of each group 
were identified and visualized using BrainNet Viewer software. To compare the strength of these top 10 FCs between 
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groups, a two-sample t-test was performed, with age, BMI, and education level included as covariates. Statistical 
significance was set at p < 0.05, and the false discovery rate correction was applied to adjust for multiple comparisons.

Statistical Analysis
To assess whether the machine learning classification models derived from two distinct computational methods exhibit 
statistically significant differences, the Wilcoxon rank-sum test was employed to evaluate their statistical power. 
Performance metrics-including accuracy, sensitivity, specificity, F1 score, and area under the ROC curve (AUC)-are 
obtained for each model. Subsequently, the differences in performance metrics between the two models are calculated, 
and the rank sums of these differences are computed, randomized over 1000 iterations. Based on the calculated rank sum 
statistic and the predetermined significance level, we determine whether there is a statistically significant difference in the 
performance of the two classification models.

Validation Analysis
There are certain functional differences in different brain regions segmented by different brain templates. In order to 
avoid differences in classification effectiveness due to brain template selection, this study also utilized the Power 264 
brain region template to recompute individual-specific FC networks. Similar feature selection and classification methods 
were employed for the repeated experiments. The overall workflow was shown in Figure 1.

Results
Demographic and Clinical Data Analysis results
The results of inter-group clinical data analysis were shown in Table 1. The one-way analysis of variance showed that 
age, years of education and FD were not significantly different among the three groups, while BMI, AHI, minimum 
SaO2, average SaO2, AI, ESS and MoCA were significantly different among the three groups. Detailed results of the post- 
hoc t-test were shown in Table 1.

Figure 1 Individual functional connectivity analysis overall workflow. (1) Study participant; (2) fMRI data collection; (3) fMRI data preprocessing; (4) According to the brain 
atlas template, MTL-sCASO method was used to estimate the time series of different brain regions of individuals; (5) Construct individual functional connectivity matrix; (6) 
Machine learning LASSO feature screening for dimensionality reduction; (7) SVM for classification; (8) Extraction and display of the top 10 brain connection features that 
contributed to the classification.
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Functional Connection Network Display at Individual Level
According to the calculation of Pearson-related FC and MTL-sCASO individualized FC, we performed individual level 
display of the correlation connection graph, and found that there were similar connections and different FC patterns 
between individual FC and Pearson-related FC, which was shown in Figure 2.

Classification Performance Comparison
Under the Dosenbach 160 ROIs brain region, the classification performance of OSA and HC was shown in Table 2. The 
accuracy of individual specific FC was higher than that of traditional Pearson-related FC, and there was a statistical 
difference between the two groups. The ROC curve was shown in Figure 3.

Under the Dosenbach 160 brain region template, the classification performance of OSA-MCI and OSA-NC was 
compared, and it was found that the classification efficiency of individual specific FC was higher than that of Pearson- 
related FC (Table 3), and the ROC curve was shown in Figure 4.

Table 1 Demographic and Clinical Data of OSA and HC Group

Category HC 
(n=84)

OSA-NC (n=41) OSA-MCI (n=41) F value P0 value HC VS  
OSA-NC  
P1 value

HC VS  
OSA-MCI  
P2 value

OSA-NC VS  
OSA-MCI  
P3 value

Age, years 41.5±10.1 38.9±9.8 40.4±10.8 1.554 0.234 0.568 0.785 0.686

BMI, kg/m2 21.6±1.6 26.7±3.8 27.1±3.2 58.003 <0.001 <0.001 <0.001 0.915
Education, years 10.6±2.8 12.6±3.3 11.2±3.6 1.762 0.761 0.561 0.885 0.212

AHI, /h 2.4±1.3 50.3±19.0 53.2±23.1 130.605 <0.001 <0.001 <0.001 0.915

Min SaO2, % 93.7±3.3 68.2±12.7 72.2±11.3 84.325 <0.001 <0.001 <0.001 0.199
Mean SaO2, % 97.2±2.4 91.3±5.3 92.3±3.5 20.669 <0.001 <0.001 <0.001 0.799

AI, /hour 10.6±2.9 34.6±23.0 32.6±23.8 20.189 <0.001 <0.001 <0.001 0.945
ESS, scores 3.1±1.5 9.6±4.8 11.7±4.2 67.453 <0.001 <0.001 <0.001 0.033

MoCA, scores 27.3±1.8 27.4±1.2 22.5±2.8 85.766 <0.001 0.986 <0.001 <0.001

Mean FD, mm 0.20±0.11 0.24±0.12 0.25±0.12 1.751 0.178 0.55 0.234 0.967

Abbreviations: AHI, Apnea Hypopnea Index; SaO2, Oxygen Saturation; AI, Arousal Index; ESS, Epworth Sleep Scale; MoCA, Montreal Cognitive Assessment; FD, 
Framewise Displacement.

