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Background: Delirium superimposed on dementia (DSD) is a severe complication in older adults with dementia, marked by 
fluctuating cognition, inattention, and altered consciousness. Detection is challenging due to symptom overlap, yet it contributes to 
cognitive decline, prolonged hospitalization, and increased mortality. Identifying key risk factors and developing an accurate 
prediction model is crucial for timely intervention. This study aimed to establish a machine learning-based model to predict delirium 
risk, focusing on significant predictors to aid clinical decision-making.
Methods: We prospectively collected clinical data from 636 older dementia patients. Five machine learning algorithms—Extreme 
Gradient Boosting (XGB), Random Forest (RF), Multilayer Perceptron (MLP), Categorical Boosting (CB), and Logistic Regression 
(LR)—were used to construct prediction models. Feature importance was analyzed using SHapley Additive exPlanations (SHAP) to 
identify key risk factors. Data included demographic information, biochemical parameters, comorbidities, medication history, and 
Visual Analogue Scale (VAS) scores.
Results: The final analysis included 636 older dementia patients, with a mean age of 78.2 ± 6.3 years, of whom 187 (29.4%) 
developed delirium during hospitalization. The XGB model demonstrated the best performance, achieving the highest area under the 
receiver operating characteristic curve (0.930), accuracy (0.870), F1 score (0.892), and area under the precision-recall curve (0.989). 
The Brier score for the XGB model was 0.08. The SHAP method identified cerebrovascular disease, sedative drug use, hemoglobin 
levels, VAS score ≥4, superoxide dismutase, diabetes, hsCRP, hypertension, family presence, and hyperlipidemia as the most 
significant risk factors for delirium. The top 10 variables were used to construct a compact XGB model, which also exhibited good 
predictive performance.
Conclusion: This study developed a machine learning-based prediction model for delirium risk in older dementia patients, with the 
XGB model demonstrating the best performance. The identified key risk factors provide insights for early intervention, potentially 
improving delirium management in clinical practice.
Keywords: delirium, machine learning, dementia, older, prediction, risk factors

Introduction
China’s rapidly aging population is projected to reach 487 million individuals aged ≥60 years by 2039.1 This demo-
graphic shift will result in a substantial increase in the proportion of those aged 80 and above, highlighting the rising 
significance of older adults in the population. Delirium, a common neuropsychiatric syndrome characterized by acute 
cognitive decline, inattention, and altered consciousness, poses significant risks to older adults, particularly those with 
pre-existing dementia.2–4 While delirium superimposed on dementia (DSD) represents a distinct clinical phenotype, the 
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broader issue of delirium in older patients with dementia remains understudied, with limited predictive tools for early 
intervention.

Delirium is a major contributor to adverse outcomes, including prolonged hospitalization, functional decline, and 
mortality.5 However, its diagnosis remains challenging due to overlapping symptoms with dementia and underrecognition 
in clinical settings.6–9 The ICD-code for the diagnosis of delirium is ICD-10 F05, which is commonly used in clinical 
practice. However, a study by Chuen et al5 reported that the ICD-10 codes for delirium (eg, F05) exhibit a sensitivity of 
46.3% and a specificity of 99.6%. This finding underscores the limitation of ICD-10 coding in fully capturing delirium, 
especially in populations with pre-existing cognitive impairment, where symptoms may be overlooked or misattributed to 
dementia. This diagnostic gap highlights the urgency to develop accurate prediction models that can identify high-risk 
patients before delirium onset.

Previous studies have identified risk factors for DSD, such as cerebrovascular disease, sedative use, and inflammation 
markers.10 However, these investigations were limited by small sample sizes, retrospective designs, and narrow variable 
selection (eg, excluding socioeconomic factors). Additionally, most studies focused exclusively on DSD rather than 
general delirium in dementia patients, restricting their clinical applicability. To address these gaps, this study aimed to: 1) 
develop a machine learning-based prediction model for delirium risk in older dementia patients; 2) identify key risk 
factors using comprehensive clinical data; and 3) validate the model’s performance across multiple algorithms.

