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Purpose: To develop and validate a predictor for early treatment response in hepatocellular carcinoma (HCC) patients accompanied 
by portal vein tumor thrombus (PVTT) undergoing transarterial chemoembolization (TACE), lenvatinib and a programmed cell death 
protein 1 (PD-1) inhibitor (TLP) therapy.
Patients and Methods: In this retrospective study, patients with HCC and PVTT from two institutions receiving triple TLP therapy 
were enrolled. Radiomics features derived from pretreatment contrast-enhanced MRI were curated using intraclass correlation 
coefficient (ICC), Student’s t-test, least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE) 
to ensure robust selection. Various machine learning (ML) algorithms were then used to construct the models. The meaningful clinical 
indicators were obtained via logistic regression analysis and ultimately integrated with radiomics features to develop a combined 
model. In addition, we used Shapley Additive exPlanation (SHAP) to clarify the model’s operational dynamics.
Results: Our study ultimately included 115 patients (7:3 randomization, 80 and 35 in the training and test cohorts, respectively) in 
total. No patients achieved complete remission, 47 achieved partial remission, 29 achieved stable disease, and 39 experienced disease 
progression. Among objective response rates (ORRs) and disease control rates (DCRs), 40.9% and 66.1% were reported. One of the 
four ML classifiers with optimal performance, namely random forest, was adopted as the radiomics model after testing. Regarding the 
performance assessment, the radiomics model’s area under the curve (AUC) values reached 0.92 (95% CI: 0.86–0.97) and 0.79 (95% 
CI: 0.61–0.95), inferior to the combined model’s AUCs of 0.95 (95% CI: 0.68–0.98) and 0.84 (95% CI: 0.91–0.99). Moreover, the 
SHAP plots illustrate the importance of global variables and the prediction process for individual samples.
Conclusion: The model based on machine learning and radiomics showed favorable performance, and the operating mode was 
visualized through SHAP.
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Introduction
Hepatocellular carcinoma (HCC), a significant global health challenge, ranks sixth among the most common cancers and 
is the third highest cause of cancer-related mortality. Globocan’s latest statistics report nearly 865,000 new cases and 
approximately 758,000 fatalities each year.1

The majority of HCC patients present at intermediate to advanced stages, often with PVTT, which occurs in 
44.0–62.2% of cases and is associated with poor treatment response and prognosis.2 In Europe and the United States, 
this patient population, classified as Barcelona Clinic Liver Cancer (BCLC) stage C, is managed with systemic therapy, 
encompassing immune checkpoint inhibitors and tyrosine kinase inhibitors.3,4 However, transarterial chemoembolization 
(TACE) remains the preferred initial therapy for patients afflicted with HCC plus PVTT (HCC-PVTT) in China, without 
extrahepatic metastases.5 Although TACE alone or in combination with other therapies has improved overall survival 
among HCC-PVTT patients.6–8 the efficacy and prognosis vary widely among individuals.

First conceptualized by Lambin in 2012,9 radiomics has evolved into a robust methodology for quantitative feature 
extraction from medical images, demonstrating substantial scientific progress over the past decade. Since deep image 
features may reflect tumor biological behavior and heterogeneity,10 researchers have integrated those features with 
artificial intelligence algorithms to develop models for solving medical problems.11–13

Lenvatinib, a multikinase inhibitor, selectively targets multiple angiogenesis-associated signaling pathways, thereby 
potently inhibiting tumor neovascularization.14 Concurrently it exerts its therapeutic effects by directly suppressing tumor 
cell proliferation and regulating tumor immune microenvironment. Owing to these synergistic pharmacological proper-
ties, lenvatinib has emerged as a frontline treatment for advanced HCC,2–4 but its clinical benefit is limited by tumor 
heterogeneity and chemoresistance. Consequently, Bo et al sought to forecast the effectiveness of lenvatinib monotherapy 
in unresectable HCC on the basis of contrast-enhanced CT images.11 They analyzed cases from three medical centers and 
obtained information from CT images. The machine learning (ML) radiomics model had an AUC of 0.97 and achieved 
satisfactory results in the external validation cohort. Pretreatment MRI radiomics features combined with clinical 
variables could aid in clinical decision-making in identifying potential beneficiaries among advanced HCC patients 
receiving lenvatinib plus TACE therapy.15 Recently, a retrospective study confirmed the predictive value of radiomics for 
survival and therapeutic response in unresectable HCC patients treated with systemic therapy plus endovascular 
intervention.13 Furthermore, Cheng and colleagues developed a convenient, noninvasive and individualized assessment 
tool for patients with HCC and PVTT on the basis of radiomics features and clinical indicators.16

Numerous radiomics investigations have focused on HCC and PVTT; however, scant research has addressed the 
prognosis of HCC-PVTT patients undergoing multidisciplinary treatment. Therefore, our objective was to develop 
a radiomics model based on pretreatment contrast-enhanced MRI to forecast the short-term efficacy of TACE plus 
lenvatinib and programmed cell death protein 1 (PD-1) blockade (TLP) triple therapy in HCC-PVTT patients.