Figure 2 Pearson-related functional connectivity matrix (A) and individual-specific functional connectivity matrix (B) constructed from the 160 ROI brain region template of 
one subject, with similar and different functional connectivity patterns.
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Individual Functional Connection Classification Marker Display
When individual-specific FC were used as features, the top 10 brain connections that contributed the most to OSA-HC 
classification were extracted in the OSA-HC binary classification task and displayed using BrainNet Viewer software. 
The results were shown in Figure 5. The FC include left posterior cingulate gyrus and right anterior supplementary motor 
cortex, right anterior cingulate gyrus and right ventral medial prefrontal cortex, left inferior parietal cortex and right 
anterior prefrontal lobe, left inferior parietal lobule and right temporal lobe, left middle insula and sensorimotor area, left 
inferior cerebellum and left temporoparietal lobe, left inferior parietal lobule and right parietal lobe, right occipital lobe 
and left occipital lobe, and right superior temporal gyrus and left temporoparietal lobe. These 10 FC were compared 
between two groups, and statistical differences were found among two groups, except that there was no difference in the 
strength of the connections between left posterior cingulate gyrus and right anterior supplementary motor cortex, left 
inferior cerebellum and left temporoparietal association, right superior temporal gyrus and left temporoparietal, and right 
occipital lobe and left occipital lobe association (p < 0.05) (Figure 6).

When individual-specific FC were used as features, the top 10 brain connectivity that contributed the most to OSA- 
MCI and OSA-NC classification tasks were extracted and displayed using BrainNet Viewer software. The results were 
shown in Figure 7. It mainly showed FC between right superior temporal gyrus and left temporal lobe, right inferior 
cerebellum and right ventral frontal cortex, right occipital lobe and left inferior parietal lobule, right superior temporal 
gyrus and left basal ganglia, left occipital lobe and left temporal lobe, left posterior cerebellum and left temporal lobe, left 
temporal lobe and sensorimotor cortex, right middle cerebellum and medial frontal lobe, left angular gyrus and left 
temporal lobe, left temporoparietal union and left temporal lobe. At the same time, the differences between the 10 FC 
were compared, and those were statistical differences between the OSA-NC and OSA-MCI patients groups (Figure 8).

Validation Analysis Results
Under the Power 264 brain region template, this study compared the classification performance of OSA and HC, OSA- 
NC and OSA-MCI, found that the classification efficiency of individual-specific FC was higher than that of Pearson- 
related FC, with statistical differences. Specific indicators were shown in Tables  4 and 5.

Table 2 Distinguish the Performance of OSA and HC Classification based on 160 ROIs

160 ROIs Accuracy, % Sensitivity, % Specificity, % F1 score AUC

Pearson-related FC 79.5 68.3 91.7 0.786 0.80
Individual-specific FC 91.0 89.7 92.6 0.908 0.911

Figure 3 Classification ROC curves for OSA and HC based on Pearson-related functional connectivity (A) and individual specific functional connectivity (B).
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Discussion
This study, for the first time, utilized the MTL-sCASO method to analyze individual-specific functional brain network 
connectivity patterns in patients with OSA. Based on individual-specific FC, OSA can be distinguished from the HC 
population effectively. Furthermore, OSA-MCI can be distinguished from OSA-NC, with classification performance 
superior to traditional Pearson-related FC features. Although this study lacks external validation, it has been validated 
across different brain templates, indicating that individual-specific FC containing individual differences provide better 
classification performance for OSA patients. Additionally, this study extracted and visualized the top 10 brain region 
connections that contribute significantly to the classification of individual-specific connections. When distinguishing 
OSA from HC, the individual-specific FC strengths were predominantly observed in the DMN. In contrast, when 
distinguishing OSA-MCI from OSA-NC, they were mainly located in the attention network. This observation suggests 
that individual-specific FC may be more sensitive to the cognitive status of OSA patients, and these differing brain 
regions could potentially serve as neuroimaging biomarkers for OSA and OSA-MCI. Individual-specific FC might also 
hold potential as neuroimaging biomarkers for identifying OSA patients with MCI.