We leveraged a large, prospectively collected dataset of 636 hospitalized dementia patients to construct and compare 
five machine learning models (Extreme Gradient Boosting [XGB], Random Forest [RF], Multilayer Perceptron [MLP], 
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Categorical Boosting [CB], and Logistic Regression [LR]). By incorporating demographic, biochemical, and clinical 
variables, we sought to improve predictive accuracy and identify modifiable risk factors. This study advances previous 
work by using a robust prospective design, diverse algorithm comparison, and interpretability tools (SHapley Additive 
exPlanations [SHAP]) to enhance clinical translation.

Methods
Study Population and Data Sources
This prospective study aimed to develop a machine learning-based risk prediction model for delirium in older patients with 
dementia. During the study period, a total of 671 patients were initially screened for eligibility. Among them, 35 patients 
were excluded according to the criteria: 15 cases transferred to other hospitals (primary reasons: need for specialized 
neurological care, n=8; family request due to personal reasons, n=7), 9 cases died during hospitalization (primary causes: 
advanced dementia-related complications, n=5; acute cardiovascular events, n=4), and 11 cases had ≥90% missing data in 
key variables. Finally, a total of 636 patients aged 65 years or older, diagnosed with dementia (The Tenth Revision of 
International Classification of Diseases, ICD-10 code G30), were recruited from the International Department of China-Japan 
Friendship Hospital between January 2020 and December 2023. All participants were hospitalized for the first time due to 
dementia. Comprehensive clinical data were collected for each patient, including demographic information (age, gender, 
body mass index [BMI], body temperature), biochemical parameters (C-reactive protein [CRP], SOD), comorbidities 
(hypertension, diabetes, hyperlipidemia, cardiovascular disease, cerebrovascular disease, renal insufficiency, anemia, and 
hypoalbuminemia), smoking and alcohol consumption history, presence of accompanying family members, surgical history 
during hospitalization, Visual Analogue Scale (VAS) scores, use of sedative medications, and placement of drainage tubes. 
For laboratory data, we used the results of the first tests conducted after the dementia diagnosis. To construct an accurate risk 
prediction model, we specifically focused on delirium onset during hospitalization, recording whether delirium occurred. The 
study was approved by the ethics committee of China-Japan Friendship Hospital and conducted in accordance with the 
principles of the Declaration of Helsinki. As the study involves elderly dementia patients, informed consent was obtained 
from their legal guardians or family members before participation.

Data Preparation
To mitigate potential bias, all variables were blinded. Categorical variables were encoded as 0 and 1, while continuous 
variables were standardized using the Z-score method. Laboratory results were categorized as 1, 2, or 3, corresponding to 
values below the normal range, within the normal range, and above the normal range, respectively. Variables with 
missing data exceeding 90%, those with a single dominant value accounting for over 90%, or those with a coefficient of 
variation below 0.1 were excluded. Missing values were then imputed using a random forest (RF) algorithm, and Lasso 
regression was applied for variable selection.

Algorithms for Machine Learning
To develop the optimal prediction model, we employed five prominent machine learning algorithms: XGB, RF, 
Multilayer Perceptron (MLP), Categorical Boosting (CB), and Logistic Regression (LR). These algorithms were selected 
for their predictive capabilities in model development.

XGB
XGB is an ensemble classification method that leverages regression trees, designed to offer both fast training and 
superior predictive accuracy.11 It enhances model performance by utilizing a gradient boosting technique, where weak 
learners are combined iteratively to improve predictions. XGB adjusts residuals from previous iterations to minimize 
errors, optimizing the model’s overall precision. Additionally, it incorporates an internal regularization mechanism, 
which helps prevent overfitting, ensuring the model’s generalizability. This combination of regularization and iterative 
optimization contributes to XGB’s robustness and effectiveness in handling complex datasets.
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RF
RF is a powerful ensemble learning technique that constructs a large collection of decision trees, often ranging from 
hundreds to thousands, to solve classification and regression problems.12 Each tree in the forest is built using a random 
subset of the data and features, which promotes diversity among the trees and enhances the model’s predictive power. 
The final prediction is made by taking the majority vote (in classification tasks) or averaging the outputs (in regression 
tasks) of all individual trees. One of the key strengths of the RF algorithm is its robustness and stability, which makes it 
highly effective in handling small amounts of noise and outliers in the data. Due to its ensemble nature, RF is less prone 
to overfitting compared to single decision trees, especially when the number of trees is sufficiently large.