Materials and Methods
Patient Selection
We enrolled 249 hCC-PVTT patients receiving triple TLP therapy from two institutions, comprising 206 cases at the First 
Affiliated Hospital of Wenzhou Medical University (February 2021-July 2024) and 43 cases at the Fifth Affiliated Hospital of 
Wenzhou Medical University (March 2021-March 2023). The participants in this study met the following criteria: (1) age 18–85 
years, with no sex restrictions; (2) HCC with PVTT diagnosed by radiology or histopathology; (3) availability of contrast- 
enhanced MRI scans pre- and post-treatment (1 month and 3–4 months); (4) Child-Pugh A/B liver function and Eastern 
Cooperative Oncology Group performance status (ECOG-PS) scores of 0–2; (5) allowance for prior radical hepatectomy/ 
ablation within 3 months pre-enrollment; (6) demonstrated regular follow-up compliance. The exclusion criteria comprised: (1) 
concomitant with other malignancies; (2) extrahepatic metastases; (3) prior antitumor therapies (ie, liver transplantation, 
radiotherapy, TACE, or systemic therapy); (4) absence of measurable target lesions; (5) incomplete clinical/MRI data. We 
divided PVTT into four types via Cheng’s classification system: type I involves intra-lobar portal vein branches; type II involves 
the left or right portal vein branches; type III involves the main portal vein; and type IV denotes superior mesenteric vein 
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invasion.17 Patients were allowed to receive different anti-PD-1 strategies, in accordance with real-world practice, and previous 
studies have shown no effect of the PD-1 inhibitor category on antitumor efficacy.18

Contrast-Enhanced MRI data were procured in digital imaging and communications in medicine (DICOM) format for 
subsequent analysis. Moreover, the relevant demographic and clinical information was obtained from the electronic 
medical record system, as shown in Figure 1. The systemic immune-inflammation index (SII) (calculated as platelet × 
neutrophil / lymphocyte counts) and the albumin-bilirubin (ALBI) score [–0.085 × albumin (g/L) + 0.66 × log10 bilirubin 
(μmol/L)] were utilized to evaluate immune-inflammatory status and hepatic function, respectively.

Treatment Protocol
Eligible patients received oral lenvatinib (8 mg/day <60 kg, 12 mg/day ≥60 kg) and anti-PD-1 immunotherapy 
(tislelizumab 200 mg, sintilimab 200 mg, camrelizumab 200 mg, pembrolizumab 200 mg, penpulimab 200 mg, and 
cadonilimab 375 mg) every 3 weeks. Treatment was adjusted or discontinued when disease progression or intolerable 
adverse events occurred. Seasoned interventional radiologists executed the TACE procedure within the combined therapy 
regimen. Utilizing the modified Seldinger technique, they initially accessed the right femoral artery and employed 
selective angiography to pinpoint the tumor-feeding artery. Subsequently, a microcatheter was precisely navigated to the 
target vessel for the infusion of chemotherapeutic agents combined with lipiodol (1 to 30 mL) or drug-eluting beads 
(DEBs) (loaded with epirubicin at a dose of 30 or 50 mg, with diameters of 100–300 μm and 300–500 μm). Embolization 
was completed with a gelatin sponge or microspheres until arterial stasis was achieved. The chemotherapeutic agents 
administered included pirarubicin (10–30 mg), epirubicin (10–50 mg), mitomycin (10 mg), oxaliplatin (50–150 mg), 
raltitrexed (1–4 mg), and 5-fluorouracil (250–1000 mg).

Tumor Response Evaluation
Following the modified Response Evaluation Criteria in Solid Tumors (mRECIST),19 tumor responses—complete 
response (CR), partial response (PR), progressive disease (PD), and stable disease (SD)—were evaluated 3–4 months 
post-initial treatment. The objective response rate (ORR) denotes patients attaining CR or PR, while the disease control 
rate (DCR) encompasses those with SD, PR, or CR.

Figure 1 Flowchart of the study. (a) Flowchart of patient selection. Cases meeting the inclusion and exclusion criteria were retrospectively collected from two institutions 
and allocated into the training and test cohorts at a 7:3 ratio. (b) Flowchart of development and validation of evaluation models. Radiomics features were extracted from 
manually segmented ROIs. Predictive features were subsequently selected through ICC analysis, Student’s t-test, LASSO regression and RFE. Clinical indicators were 
incorporated to establish the combined model. Following hyperparameter optimization, the model with the optimal parameters underwent performance evaluation.
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MRI Examination Procedure
All participants completed protocol-mandated pre-procedural fasting (6–8h) prior to MRI. MRI images were acquired 
using 1.5T/3.0T scanners: [1.5T] uMR586/680 (United Imaging Healthcare, Shanghai, China); Aera/Avanto/Symphony 
Tim (Siemens Healthcare, Erlangen, Germany); Signa HDxt/HDe/Voyager (GE Healthcare, Milwaukee, WI, USA); 
[3.0T] Prisma/Skyra (Siemens Healthcare, Erlangen, Germany); Discovery MR750/Signa HDxt (GE Healthcare, 
Milwaukee, WI, USA); Achieva/Ingenia ElitionX (Philips Medical Systems, Best, Netherlands), with protocol-specific 
sequences/parameters detailed in Supplementary Table S1. Arterial, portal, and delayed phase images were obtained at 
15–20, 50–55, and 85–90 seconds after intravenous injection of gadodiamide (Omniscan 0.5 mmol/mL; GE Healthcare), 
respectively. Contrast agent injection was followed by irrigation with 20 mL of normal saline. Selected for analysis were 
arterial phase T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) with 
b values of 600 or 800 s/mm2.