Differences in Individual-Specific FC Between OSA Patients and HC Group
Individual differences have been a hot topic in recent years in brain neuroscience research. The interactions between 
different brain regions in the human brain form the basis of cognitive behavior, and significant differences exist among 
individuals, which may be the reason for behavioral and cognitive differences in people. This study found that when 
distinguishing between OSA and HC groups, the classification performance of individual-specific FC was significantly 
superior to traditional Pearson-related FC, showing better accuracy, sensitivity, F1 score, and AUC of the ROC curve. 
Previous studies have shown that the accuracy of identification based on brain activation patterns is determined by intra- 
individual variability and inter-individual variability, with higher identification accuracy linked to reduced intra- 
individual variability and increased inter-individual variability.27 Other research has found that inter-individual differ-
ences in brain structure are related to inter-individual differences in behavioral phenotypes to some extent, similar to the 
differences in brain FC.28 In previous studies, classification of OSA and HC based on resting-state FC using the group- 
level ALL 90 brain region template only achieved an accuracy of 83.3%.20 Recently, researchers utilized DTI data 
combined with SVM and random forest models to classify OSA patients. The random forest model achieved 

Table 3 Distinguish the Performance of OSA-NC and OSA-MCI Classification based on 
160 ROIs

160 ROIs Accuracy, % Sensitivity, % Specificity, % F1 Score AUC

Pearson-related FC 63.8 85 50 0.607 0.674

Individual-specific FC 81.3 84.2 80.6 0.789 0.823

Figure 4 Classification ROC curves for OSA-NC and OSA-MCI based on Pearson-related functional connectivity (A) and individual specific functional connectivity (B).
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Figure 5 Individual specific connections for the classification of the top 10 functional connectivity of OSA and HC groups. 
Abbreviations: vmPFC, ventromedial prefrontal cortex; aPFC, anterior prefrontal cortex; vPFC, ventral prefrontal cortex; ACC, anterior cingulate cortex; preSMA, pre- 
supplementary motor cortex; SMA, sensorimotor area; midIN, middle insula; IPL, inferior parietal lobule; TPJ, temporo-parietal junction; OCC, occipital; PCC, post 
cingulate; supT, sup temporal; infCe, inferior cerebellum.

Figure 6 The top 10 individual-specific functional connectivity bar chart of differences between HC and OSA groups.
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Figure 7 Individual specific functional connectivity for the classification of the top 10 functional connectivity of OSA-HC and OSA-MCI. 
Abbreviations: mFC, medial frontal cortex; BG, basal ganglia; SMA, sensorimotor area; vFC, ventral frontal cortex; IPL, inferior parietal lobule; supT, sup temporal; AG, 
angular gyrus; OCC, occipital; medCe, med cerebellum; latCe, lat cerebellum; TPJ, temporo-parietal junction.

Figure 8 The top 10 individual specific functional connectivity bar chart of differences between OSA-NC and OSA-MCI groups.
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a classification accuracy of 0.73 and an AUC value of 0.85, demonstrating comparable precision to the SVM model 
(accuracy of 0.77, AUC of 0.84), which findings suggest that both models, leveraging brain DTI data, can function as 
efficient screening tools for OSA.29 In this study, the classification accuracy based on Pearson-related FC was 79.5%, 
consistent with findings from other studies. However, the accuracy achieved using individual-specific FC reached 91.0%, 
significantly surpassing that of traditional Pearson-related FC. This highlights that individual-specific FC offers a novel 
neuroimaging approach for the diagnosis and treatment of OSA patients at the individual level.