MLP
The MLP is a type of machine learning algorithm that utilizes feedforward neural networks, which function similarly to 
the way human neurons process information.13 In its architecture, the MLP is composed of several layers, including an 
input layer that receives the data, one or more hidden layers that process the information, and an output layer that 
generates the final result.14 Each layer contains multiple neurons that work in unison to learn complex patterns from the 
input data. The layers are connected through weighted links, with the network adjusting these weights during the training 
process to improve accuracy.

CB
CB is a machine learning classification technique that utilizes oblivious trees, a specialized tree structure designed to 
handle classification tasks in an efficient and interpretable way.15 Unlike traditional decision trees, oblivious trees ensure 
that the same feature is used for all branches at each level of the tree, thereby reducing the model’s complexity. This 
approach effectively mitigates common challenges in machine learning models, such as gradient bias and prediction shift, 
which can contribute to overfitting. By addressing these issues, CB enhances the model’s overall performance, leading to 
improved accuracy and stronger generalization capabilities.

LR
An LR model is a statistical tool used to examine the relationship between one or more independent variables and 
a binary dependent variable, often referred to as the outcome or response.16 It is particularly useful for predicting the 
probability of a binary event occurring, such as the presence or absence of a disease, success or failure, or other 
dichotomous outcomes. LR models offer a straightforward interpretation, where the estimated coefficients represent the 
impact of each predictor on the odds of the outcome occurring.17 Due to its simplicity and robustness, LR has been 
extensively applied across various medical research domains, including epidemiology, clinical studies, and public health, 
to model and understand complex relationships between risk factors and health outcomes.

Algorithm Comparison
LR offers the highest interpretability due to its linear coefficients, making it particularly well-suited for scenarios that 
require transparent risk factor analysis. RF and XGB provide a balance of interpretability through feature importance 
metrics (such as SHAP values) while maintaining strong generalization capabilities. CB exhibits robustness against 
gradient bias, though it may require more tuning for optimal performance. MLP, a deep learning model, has the lowest 
interpretability but excels in capturing complex non-linear relationships. However, it demands larger datasets and higher 
computational resources to prevent overfitting.

In terms of computational efficiency, LR and CB are the most cost-effective, followed by RF. XGB and MLP are 
more computationally intensive, particularly for large-scale datasets. Regarding sample size requirements, MLP and 
XGB perform best with datasets larger than 500 samples, while LR and RF remain stable even with smaller cohorts. 
These characteristics make LR ideal for initial hypothesis testing, XGB/RF preferable for complex clinical prediction 
tasks, and MLP a viable option when rich data and sufficient computational resources are available.

For readers interested in learning more about machine learning tools, I recommend visiting the website https://scikit- 
learn.org/stable/, which provides valuable resources and documentation on various algorithms and their applications.
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Model Establishment
The prediction models were constructed using XGB, MLP, RF, LR, and CB algorithms. The data were first split into 
training and test sets using an 8:2 ratio. All preprocessing steps, including data cleaning, normalization, and missing data 
estimation, were performed separately on the training and test sets to prevent data leakage and ensure an independent 
evaluation of model performance. The training set was used to build the classification models, and the test set was used 
for performance evaluation. To address the class imbalance in the training set, the Borderline Synthetic Minority 
Oversampling Technique (SMOTE) was employed.18 This improved version of SMOTE generates synthetic samples 
from borderline instances, enhancing the class distribution. The models were trained on the original data, and their 
predictive accuracy was evaluated on the test set.