ROI Segmentation and Radiomics Feature Extraction
MRI image preprocessing was performed before region of interest (ROI) segmentation to improve stability and 
repeatability,20 involving N4 bias field correction,21 MRI signal intensity normalization via the z-score method and 
voxel resampling (3×3×3 mm). Two radiologists used a 3D slicer (version 5.4.0; www.slicer.org) to segment the ROI 
layer by layer and then fused it to form a three-dimensional structure. For patients with multiple HCC lesions, the largest 
lesion was selected. During ROI segmentation, the radiologist was blinded to the patient’s clinical information. 
Radiomics features were extracted via radiomics extension modules on a 3D slicer. We obtained 851 features from 
each sequence, including 14 shape features, 18 first-order statistical features, 14 gray level dependence matrix (GLDM), 
24 gray level co-occurrence matrix texture (GLCM), 16 gray level size zone matrix (GLSZM), 16 gray level run length 
matrix (GLRLM), 5 neighboring gray tone difference matrix (NGTDM), and 744 wavelet transformed features.

Feature Selection
Interobserver agreement of radiomics features was assessed by intraclass correlation coefficient (ICC), and only features 
with an ICC > 0.8 were retained for subsequent analysis. Feature dimensionality reduction was achieved via Student’s 
t-test and least absolute shrinkage with selection operator (LASSO) algorithms, validated through 10-fold cross- 
validation. Finally, we adopted recursive feature elimination (RFE) based on logistic regression to filter again after 
feature summarization. In addition, we employed univariate analysis to discern potential clinical variables and conducted 
multivariate logistic regression on those with a p value <0.05.

Prediction Model Construction and Evaluation
A synthetic minority oversampling technique (SMOTE) was employed to overcome the data imbalance in the training cohort. 
Four classifiers were applied to train the radiomics models, namely, support vector machine (SVM), k-nearest neighbor (KNN), 
random forest (RF), and eXtreme gradient boosting (XGBoost). To prevent overfitting and enhance model generalizability, a grid 
search with 5-fold cross validation was employed to determine the optimal classifier parameters (Supplementary Table S2). 
Receiver operating characteristic (ROC) curves were constructed for both the training and test cohorts. We used bootstrap 
resampling (n=1000) to determine the area under the curve (AUC) with a 95% confidence interval (CI). The predictive 
performance of the model in the training and test cohorts was examined via the AUC, accuracy, precision, recall, and F1 
score. A logistic regression analysis was employed to establish the clinical model, which was subsequently enhanced by 
integrating radiomics and clinical features to forge the optimal combined model. Eventually, we elucidated the mechanism of 
prediction model employing Shapley Additive explanation (SHAP), a cooperative game theory-derived method.22 The above 
radiomics analyses were performed via Python (version 3.9.1; www.python.org), simpleitk (version 2.3.1; www.simpleitk.org), 
pingouin (version 0.5.4; https://pingouin-stats.org), scikit-learn (version 1.4.1; https://scikit-learn.org), xgboost (version 2.0.3; 
https://xgboost.readthedocs.io), numpy (version 1.26.4; https://numpy.org), pandas (version 2.2.1; https://pandas.pydata.org), 
matplotlib (version 3.8.3; https://matplotlib.org) and shap (version 0.44.1; https://shap.readthedocs.io) modules, etc.
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Statistical Analysis
This study employed SPSS software (version 27.0; IBM Corp, NY, USA) for all statistical analyses. Continuous variables 
were presented as mean ± standard deviation or median (interquartile range). And categorical variables were expressed as 
counts and percentages. Those variables were analyzed with Student’s t-tests/Mann–Whitney U-tests or chi-square 
/Fisher’s exact tests, contingent upon the data distribution. Statistical significance was defined as a p value <0.05.

Results
Patient Characteristics and Treatment Response
We retrospectively analyzed 249 patients initially included and selected 115 of them based on the exclusion criteria; the selection 
process is shown in Figure 1a. According to our observations, no patients achieved CR, 47 achieved PR, 29 achieved SD, and 39 
achieved PD. The ORR and DCR were 40.9% and 66.1%, respectively. All patients enrolled were categorized at BCLC stage 
C or Chinese liver cancer (CNLC) stage IIIa, with ECOG-PS scores of 0 to 2. These patients were then divided 7:3 into a training 
cohort (n = 80) and a test cohort (n = 35). No difference in baseline characteristics was found between the two cohorts (Table 1). 
We found that male patients composed 90.4% of the study population, while the majority of patients had a history of HBV 
infection (n = 100, 87.0%) as well as cirrhosis (n = 90, 78.3%), and 106 patients had tumors with a diameter of >5 cm (Table 1). 
Supplementary Table S3 summarizes the baseline characteristics of patients in the nonresponse and response groups. 
Nonresponders presented a higher grade (III + IV) PVTT type (55.4% vs 36.1%, P = 0.009) and larger tumor size (97.1% vs 