This study found that among the top 10 connected features in classification based on individual-specific FC were mainly 
located in the DMN, which includes core brain regions such as the posterior cingulate gyrus, medial prefrontal cortex, inferior 
parietal lobule, and precuneus, primarily involved in internal mental activities and introspection. Previous studies have 
documented abnormalities in spontaneous brain activity and network connectivity within the DMN of OSA patients.30 

Research has demonstrated that OSA patients exhibit abnormalities in the connectivity of the cerebellum-cerebral network, 
primarily involving disruptions in abnormalities connections between the prefrontal cortex networks of the DMN and control 
networks, additionally, changes in FC within DMN regions are associated with decreased verbal fluency in OSA patients.31 

Previous studies have also reported significant reductions in FC within and between the anterior and posterior DMN in OSA 
patients, alongside increased FC within the anterior DMN.32 Additionally, OSA patients exhibited decreased local efficiency and 
clustering coefficient, with altered nodal degrees in key DMN regions, these findings highlight the DMN as a vulnerable network 
in OSA patients.32 This study identified the DMN as the primary differential connectivity network distinguishing OSA from HC 
during the classification process. Furthermore, individual-level analysis confirmed that abnormal connectivity within the DMN 
may represent a vulnerable network in OSA patients, suggesting its potential as a neuroimaging biomarker for OSA. These 
findings are consistent with previous studies, reinforcing the critical role of the DMN in OSA-related neural alterations.

Differences in Individual-Specific FC Between OSA-MCI and OSA-NC Groups
Mild cognitive impairment (MCI) is a common complication in OSA patients, but it is often overlooked in the early stages of 
the disease, leading to delays in timely intervention measures. This study found that using individual-specific FC increased the 
classification accuracy of OSA-MCI from OSA with normal cognitive individuals from 68.3% to 81.3%, which can more 
effectively identify the MCI population and provide early screening for cognitive impairments in OSA patients.

Compared to OSA-NC, the individual FC abnormalities in OSA-MCI are mainly located in the temporo-parietal junction and 
ventral frontal cortex, inferior parietal lobule, cerebellum, basal ganglia, and left temporal lobe. The temporo-parietal junction 
and ventral frontal cortex are core brain regions of the ventral attention network, which acts as a “breaker” interrupting ongoing 
cognitive activities and responding to salient or distracting events.33 During cognitive tasks requiring attention, the activity of 
certain brain regions continues to increase. These brain regions are known as task-positive networks, and the ventral or dorsal 
attention systems that are active during directed attention are part of this system.34 Previous studies have demonstrated that the 
FC of specific networks, including the ventral attention network, is significantly reduced in OSA patients.35 Recent studies have 
revealed that patients with moderate to severe OSA exhibit reduced network switching rates, particularly within the DMN and 
ventral attention network. These disruptions in dynamic functional networks may represent a key underlying mechanism 
contributing to cognitive impairment in moderate to severe OSA patients.36 The left temporal lobe is mainly associated with 

Table 4 Distinguish the Performance of OSA and HC Classification based on 264 ROIs

264 ROIs Accuracy, % Sensitivity, % Specificity, % F1 Score AUC

Pearson-related FC 80.1 75.8 85.3 0.796 0.806
Individual-specific FC 95.1 94.4 95.9 0.949 0.952

Table 5 Distinguish the Performance of OSA-NC and OSA-MCI Classification based on 
264 ROIs

264 ROIs Accuracy, % Sensitivity, % Specificity, % F1 Score AUC

Pearson-related FC 66.3 78.3 56.1 0.623 0.672
Individual-specific FC 80.0 90.0 73.1 0.776 0.815
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functions such as hearing, language, and memory, and the temporal pole was associated with facial knowledge, facial perception, 
and memory. Previous studies have shown cortical atrophy in the temporal lobe of OSA patients, which may be a neurobiological 
marker of brain damage in OSA patients.37 The inferior parietal lobule was primarily associated with visual spatial perception, 
attention, planning and executing movements, as well as various sensory and cognitive functions.38 Previous studies have 
reported that OSA patients exhibit reduced cortical thickness in the bilateral inferior parietal lobule, temporal lobe, and basal 
ganglia regions. Additionally, a significant correlation was observed between declining sleep quality and cortical thinning in the 
basal and lateral temporal lobe, as well as the inferior parietal lobe.39 The cerebellum was previously thought to be primarily 
involved in motor coordination functions, but recent studies have shown that the cerebellum is involved in multiple cognitive 
domains including sensory-motor processing, emotion regulation, learning, and attention through extensive brain-cerebellar fiber 
connections.40 Previous fMRI studies have demonstrated heightened cerebellar activity during slow-wave sleep, synchronized 
with slow oscillations. In contrast, sleep deprivation leads to reduced resting-state functional connectivity (FC) between the 
cerebellum and various cortical regions, suggesting the cerebellum’s role in regulating the sleep-wake cycle and facilitating rapid 
eye movement sleep.41 This study observed abnormal FC between the cerebellum and the frontal and temporal lobes in OSA- 
MCI patients. These connectivity patterns may represent potential neuroimaging markers for OSA with MCI, offering insights 
that could support early clinical identification.