Model Evaluation
To assess the predictive capability of the machine learning models, we computed several key performance metrics, 
including the area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 score. 
Given the importance of precision and recall in clinical contexts, we also evaluated the area under the precision-recall 
curve (AUPRC). The calibration of the model was assessed using the Brier score and a calibration plot, with favorable 
calibration defined by a Brier score ≤0.25.19 To understand the influence of each variable on the model, SHapley Additive 
exPlanations (SHAP) values were utilized.

Statistical Analysis
Categorical variables, presented as frequencies and percentages, were analyzed using chi-square tests. For continuous 
data, descriptive statistics included mean ± standard deviation or median with interquartile ranges (Q1–Q3). The t-test or 
Mann–Whitney U-test was employed to evaluate statistical differences between groups. A p-value below 0.05 indicated 
statistical significance. Data processing and statistical evaluations were carried out using SPSS software (Version 25, 
IBM SPSS Statistics, IBM Corp., Armonk, NY, USA). Additionally, statistical modeling was conducted with the stats 
and sklearn libraries in Python (Version 3.8).

Results
Study Population
A total of 636 cognitively impaired patients aged over 65 years, admitted to our hospital’s comprehensive ward, were 
included in the study. Among them, 357 (56.1%) were men and 279 (43.9%) were women, with a mean age of 78.4 ± 6.5 
years. Patients were categorized into two groups: 187 in the delirium group and 449 in the non-delirium group, yielding 
a delirium incidence rate of 29.4%. Baseline characteristics are summarized in Table 1.

Data Processing and Variable Identification
A total of 115 variables were initially collected, as detailed in Supplementary Table 1. These variables included three 
general information parameters (X1–X3), eight comorbidities (X4–X11), five medications (X12–X16), and 99 laboratory 
test results (X17–X115). Variables with missing data exceeding 90%, those with a single value comprising over 90% of 
the observations, and those with a coefficient of variation below 0.1 were excluded. This left 84 variables for further 
analysis (Supplementary Table 2). Lasso regression was then applied for variable selection, resulting in the final inclusion 
of 52 variables in the model (Supplementary Table 2).

Model Establishment and Validation
To predict delirium in older dementia patients, machine learning models, including XGB, MLP, RF, LR, and CB, were 
built using 52 features from the training set. Their predictive performance was assessed on a separate test set, with 
metrics such as AUC, accuracy, precision, recall, and F1 score reported in Table 2. Among the models, XGB out-
performed the others, achieving the highest AUC (0.967), accuracy (0.907), and F1 score (0.918). To improve clinical 
feasibility, a streamlined version of the XGB model was developed, using the top 10 most important variables based on 
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Table 1 Baseline Characteristics of Delirium vs Non-Delirium Patients

Characteristics Delirium Group  
(n=187)

Non-Delirium Group  
(n=449)

Z/χ2 P value

Age, years 79 (68, 85) 78 (67, 84) 1.482 0.336

Male 97 (51.9%) 260 (57.9%) 1.953 0.162

BMI<18.5 kg/m2 106 (56.7%) 273 (60.8%) 0.929 0.335
Hypertension 115 (61.5%) 218 (48.6%) 8.869 0.003

Diabetes 123 (65.8%) 197 (43.9%) 25.328 <0.001

Hyperlipidemia 98 (52.4%) 144 (32.1%) 23.159 <0.001
Cardiovascular disease 64 (34.2%) 126 (28.1%) 2.393 0.122

Cerebrovascular disease 57 (30.5%) 63 (14.0%) 23.337 <0.001
Renal insufficiency 26 (13.9%) 44 (9.8%) 2.270 0.132

Anemia 106 (56.7%) 238 (53.0%) 0.719 0.396

Hypoproteinemia 73 (39.0%) 109 (24.3%) 14.082 <0.001
Smoking 85 (45.5%) 221 (49.2%) 0.750 0.386

Drinking 91 (48.7%) 236 (52.6%) 0.803 0.370

Whether accompanied by family members 32 (17.1%) 284 (63.3%) 112.422 <0.001
Surgical history during hospitalization 55 (29.4%) 149 (33.2%) 0.863 0.353