Table 1 Baseline Characteristics of the Training Cohort and Test Cohort

Overall Cohort  
(n = 115)

Training Cohort  
(n = 80)

Test Cohort  
(n = 35)

p Value

Demographic Characteristics
Age, mean ± SD, y 56.1 ± 10.8 56.2 ± 10.8 56.0 ± 11.0 0.912
Gender 0.916

Male, n (%) 104 (90.4) 73 (91.2) 31 (88.6)

Female, n (%) 11 (9.6) 7 (8.8) 4 (11.4)
BMI, mean ± SD, kg/m2 22.8 ± 3.2 23.0 ± 3.3 22.2 ± 3.1 0.225

Smoking History 0.91

Yes, n (%) 78 (67.8) 54 (67.5) 24 (68.6)
No, n (%) 37 (32.2) 26 (32.5) 11 (31.4)

Drinking History 0.437

Yes, n (%) 75 (65.2) 54 (67.5) 21 (60.0)
No, n (%) 40 (34.8) 26 (32.5) 14 (40.0)

HBV Infection 0.522

Yes, n (%) 100 (87.0) 68 (85.0) 32 (91.4)
No, n (%) 15 (13.0) 12 (15.0) 3 (8.6)

HCV Infection 1

Yes, n (%) 1 (0.9) 1 (1.3) 0 (0)
No, n (%) 114 (99.1) 79 (98.7) 35 (100.0)

NAFLD /

Yes, n (%) 0 (0) 0 (0) 0 (0)
No, n (%) 115 (100.0) 80 (100.0) 35 (100.0)

Cirrhosis 0.096

Yes, n (%) 90 (78.3) 66 (82.5) 24 (68.6)
No, n (%) 25 (21.7) 16 (17.5) 11 (31.4)

Clinical Characteristics
HBV DNA 0.466

≤103/mL, n (%) 65 (56.5) 47 (58.8) 18 (51.4)

>103/mL, n (%) 50 (43.5) 33 (41.3) 17 (48.6)

(Continued)

Journal of Hepatocellular Carcinoma 2025:12                                                                                    https://doi.org/10.2147/JHC.S513696                                                                                                                                                                                                                                                                                                                                                                                                    989

Lu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/article/supplementary_file/513696/513696-Supplementary-Material.docx


Table 1 (Continued). 

Overall Cohort  
(n = 115)

Training Cohort  
(n = 80)

Test Cohort  
(n = 35)

p Value

AFP 0.702
≤400ng/mL, n (%) 43 (37.4) 29 (36.3) 14 (40.0)

>400ng/mL, n (%) 72 (62.6) 51 (63.7) 21 (60.0)

InAFP, median (IQR), ng/mL 7.0 (4.2, 9.9) 7.1 (4.2, 9.9) 7.0 (3.9, 9.6) 0.765
TBIL, median (IQR), μmol/L 16.0 (12.0, 25.0) 16.0 (11.0, 25.0) 16.0 (12.0, 24.0) 0.801

ALB, mean ± SD, g/L 37.1 ± 4.0 37.0 ± 4.1 37.4 ± 3.9 0.573

ALT, median (IQR), U/L 44.0 (28.0, 71.0) 40.0 (27.0, 66.3) 54.0 (30.0, 79.0) 0.23
AST, median (IQR), U/L 64.0 (46.0, 93.0) 65.5 (44.5, 97.0) 61.0 (51.0, 87.0) 0.985

ALP, median (IQR), U/L 147.0 (117.0, 204.0) 149.5 (114.3, 203.3) 142.0 (119.0, 214.0) 0.908

GGT, median (IQR), U/L 194.0 (127.0, 306.0) 181.5 (120.8, 306.8) 215.0 (127.0, 304.0) 0.555
Neu, median (IQR), 109/L 3.6 (2.7, 5.2) 3.5 (2.7, 4.9) 3.8 (2.5, 5.6) 0.402

Lym, median (IQR), 109/L 1.1 (0.8, 1.4) 1.1 (0.8, 1.5) 1.1 (0.8, 1.4) 0.944

Mon, median (IQR), 109/L 0.4 (0.3, 0.6) 0.5 (0.3, 0.6) 0.4 (0.3, 0.6) 0.932
PLT, median (IQR), 109/L 153.0 (114.0, 209.0) 157.5 (110.3, 214.3) 147.0 (116.0, 203.0) 0.777

PT, median (IQR), s 13.8 (13.3, 14.6) 13.9 (13.3, 14.7) 13.7 (13.0, 14.3) 0.293

PLR, median (IQR) 150.0 (96.4, 210.0) 140.8 (96.2, 209.6) 152.5 (105.2, 210.0) 0.939
NLR, median (IQR) 3.3 (2.4, 4.9) 3.2 (2.4, 4.6) 3.5 (2.7, 5.0) 0.292