Limitations
This study still has some limitations. First, this study is a cross-sectional observational study. In future studies, longitudinal 
follow-up observations of changes in individualized functional connectivity in patients with OSA before and after CPAP 
treatment can be conducted. This would provide reliable imaging evidence for personalized treatment monitoring. Second, 
although this study effectively differentiated OSA-MCI patients from the OSA population at the individual-specific FC 
level, there are still challenges in using regression-based machine learning methods to reveal individual differences in 
disease severity or cognitive function, ie, predicting individual cognitive behaviors, the future should predict the outcome at 
the individual level is a good direction. Third, this study only included male OSA patients with aged 20–60 years, which 
may affect the generalizability of our findings, particularly considering the differences in OSA incidence and complications 
between males and females. Therefore, future research should expand the sample size to include female and elderly OSA 
patients, further enhancing the applicability of the results. Finally, due to technical reasons, this study used estimated 
individual brain region time series for individual-specific FC and constructed individual brain graph FC matrices, which are 
still challenging for brain region segmentation at the individual level. Individual differences in genetic background may 
also affect the characterization of individual differences in patients.42 Future research can implement individual-level 
whole-genome analysis and joint analysis of functional MRI data to reveal the potential genetic basis of the disease.

Conclusion
This study employed individual-specific FC methods to investigate whole-brain functional connectivity patterns in OSA 
patients. By integrating machine learning models, it significantly enhanced the classification accuracy between OSA and 
HC, as well as between OSA-MCI and OSA-NC. The findings revealed that individual-specific FC holds substantial 
potential as neuroimaging biomarkers for the classification and diagnosis of OSA. This approach not only aids in the 
early screening of OSA patients with MCI symptoms but also supports personalized clinical diagnosis and treatment 
evaluation, offering valuable neuroimaging markers for tailored diagnostic and therapeutic strategies.

Data Sharing Statement
The original contributions presented in the study are included in the article. Further inquiries can be directed to the 
corresponding author.

Ethics Statement
We obey the principles of the Declaration of Helsinki. The study was approved by the Medical Ethics Committee of the 
First Affiliated Hospital of Nanchang University. The participants signed written informed consent forms, in accordance 
with the Declaration of Helsinki.

Nature and Science of Sleep 2025:17                                                                                               https://doi.org/10.2147/NSS.S504512                                                                                                                                                                                                                                                                                                                                                                                                    971

Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Author Contributions
All authors made significant contributions to this work, from study conception and design to data acquisition, analysis, 
and interpretation. Each participated in drafting and revising the manuscript, approved the final version for publication, 
and agreed on the submission to this journal. All authors take full responsibility for the content of this article. The 
individual contributions of the authors, based on the CRediT taxonomy, are as follows: Haijun Li: Conceptualization, 
Methodology, Funding Acquisition, Writing, Original Draft Preparation, Review. Jin Hong: Methodology, Investigation, 
Writing, Review & Editing, Supervision. Yudong Zhang: Data Collection, Formal Analysis, Visualization, Writing, 
Review & Editing. Lifeng Li: Software, Validation, Writing, Review & Editing. Ting Long: Data Curation, Resources, 
Investigation, Writing, Review & Editing. Ling Huang: Data Curation, Investigation, Writing, Review & Editing. Yumen 
Liu: Data Collection, Supervision, Writing, Review & Editing. Zhijiang Wan: Formal Analysis, Visualization, Project 
Administration, Writing, Review & Editing, Supervision. Dechang Peng: Conceptualization, Supervision, Resources, 
Funding Acquisition, Writing, Review & Editing.

Funding
This study was supported by the National Natural Science Foundation of China (Grant No. 81860307), the Key Research 
and Development Projects of Jiangxi Province, China (Grant No. 20243BBI91031), the Natural Science Foundation of 
Jiangxi, People’s Republic of China (Grant Nos. 20232BAB212029, 20202BABL216038), Science and technology 
project of Jiangxi Provincial Administration of Traditional Chinese Medicine (Grant No. 2023A0278), and the 
Clinical Research Center For Medical Imaging in Jiangxi Province (Grant No. 20223BCG74001).