VAS score ≥4 points 124 (66.3%) 136 (30.3%) 70.874 <0.001

Use of sedative drugs 118 (63.1%) 104 (23.2%) 92.680 <0.001
Whether a drainage tube was placed 77 (41.2%) 183 (40.8%) 0.010 0.922

Body temperature ≥37.3°C 34 (18.2%) 76 (16.9%) 0.145 0.703

GGT, U/L 25.3 (15.2, 43.4) 24.7 (15.9, 44.7) 0.394 0.118
ALB, g/L 37.8 (34.1, 41.5) 40.7 (36.5, 44.0) −4.692 0.014

ALT, U/L 21.9 (14.5, 30.7) 18.1 (12.7, 27.3) 3.493 0.036

AST, U/L 26.9 (21.8, 34.4) 26.3 (21.4, 34.6) 0.280 0.495
TP, g/L 67.3 (61.3, 72.0) 68.8 (64.1, 73.8) −2.874 0.062

TG, mmol/L 1.38 (0.97, 1.99) 1.20 (0.92, 1.78) 4.739 0.008

eGFR, mL/min 78.5 (55.1, 88.5) 85.7 (68.4, 94.1) −6.724 <0.001
Urea, mmol/L 6.4 (5.0, 9.1) 5.9 (4.9, 7.6) 3.871 0.024

Creatinine, µmol/L 78.2 (63.1, 94.6) 66.4 (56.1, 84.0) 5.948 <0.001

Uric acid, µmol/L 343 (271.0, 429.4) 338 (261.6, 402.5) 2.016 0.082
Total bile acid, µmol/L 5.1 (3.4, 8.2) 4.9 (3.5, 8.0) 0.874 0.572

TC, mmol/L 3.7 (2.9, 4.3) 3.8 (3.0, 4.6) −0.144 0.650

TBIL, µmol/L 13.4 (10.1, 17.4) 13.5 (10.3, 18.0) −0.085 0.893
IBIL, µmol/L 8.9 (6.3, 12.6) 8.5 (5.1, 11.7) 2.145 0.102

WBC, *109/L 6.4 (5.0, 8.3) 6.2 (4.9, 8.2) 0.938 0.317

RBC, *1012/L 4.2 (3.6, 4.5) 4.5 (3.8, 4.9) −3.283 0.042
Lymphocyte, *109/L 1.3 (0.8, 1.6) 1.3 (0.9, 1.8) −0.021 0.936

HGB, g/L 97.3 (89.2, 112.6) 106.5 (97.2, 121.3) −6.749 <0.001

HCT, % 38.7 (33.4, 41.6) 39.2 (35.4, 42.7) −0.843 0.568
Cholinesterase, KU/L 6.4 (5.0, 8.1) 7.3 (6.2, 8.8) −5.382 <0.001

ALP, U/L 80.3 (62.5, 102.7) 82.7 (63.5, 117.4) −3.845 0.021

HDLC, mmol/L 1.2 (0.9, 1.4) 1.3 (1.0, 1.5) −2.344 0.097
LDLC, mmol/L 2.1 (1.5, 2.7) 2.0 (1.3, 2.6) 0.484 0.782

Globulin, g/L 27.2 (24.4, 31.1) 27.7 (24.5, 31.1) −1.038 0.226

TSH, µ/L 2.0 (1.2, 3.3) 1.8 (1.1, 2.7) 2.948 0.052
Creatine kinase, U/L 79.3 (54.2, 119.6) 90.6 (63.2, 138.8) −8.374 <0.001