LMR, median (IQR) 2.5 (1.8, 3.4) 2.5 (1.7, 3.5) 2.5 (1.9, 3.3) 0.798

ALR, median (IQR) 61.9 (37.3, 123.5) 60.4 (36.3, 130.2) 63.8 (39.2, 101.7) 0.851
APR, median (IQR) 0.4 (0.3, 0.7) 0.4 (0.3, 0.7) 0.4 (0.3, 0.7) 0.822

GPR, median (IQR) 1.3 (0.8, 2.5) 1.3 (0.8, 2.5) 1.4 (0.8, 2.6) 0.471
SII, median (IQR) 555.6 (326.2, 760.6) 554.4 (327.9, 749.2) 555.6 (305.0, 986.0) 0.803

ALBI Score, mean ± SD −2.3 ± 0.4 −2.3 ± 0.4 −2.4 ± 0.4 0.748

Child-Pugh Score 0.36
A (5–6 scores), n (%) 82 (71.3) 55 (68.7) 27 (77.1)

B (7–9 scores), n (%) 33 (28.7) 25 (31.3) 8 (22.9)

PVTT Type 0.728
I, n (%) 17 (14.8) 13 (16.2) 4 (11.4)

II, n (%) 44 (39.3) 28 (35.0) 16 (45.7)

III, n (%) 39 (33.9) 28 (35.0) 11 (31.4)
IV, n (%) 15 (13.0) 11 (13.8) 4 (11.4)

Tumor Number 0.825

Solitary, n (%) 41 (35.7) 28 (35.0) 13 (37.1)
Multiple, n (%) 74 (64.3) 52 (65.0) 22 (62.9)

Tumor Size 0.184

≤ 5cm, n (%) 9 (7.8) 4 (5.0) 5 (14.3)
> 5cm, n (%) 106 (92.2) 76 (95.0) 30 (85.7)

TACE Type 0.481

C-TACE, n (%) 70 (60.9) 47 (58.8) 23 (65.7)
D-TACE, n (%) 45 (39.1) 33 (41.3) 12 (34.3)

Tumor Response 0.485

Response, n (%) 47 (40.9) 31 (38.8) 16 (54.3)
Nonresponse, n (%) 68 (59.1) 49 (61.2) 19 (45.7)

Abbreviations: IQR, interquartile range; BMI, body mass index; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, nonalcohol fatty liver 
disease; HBV DNA, hepatitis B virus DNA copy number; AFP, alpha fetoprotein; T-BIL, total bilirubin; ALB, albumin; ALT, alanine aminotransfer-
ase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; Neu, neutrophil; Mon, monocyte; Lym, 
lymphocyte; PLT, platelet; PLR, platelet to lymphocyte ratio; NLR, neutrophil to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; ALR, 
aspartate aminotransferase to lymphocyte ratio; APR, aspartate aminotransferase to platelet ratio; GPR, gamma-glutamyl transferase to platelet 
ratio; SII, systemic immune-inflammation index; ALBI, albumin–bilirubin; PVTT, portal vein tumor thrombus; TACE, transarterial chemoembo-
lization; C-TACE, conventional transarterial chemoembolization; D-TACE, drug-eluting beads transcatheter arterial chemoembolization.
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85.1%, P = 0.046). The continuous form of the alpha-fetoprotein (AFP) was used for analysis during the clinical feature selection 
process, as it could provide more information than the categorical form. The variables with P values <0.1 in the univariate 
analysis included drinking history, the natural logarithm of AFP (InAFP), AST, LMR, ALR, Child‒Pugh score, PVTT type, and 
TACE type. Multivariate logistic regression demonstrated that TACE type was significantly associated with treatment response, 
and detailed information is provided in Table 2.

Radiomics Feature Selection
Among the radiomics features with ICCs > 0.8 from the three sequences, 12 were retained after dimensionality reduction, and 
Supplementary Figure S1 presents the process. All radiomics and clinical features are available in Supplementary Table S4.

Table 2 Univariate and Multivariate Analysis of Demographic and Clinical Characteristics

Univariate Analysis  
OR (95% CI)

p Value Multivariate Analysis  
OR (95% CI)

p Value

Demographic Characteristics
Age, y 1.007 (0.966–1.050) 0.746

Gender (Male vs Female) 0.830 (0.173–3.986) 0.816
BMI, kg/m2 1.023 (0.892–1.174) 0.742

Smoking History (Yes vs No) 0.500 (0.192–1.299) 0.155

Drinking History (Yes vs No) 0.394 (0.151–1.030) 0.057 0.739 (0.206–2.659) 0.644
HBV Infection (Yes vs No) 0.581 (0.169–1.998) 0.389

HCV Infection (Yes vs No) / 1

NAFLD (Yes vs No) / /
Cirrhosis (Yes vs No) 1.731 (0.239–2.452) 0.393

Clinical Characteristics
HBV DNA (≤103/mL vs >103/mL) 1.187 (0.474–2.973) 0.714
AFP (≤400ng/mL vs >400ng/mL) 1.490 (0.588–3.776) 0.401