Disclosure
The authors declare no potential conflicts of interest in this work. The authors declare that the study was conducted in the 
absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Andre C, Rehel S, Kuhn E, et al. Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults: 

a secondary analysis of a randomized clinical trial. JAMA Neurol. 2020;77(6):716–724. doi:10.1001/jamaneurol.2020.0311
2. Baril AA, Gagnon K, Brayet P, et al. Gray matter hypertrophy and thickening with obstructive sleep apnea in middle-aged and older adults. Am 

J Respir Crit Care Med. 2017;195(11):1509–1518. doi:10.1164/rccm.201606-1271OC
3. Bubu OM, Pirraglia E, Andrade AG, et al. Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes. Sleep. 2019;42(6):z48. 

doi:10.1093/sleep/zsz048
4. Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: a systematic review integrating 

three decades of multidisciplinary research. Sleep Med Rev. 2020;50:101250. doi:10.1016/j.smrv.2019.101250
5. Aini N, Chu H, Banda KJ, et al. Prevalence of sleep-related breathing disorders and associated risk factors among people with dementia: a 

meta-analysis. Sleep Med. 2023;103:51–61. doi:10.1016/j.sleep.2023.01.020
6. Li HJ, Dai XJ, Gong HH, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by 

resting-state functional MRI. Neuropsychiatr Dis Treat. 2015;11:207–214. doi:10.2147/NDT.S73730
7. Peng DC, Dai XJ, Gong HH, et al. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state 

functional magnetic resonance imaging study. Neuropsychiatr Dis Treat. 2014;10:1819–1826. doi:10.2147/NDT.S67805
8. Hampson M, Peterson BS, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 

2002;15(4):247–262. doi:10.1002/hbm.10022
9. Zhang Q, Qin W, He X, et al. Functional disconnection of the right anterior insula in obstructive sleep apnea. Sleep Med. 2015;16(9):1062–1070. 

doi:10.1016/j.sleep.2015.04.018
10. Song X, Roy B, Kang DW, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea. Brain 

Behav. 2018;8(6):e994. doi:10.1002/brb3.994
11. Park B, Palomares JA, Woo MA, et al. Aberrant insular functional network integrity in patients with obstructive sleep apnea. Sleep. 2016;39 

(5):989–1000. doi:10.5665/sleep.5738
12. Kong L, Li H, Shu Y, et al. Aberrant Resting-State Functional Brain Connectivity of Insular Subregions in Obstructive Sleep Apnea. Front 

Neurosci. 2021;15:765775. doi:10.3389/fnins.2021.765775
13. Liu X, Chen L, Duan W, et al. Abnormal functional connectivity of hippocampal subdivisions in obstructive sleep apnea: a resting-state functional 

magnetic resonance imaging study. Front Neurosci. 2022;16:850940. doi:10.3389/fnins.2022.850940
14. Khazaie H, Veronese M, Noori K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: a systematic review of the resting-state 

fMRI. Neurosci Biobehav Rev. 2017;77:219–231. doi:10.1016/j.neubiorev.2017.03.013
15. Hu G, Zhang Q, Waters AB, et al. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for 

reliable functional magnetic resonance imaging data decomposition. J Neurosci Methods. 2019;325:108359. doi:10.1016/j.jneumeth.2019.108359
16. Zhang Q, Wang D, Qin W, et al. Altered resting-state brain activity in obstructive sleep apnea. Sleep. 2013;36(5):651–659. doi:10.5665/sleep.2620

https://doi.org/10.2147/NSS.S504512                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Nature and Science of Sleep 2025:17 972

Li et al                                                                                                                                                                         

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1001/jamaneurol.2020.0311
https://doi.org/10.1164/rccm.201606-1271OC
https://doi.org/10.1093/sleep/zsz048
https://doi.org/10.1016/j.smrv.2019.101250
https://doi.org/10.1016/j.sleep.2023.01.020
https://doi.org/10.2147/NDT.S73730
https://doi.org/10.2147/NDT.S67805
https://doi.org/10.1002/hbm.10022
https://doi.org/10.1016/j.sleep.2015.04.018
https://doi.org/10.1002/brb3.994
https://doi.org/10.5665/sleep.5738
https://doi.org/10.3389/fnins.2021.765775
https://doi.org/10.3389/fnins.2022.850940
https://doi.org/10.1016/j.neubiorev.2017.03.013
https://doi.org/10.1016/j.jneumeth.2019.108359
https://doi.org/10.5665/sleep.2620