hsCRP, mg/L 4.1 (1.1, 27.8) 1.6 (0.5, 11.1) 11.932 <0.001

SOD, U/mL 102.3 (54.4, 143.8) 138.4 (84.3, 179.5) −8.484 <0.001

Note: Data are expressed as counts (%) or as the median (Q1, Q3). 
Abbreviations: GGT, γ-glutamyl transpeptidase; ALB, albumin; ALT, alanine aminotransferase; TG, triglycerides; eGFR, estimated glomerular filtration rate; 
AST, aspartate aminotransferase; TC, total cholesterol; TBIL, total bilirubin; TP, total protein; WBC, white blood cells; RBC, red blood cells; HCT, hematocrit; 
HGB: hemoglobin; LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol; IBIL, indirect bilirubin; ALP, alkaline phosphatase; 
TSH, thyroid stimulating hormone; hsCRP, high-sensitivity C-reactive protein.
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their mean absolute SHAP values. The performance of this compact XGB model yielded an AUC of 0.930, accuracy of 
0.870, precision of 0.908, recall of 0.872, and F1 score of 0.892 (Table 2). The corresponding ROC curves for these 
models are shown in Figure 1A.

For the original XGB model, trained on the test set, the AUC, accuracy, precision, recall, and F1 score were 0.905, 
0.862, 0.873, 0.927, and 0.608, respectively (see Supplementary Table 3). Additional ROC curves for these models can 
be found in Supplementary Figure 1A.

Recall represents the proportion of delirium cases correctly identified, whereas precision reflects the accuracy of 
predicting delirium among the cases identified. Both metrics are critical in clinical practice for predicting delirium in 
patients and assisting healthcare providers in making informed decisions. To evaluate the performance of the machine 
learning models, we utilized precision-recall curves (Figure 1B). The XGB model achieved the highest AUPRC of 0.989, 
followed by the compact XGB model, which yielded an AUPRC of 0.966. The precision-recall curves for models trained 
on the original dataset are shown in Supplementary Figure 1B. In addition, calibration curves were employed to assess 
the models’ calibration, with both the XGB and compact XGB models demonstrating strong calibration performance 
(Figure 2). The Brier score, which quantifies both calibration and discrimination, was 0.07 for the XGB model and 0.11 
for the compact XGB model (Table 2).

Table 2 Performance of Machine Learning Models on the Test Set

Models AUC Accuracy Precision Recall F1 value Brier Score

MLP 0.872 0.791 0.790 0.874 0.887 0.36
LR 0.802 0.796 0.813 0.823 0.854 0.22

RF 0.959 0.904 0.963 0.748 0.906 0.09

CB 0.911 0.858 0.874 0.816 0.874 0.14
XGB 0.967 0.907 0.942 0.815 0.918 0.07

Compact XGB 0.930 0.870 0.908 0.872 0.892 0.11

Abbreviations: AUC, area under the receiver operating characteristic curve; MLP, multilayer perceptron; 
LR, logistic regression; RF, random forest; CB, categorical boosting; XGB, extreme gradient boosting.

Figure 1 Model establishment. (A) Receiver operating characteristic (ROC) curves and (B) precision-recall curves for the six machine learning models on the test set. 
Abbreviations: AUC, area under the receiver operating characteristic curve; MLP, multilayer perceptron; LR, logistic regression; RF, random forest; CB, categorical 
boosting; SHAP, SHapley Additive exPlanations; XGB, extreme gradient boosting.
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Interpretation of Model Variables
Based on SHAP value analysis, the 10 most influential variables in the XGB model were identified, including 
cerebrovascular disease, use of sedative drugs, hemoglobin, VAS score ≥4 points, SOD, diabetes, hsCRP, hypertension, 
whether accompanied by family members, and hyperlipidemia. These factors were subsequently employed to develop 
a streamlined XGB model.

Discussion
This study aimed to develop a robust machine learning-based prediction model to assess the risk of delirium in older 
patients with dementia, a group highly susceptible to this severe and often underrecognized condition. Our analysis 
demonstrated that machine learning algorithms, particularly XGB, can effectively predict the onset of delirium in this 
population, with the model showing excellent performance in terms of both accuracy and predictive power. We utilized 
XGB, RF, MLP, CB, and LR algorithms, combined with a comprehensive set of clinical data, to predict delirium risk in 
older dementia patients. Among these, XGB emerged as the most effective model, achieving the highest AUC, accuracy, 
and F1 score. While MLP exhibited a slightly higher recall than XGB, its lower precision and accuracy limited its clinical 
applicability.2,20 Moreover, the XGB model excelled in calibration, achieving the highest AUPRC and the best Brier 
score. To enhance clinical applicability, we refined the XGB model by focusing on the top 10 most significant risk 
factors, resulting in a more efficient model that maintained strong predictive power.