InAFP, ng/mL 0.843 (0.718–0.990) 0.038 0.822 (0.675–1.002) 0.052

TBIL, μmol/L 0.990 (0.951–1.032) 0.645
ALB, g/L 1.050 (0.939–1.175) 0.388

ALT, U/L 0.997 (0.990–1.004) 0.387

AST, U/L 0.990 (0.980–1.000) 0.054 0.994 (0.982–1.006) 0.348
ALP, U/L 0.997 (0.992–1.002) 0.283

GGT, U/L 0.999 (0.996–1.001) 0.299

Neu, 109/L 0.816 (0.598–1.114) 0.201
Lym, 109/L 1.425 (0.631–3.221) 0.394

Mon, 109/L 0.432 (0.049–3.781) 0.448

PLT, 109/L 0.996 (0.990–1.002) 0.197
PT, s 1.064 (0.757–1.496) 0.720

PLR 0.997 (0.991–1.002) 0.231

NLR 0.942 (0.769–1.155) 0.566
LMR 1.323 (0.958–1.828) 0.089 1.276 (0.825–1.974) 0.273

ALR 0.994 (0.988–1.001) 0.073 1.001 (0.988–1.013) 0.926

APR 0.670 (0.309–1.456) 0.312
GPR 1.034 (0.739–1.447) 0.845

SII 0.999 (0.998–1.000) 0.132

ALBI Score 0.512 (0.141–1.860) 0.309
Child-Pugh Score (A vs B) 2.639 (0.914–7.619) 0.073 2.011 (0.561–7.211) 0.283

BCLC Stage / /

PVTT Type (I+II vs III+IV) 2.424 (0.958–6.133) 0.061 1.524 (0.460–5.054) 0.491

(Continued)
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Model Construction and Evaluation
Figure 1b shows the construction and evaluation process of the predictive model, revealing suboptimal clinical model 
efficacy, with AUCs of 0.66 (95% CI: 0.57–0.76) and 0.41 (95% CI: 0.26–0.55) in the training and test cohorts. We tested 
four ML classifiers to construct radiomics models. KNN and SVM showed poor predictive performance, perhaps due to 
overfitting, whereas RF and XGBoost performed better. We evaluated the models on the basis of accuracy, precision, 
recall, and F1 score and finally chose the RF model after comprehensive consideration. Figure 2 presents the ROC plots 
and heatmaps of the performance evaluation heatmaps for the four ML models. We also plotted ROC curves for the all 
models, as displayed in Figure 3a and b. Incorporating clinical variables enhanced the model’s predictive performance, 
achieving AUCs of 0.95 (95% CI: 0.68–0.98) and 0.84 (95% CI: 0.91–0.99). The combined model’s metrics in the 
training cohort were 0.88 accuracy, 0.81 precision, 0.98 recall, and 0.89 F1 score (Figure 3c), surpassing those in the test 
cohort (0.8, 0.76, 0.81, 0.79; Figure 3d), outperforming the other models.

Model Visualization via SHAP
The “black box” effect of ML makes it difficult to understand how it works.23 To visualize the output process of the 
model, we adopted several local explanations to clarify the global structure through SHAP.22 Figure 4a delineates feature 
contributions to the model, with “DWI_wavelet-LHL_gldm_HighGrayLevelEmphasis” “T1AP_wavelet-LLH 
_glcm_Autocorrelation” and “T1AP_wavelet-HLL_firstorder_Range” emerging as the most significant. In addition, we 
observed that the SHAP value of “T2WI_wavelet-LLH_firstorder_RootMeanSquared” was 0, indicating that this feature 
had no effect on the model output. Figure 4b reveals each feature’s magnitude and distribution of influence on the 
prediction result. The attribute value of a single feature for each patient in the training cohort matches a single point on 
the plot. Each feature is sorted by the mean absolute value of its respective SHAP value. Different colors are used to 
show the original values of features, namely, red for higher values, blue for lower values and intermediate values in 
purple. The value of the x-axis indicates the direction of the effect of the SHAP value on the model outputs, and 
a positive value suggests an increased probability of treatment response. As an example, elevated values of feature 9, 2, 
and 4 indicate a heightened likelihood of response to TACE, lenvatinib, and PD-1 blockade combination therapy. We 
then randomly selected one responder (Figure 4c) and one nonresponder (Figure 4d) from the training cohort to elucidate 
the principle more clearly. Figure 4c shows that features 4 and 9 play a positive role, whereas feature 2 has the opposite 
effect. The final output is 0.83 after the contributions of all the features are integrated, which is consistent with reality. In 
contrast, as shown in Figure 4d, features 4, 2, and 9 all make a large negative contribution, resulting in a shift of the 
prediction value to the left of the x-axis, suggesting that this patient is not suitable for combination therapy.

Discussion
To our awareness, this study pioneers radiomics analysis in multidisciplinary therapy for HCC patients with PVTT. We 
developed a prediction model based on pretreatment contrast-enhanced MRI for evaluating short-term efficacy with 

Table 2 (Continued). 