17. Li H, Li L, Li K, et al. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: a 
data-driven functional magnetic resonance imaging study. Front Aging Neurosci. 2022;14:977917. doi:10.3389/fnagi.2022.977917

18. Huang Y, Liu Y, Zhao D, et al. Small-world properties of the whole-brain functional networks in patients with obstructive sleep apnea-hypopnea 
syndrome. Sleep Med. 2019;62:53–58. doi:10.1016/j.sleep.2018.08.037

19. Lee MH, Lee SK, Thomas RJ, et al. Deep learning-based assessment of brain connectivity related to obstructive sleep apnea and daytime 
sleepiness. Nat Sci Sleep. 2021;13:1561–1572. doi:10.2147/NSS.S327110

20. Hou A, Pang X, Zhang X, et al. Widespread aberrant functional connectivity throughout the whole brain in obstructive sleep apnea. Front Neurosci. 
2022;16:920765. doi:10.3389/fnins.2022.920765

21. Liu X, Shu Y, Yu P, et al. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: a machine learning 
analysis. Front Neurol. 2022;13:1005650. doi:10.3389/fneur.2022.1005650

22. Li M, Wang D, Ren J, et al. Performing group-level functional image analyses based on homologous functional regions mapped in individuals. 
PLoS Biol. 2019;17(3):e2007032. doi:10.1371/journal.pbio.2007032

23. Wang X, Li Q, Zhao Y, et al. Decomposition of individual-specific and individual-shared components from resting-state functional connectivity 
using a multi-task machine learning method. Neuroimage. 2021;238:118252. doi:10.1016/j.neuroimage.2021.118252

24. Li H, Li L, Kong L, et al. Frequency-specific regional homogeneity alterations and cognitive function in obstructive sleep apnea before and after 
short-term continuous positive airway pressure treatment. Nat Sci Sleep. 2021;13:2221–2238. doi:10.2147/NSS.S344842

25. Carson N, Leach L, Murphy KJ. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry. 2018;33 
(2):379–388. doi:10.1002/gps.4756

26. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–545. doi:10.1093/sleep/14.6.540
27. Li L, Wei Y, Zhang J, et al. Gene expression associated with individual variability in intrinsic functional connectivity. Neuroimage. 

2021;245:118743. doi:10.1016/j.neuroimage.2021.118743
28. Genon S, Eickhoff SB, Kharabian S. Linking interindividual variability in brain structure to behaviour. Nat Rev Neurosci. 2022;23(5):307–318. 

doi:10.1038/s41583-022-00584-7
29. Pang B, Doshi S, Roy B, et al. Machine learning approach for obstructive sleep apnea screening using brain diffusion tensor imaging. J Sleep Res. 

2023;32(1):e13729. doi:10.1111/jsr.13729
30. Chang YT, Chen YC, Chen YL, et al. Functional connectivity in default mode network correlates with severity of hypoxemia in obstructive sleep 

apnea. Brain Behav. 2020;10(12):e1889. doi:10.1002/brb3.1889
31. Park HR, Cha J, Joo EY, et al. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with 

cognitive function. Sleep. 2022;45(1). doi:10.1093/sleep/zsab209
32. Chen L, Fan X, Li H, et al. Topological reorganization of the default mode network in severe male obstructive sleep apnea. Front Neurol. 

2018;9:363. doi:10.3389/fneur.2018.00363
33. Suo X, Ding H, Li X, et al. Anatomical and functional coupling between the dorsal and ventral attention networks. Neuroimage. 2021;232:117868. 

doi:10.1016/j.neuroimage.2021.117868
34. Zhao P, Yu RS, Liu Y, et al. The functional hierarchy of the task-positive networks indicates a core control system of top-down regulation in visual 

attention. J Integr Neurosci. 2021;20(1):43–53. doi:10.31083/j.jin.2021.01.297
35. He Y, Shen J, Wang X, Wu Q, Liu J, Ji Y. Preliminary study on brain resting-state networks and cognitive impairments of patients with obstructive 

sleep apnea-hypopnea syndrome. BMC Neurol. 2022;22(1):456. doi:10.1186/s12883-022-02991-w
36. Huang Y, Shen C, Zhao W, et al. Multilayer network analysis of dynamic network reconfiguration in patients with moderate-to-severe obstructive 

sleep apnea and its association with neurocognitive function. Sleep Med. 2023;112:333–341. doi:10.1016/j.sleep.2023.10.035
37. Gao J, Cao J, Chen J, et al. Brain morphology and functional connectivity alterations in patients with severe obstructive sleep apnea. Sleep Med. 