Our findings are consistent with existing research highlighting the increased risk of delirium in hospitalized older 
patients, particularly those with cognitive impairment.21 With a delirium incidence rate of 29.4% in our cohort, our study 
emphasizes the clinical relevance of this issue. The identification of key risk factors, including cerebrovascular disease, 
sedative drug use, and elevated VAS scores, aligns with prior studies that have associated these variables with a higher 
likelihood of delirium.2,22 These factors provide critical insights into the pathophysiology and risk stratification of 
delirium, which are essential for timely intervention.

The XGB model demonstrated superior performance compared to other machine learning algorithms in this study, 
achieving the highest AUC of 0.967, accuracy of 0.907, and F1 score of 0.918. These results underscore the efficacy of 
XGB in clinical prediction tasks. By reducing the model to the top 10 most important features based on SHAP values, we 
developed a streamlined version that maintained high predictive performance, with an AUC of 0.930 and an F1 score of 
0.892. These findings emphasize the potential of machine learning as a robust and clinically feasible tool for predicting 
delirium, which could be implemented in high-paced hospital environments to enhance patient outcomes.

Figure 2 Calibration plot for both the XGB and compact XGB models. XGB: extreme gradient boosting.
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Our study also provided valuable insights into the key risk factors for delirium in patients with dementia. Factors 
such as cerebrovascular disease, sedative use, and elevated hsCRP levels were identified as the most significant 
predictors. These findings align with existing literature, which highlights the critical roles of cerebrovascular insults 
and inflammation in the onset of delirium.8,23 The identification of cerebrovascular disease, sedative use, and 
elevated hsCRP levels as significant predictors is biologically plausible. Cerebrovascular disease may disrupt 
brain perfusion and increase vulnerability to delirium by impairing neurovascular coupling and promoting 
neuroinflammation.24 Sedative medications, such as benzodiazepines, enhance GABAergic neurotransmission, 
which can exacerbate cognitive dysfunction and increase delirium risk through sedation and altered arousal 
regulation.25 Elevated hsCRP levels reflect systemic inflammation, which contributes to blood-brain barrier perme-
ability and microglial activation, driving neuroinflammation and cognitive impairment.26 These mechanisms under-
score the multifactorial nature of delirium in dementia patients and highlight potential targets for intervention. 
Additionally, the use of sedative medications remains a well-established risk factor, underscoring the importance of 
careful medication management in this vulnerable population.9,27 Notably, family support emerged as a significant 
variable, suggesting that the presence of family members may reduce the risk of delirium, potentially by fostering 
cognitive stimulation and providing emotional support.

One of the strengths of this study lies in the use of a large, well-characterized cohort of older dementia patients, with 
comprehensive clinical data collected prospectively. This methodology facilitated the identification of a broad range of 
potential risk factors, providing a solid foundation for the development of our prediction model. However, several 
limitations should be acknowledged. First, while the model demonstrated strong performance on the validation set, its 
generalizability to other populations—such as those with different dementia subtypes or individuals in community 
settings—requires further validation. Additionally, despite the robustness of the dataset, some potential risk factors, 
such as education level or socioeconomic status, were not included, and their omission may influence the model’s 
performance and broader applicability. Future research should examine these variables and assess their impact on 
delirium risk.

In conclusion, our study highlights the feasibility and effectiveness of machine learning in predicting delirium risk in 
older patients with dementia. By identifying key risk factors and developing a streamlined, clinically applicable model, 
we provide a valuable tool for clinicians in managing and preventing delirium. Future research should focus on validating 
the model across diverse clinical settings, exploring additional risk factors, and further refining the prediction algorithms 
to enhance their clinical utility.
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