Univariate Analysis  
OR (95% CI)

p Value Multivariate Analysis  
OR (95% CI)

p Value

Tumor Number (Solitary vs Multiple) 2.059 (0.804–5.273) 0.132
Tumor Size (≤ 5cm vs > 5cm) 5.143 (0.510–51.846) 0.165

TACE Type (C-TACE vs D-TACE) 0.253 (0.098–0.655) 0.005 0.253 (0.085–0.757) 0.014

Abbreviations: OR, odds ratio; CI, confidence interval; BMI, body mass index; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, nonalcohol 
fatty liver disease; HBV DNA, hepatitis B virus DNA copy number; AFP, alpha fetoprotein; InAFP, the natural logarithm of AFP; T-BIL, total bilirubin; 
ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; Neu, 
neutrophil; Mon, monocyte; Lym, lymphocyte; PLT, platelet; PLR, platelet to lymphocyte ratio; NLR, neutrophil to lymphocyte ratio; LMR, 
lymphocyte to monocyte ratio; ALR, aspartate aminotransferase to lymphocyte ratio; APR, aspartate aminotransferase to platelet ratio; GPR, 
gamma-glutamyl transferase to platelet ratio; PT, prothrombin time; ALBI, albumin–bilirubin; BCLC, Barcelona Clinic Liver Cancer; CNLC, China 
liver cancer; PVTT, portal vein tumor thrombus; TACE, transarterial chemoembolization; C-TACE, conventional transarterial chemoembolization; 
D-TACE, drug-eluting beads transcatheter arterial chemoembolization.
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satisfactory results. Currently, there is no conclusive evidence on the optimal treatment protocol for HCC-PVTT. European 
and US guidelines recommend ICIs in combination with antiangiogenic drugs such as bevacizumab and TKIs.3,4 According to 
the IMbrave150 study24 and the KEYNOTE-524 study,25 this combination therapy achieved better efficacy and longer overall 
survival. However, endovascular interventions remain the first choice for certain situations in clinical practice in China. TACE 
combined with systemic therapy has proven safe and effective in HCC-PVTT patients.26,27 We speculate that the underlying 
mechanisms are as follows: TACE induces a hypoxic environment while killing tumors and promoting tumor angiogenesis.28 

TKIs have antiangiogenic properties and can effectively inhibit this phenomenon. Additionally, the combination of TACE, 
TKI and ICI may activate adaptive immunity to regulate the tumor immune microenvironment.14,27 In this way, combination 
therapy can achieve synergistic antitumor effects.

The ORR in this study was 40.9%, which is in agreement with previous reports. Nevertheless, owing to tumor hetero-
geneity, the treatment response varies considerably between patients, and a significant number of patients do not benefit. 

Figure 2 ROC curves and performance evaluation of 4 machine learning radiomics models in the training and test cohorts. (a) ROC curves of the ML radiomics models in 
the training cohort. (b) ROC curves of the ML radiomics models in the test cohort. (c) Each model performance in the training cohort. (d) Each model performance in the 
test cohort.
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Unrestricted initiation of combination therapy can lead not only to high treatment costs but also to numerous adverse effects, 
which is clearly contrary to our original intention. As a result, many predictive models have been developed to select patients 
who are candidates for combination therapy.12,13,15 Hua et al constructed a radiomics model based on pretreatment CT to 
identify the population benefiting from lenvatinib plus PD-1 blockade with TACE or HAIC in a noninvasive manner.13 

Compared with CT without ionizing radiation, MRI has higher resolution.4 A multicenter study assessed the therapeutic 
efficacy and prognostic implications of lenvatinib paired with anti-PD-1 immunotherapy in advanced HCC patients through 
MRI radiomics. Researchers have mined deep information hidden behind conventional images, and these high-dimensional 
features, which are difficult to observe with the naked eye, have more sensitive prognostic relevance.12

In our study, 10 of the 12 radiomics features identified after screening were higher-order features obtained via wavelet 
transform. By definition, the “firstorder_Skewness” feature represents the gray-level distribution of tumor regions in the 
arterial phase, reflecting the degree of tumor enhancement. Luo et al identified that pretreatment MRI features predict 
combination therapy efficacy, and reduced arterial enhancement signifies disease progression. In addition, other textural 
features suggested heterogeneity in signal intensity within the tumor. For example, the “gldm_HighGrayLevelEmphasis” 
feature represents the extent of high gray level distribution in a given region, emphasizing local heterogeneous information. 
The “glcm_Autocorrelation” feature, however, is a measure of image texture coarseness, reflecting the spatial correlation of 
adjacent gray levels. Both of these factors have been confirmed to be correlated with the immune profile of the tumor 
microenvironment and serve as prognostic factors in non-small cell lung cancer29 and triple-negative breast cancer.30