2023;111:62–69. doi:10.1016/j.sleep.2023.08.032
38. Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains. Elife. 2021;10. 

doi:10.7554/eLife.63591
39. Joo EY, Jeon S, Kim ST, et al. Localized cortical thinning in patients with obstructive sleep apnea syndrome. Sleep. 2013;36(8):1153–1162. 

doi:10.5665/sleep.2876
40. Jacobi H, Faber J, Timmann D, et al. Update cerebellum and cognition. J Neurol. 2021;268(10):3921–3925. doi:10.1007/s00415-021-10486-w
41. Zhang Y, Yang Y, Yang Y, et al. Alterations in cerebellar functional connectivity are correlated with decreased psychomotor vigilance following 

total sleep deprivation. Front Neurosci. 2019;13:134. doi:10.3389/fnins.2019.00134
42. Gu Z, Jamison KW, Sabuncu MR, et al. Heritability and interindividual variability of regional structure-function coupling. Nat Commun. 2021;12 

(1):4894. doi:10.1038/s41467-021-25184-4

Nature and Science of Sleep                                                                                                       

Publish your work in this journal 
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, 
including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders 
and therapy, and strategies to optimize healthy sleep. The manuscript management system is completely online and includes a very quick and fair 
peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/nature-and-science-of-sleep-journal

Nature and Science of Sleep 2025:17                                                                                                     973

Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.3389/fnagi.2022.977917
https://doi.org/10.1016/j.sleep.2018.08.037
https://doi.org/10.2147/NSS.S327110
https://doi.org/10.3389/fnins.2022.920765
https://doi.org/10.3389/fneur.2022.1005650
https://doi.org/10.1371/journal.pbio.2007032
https://doi.org/10.1016/j.neuroimage.2021.118252
https://doi.org/10.2147/NSS.S344842
https://doi.org/10.1002/gps.4756
https://doi.org/10.1093/sleep/14.6.540
https://doi.org/10.1016/j.neuroimage.2021.118743
https://doi.org/10.1038/s41583-022-00584-7
https://doi.org/10.1111/jsr.13729
https://doi.org/10.1002/brb3.1889
https://doi.org/10.1093/sleep/zsab209
https://doi.org/10.3389/fneur.2018.00363
https://doi.org/10.1016/j.neuroimage.2021.117868
https://doi.org/10.31083/j.jin.2021.01.297
https://doi.org/10.1186/s12883-022-02991-w
https://doi.org/10.1016/j.sleep.2023.10.035
https://doi.org/10.1016/j.sleep.2023.08.032
https://doi.org/10.7554/eLife.63591
https://doi.org/10.5665/sleep.2876
https://doi.org/10.1007/s00415-021-10486-w
https://doi.org/10.3389/fnins.2019.00134
https://doi.org/10.1038/s41467-021-25184-4
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress

	Introduction
	Materials and Methods
	Subjects
	Polysomnography (PSG)
	Neurocognitive Assessment
	MRI Data Scanning
	fMRI Data Preprocessing
	Functional Connectivity Construction
	Feature Extraction and Machine Learning Classification
	Functional Connectivity Feature Display
	Statistical Analysis
	Validation Analysis

	Results
	Demographic and Clinical Data Analysis results
	Functional Connection Network Display at Individual Level
	Classification Performance Comparison
	Individual Functional Connection Classification Marker Display
	Validation Analysis Results

	Discussion
	Differences in Individual-Specific FC Between OSA Patients and HC Group
	Differences in Individual-Specific FC Between OSA-MCI and OSA-NC Groups

	Limitations
	Conclusion
	Data Sharing Statement
	Ethics Statement
	Author Contributions
	Funding
	Disclosure