Figure 3 ROC curves performance evaluation of clinical, radiomics and combined models in the training and test cohorts. (a) ROC curves of 3 radiomics models in the 
training cohort. (b) ROC curves of the 3 models in the test cohort. (c and d) Radar chart of model performance in the training and test cohort.
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Consistent with the majority of findings, the clinical model failed to show good predictive performance.12,13,15,16 In 
this study, the predictive model was built via logistic regression using a single clinical variable, with low AUC values 
(0.66, 0.41), whereas the radiomics and combined models performed well. In this study, a predictive model was 
established using a single clinical variable through logistic regression, with low AUC values (0.66, 0.41), whereas the 
radiomics and combined models performed well. Notably, our study considered TACE type as an independent clinical 
predictor, and patients treated with DEB-TACE plus systemic therapy responded better. However, this conclusion seems 
to be controversial. Compared with conventional TACE, DEB-TACE did not significantly improve long-term survival in 
advanced HCC patients with PVTT.31 Moreover, there is no clear evidence of superiority between conventional TACE 
and DEB-TACE. Further prospective clinical studies are therefore needed in the future to draw conclusions. In addition, 
PVTT type may be associated with treatment efficacy according to univariate logistic regression but was excluded from 
multivariate analyses. During the baseline characteristic analysis, we found a greater proportion of responders with PVTT 
types I and II than nonresponders (63.9% vs 45.6%, P = 0.009). Similarly, two retrospective studies indicated that 
patients with high-grade PVTT who underwent TACE with lenvatinib plus PD-1 inhibitors had a worse prognosis.32,33

Figure 4 SHAP plot of the combined model. a Bar-chart of the average Shapley additive explanation (SHAP) value magnitude displaying features ranked by absolute SHAP 
value. The larger the average absolute SHAP value of the feature, the more important the feature to the model. b SHAP summary plot displaying the magnitude and 
distribution of the effect of each feature on the model outputs. c, d SHAP force plot for the explanation of the model prediction results representing a responder and a non- 
responder from the training cohort, respectively. The length of the arrow indicates the magnitude of impact, with the red arrows representing an increased probability of 
response to treatment and the blue representing the opposite result.
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ML models are increasingly being applied to solve scientific problems. Owing to the opaque decision-making process, users 
have no insight into the internal logic and operational processes, only the model input and output.23 For clinicians, blind faith in 
the model output in clinical practice is poor, and attention should also be given to interpretability.22 SHAP is a practical and 
efficient ML interpretation tool that can clearly demonstrate local effects and overall impacts to support clinical decision- 
making.22,34 Thirteen variables were used to develop the combined model, and SHAP plots highlighted the three most important 
variables, namely, “DWI_wavelet-LHL_gldm_HighGrayLevelEmphasis”, “T1AP_wavelet-LLH_glcm_Autocorrelation” and 
“T1AP_wavelet-HLL_firstorder_Range”. The SHAP force plot then displays the individualized prediction process, increasing 
transparency and comprehension to further guide clinical diagnosis and treatment.

There are several limitations of this study. First, the sample sizes collected from the two institutions were limited, 
and an independent external validation cohort has not yet been established to test the accuracy and generalizability of 
the model. This was a retrospective study with inevitable selection bias. For example, the study cohort predominantly 
comprised HBV-infected individuals; the REFLECT trial’s Chinese subgroup indicated that lenvatinib may be 
particularly efficacious for hepatitis B-related HCC.35 However, the etiological heterogeneity of HCC results in 
wide variations in efficacy and prognosis.36 This raises the critical question of whether distinct etiological of HCC 
exhibit differential associations with radiomics features – a hypothesis meriting systematic investigation. A recent 
study revealed that GLCM and GLDM features in the hepatobiliary phase of gadoxetic acid-enhanced MRI exhibit 
correlations with HCC development in HBV-infected patients.37 However, the exclusive reliance on a single imaging 
phase potentially diminishes the broader applicability of the conclusion. Additionally, researchers explored the 
feasibility of gadoxetic acid-enhanced MRI radiomics for predicting etiological subtypes of liver cirrhosis, demon-
strating promising diagnostic potential.38 Nevertheless, limitations such as restricted sample size and intergroup 
imbalance urgently require resolution. Thus, there is an urgent need for further large, multicenter prospective studies 
to confirm these findings. The establishment of a public image management platform across regions and ethnicities 
may help advance related research. Second, there is a lack of standards for MRI acquisition equipment, parameters and 
image segmentation, which may lead to measurement differences in image features. Although we performed image 
preprocessing, the effects of these methods in abdominal examination have not been proven at this time. Moreover, 
ROI segmentation was achieved manually and relied on subjective judgment. Third, we performed only a single omics 
analysis and may have ignored the biological background. Multiomics studies that integrate macroscopic radiomics, 
microscopic pathomics and genomics can enhance biological interpretation and help assess disease progression and 
treatment response.

Conclusion
This study elucidated the association between MRI radiomics and multidisciplinary treatment outcomes in HCC-PVTT 
patients. Furthermore, we successfully established and validated a noninvasive predictive model based on radiomics and 
clinical indicators to screen for the appropriate population to receive triple TLP therapy. The operation principle was 
explained through SHAP both locally and globally.
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and communications in medicine; DWI, Diffusion-weighted imaging; ECOG-PS, Eastern Cooperative Oncology Group 
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