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Abstract: Traditional Chinese medicine (TCM), a time-honored practice rooted in natural therapeutics, has served as a cornerstone in 
safeguarding human health across millennia, aiding in disease mitigation and life vitality preservation. However, many TCM active 
ingredients suffer from poor solubility, low bioavailability, uncertain toxicity and weak targeting ability. Nanomedicine represents 
a modern scientific frontier, emerging from the precise engineering of unique nanoscale characteristics, with extensive applications 
encompassing targeted therapeutic delivery and diverse biomedical fields. Although TCM and nanomedicine diverge fundamentally in 
historical origins and disciplinary foundations, growing investigations demonstrate their synergistic potential. In this review, nanosized 
TCM has been revealed as an innovative therapeutic strategy with significant clinical value. Based on the biological activities and 
structural characteristics of TCM active ingredients, we classify them into two categories: natural nanostructured formulations for 
TCM and nano-drug delivery systems for TCM. A systematic and comprehensive analysis of preparations specific and functions to 
two classes of TCM nanomedicines is highlighted. Insights into the advantage of TCM nanomedicines are also introduced. 
Subsequently, the applications of TCM nanomedicines in the biomedical treatment, including anti-cancer, anti-inflammation and anti- 
bacterial are summarized. Finally, challenges and future research directions are emphasized, aiming to offer guidance for the 
modernization of TCM nanomedicines.
Keywords: traditional Chinese medicine, active ingredients, drug delivery, biomedical treatment

Introduction
Traditional Chinese medicine (TCM), termed medicinal plants, has been of great importance in human health for 
thousands of years, serving as a complementary therapy for clinically treating diseases in China, South Korea, Japan, 
India and other countries. Specially, the World Health Organization has incorporated TCM into the supportive treatment 
system for cancer, allowing more countries in fully exploiting the therapeutic potential of TCM. A growing amount of 
research validates the diverse biological effects of TCM, such as anti-tumor,1 anti-bacterial,2 and anti-inflammatory3 

properties. Furthermore, TCM extracts with unique structural skeleton and stereochemistry could effectively bind to drug 
targets, regulate physiological processes, and treat numerous diseases, providing extensive and valuable avenues for 
developing novel drugs.4 Many TCM-derived drugs are already in clinical use, including artemisinin extracted from 
sweet wormwood serves as a treatment for malaria,5 curcumin for anti-inflammation therapy,6 and quercetin as a tumor 
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chemotherapy drug.7 Regrettably, most TCM extracts have poor water solubility, restricted bioavailability, weak targeting 
ability and low stability, which impedes several novel drugs from entering clinical application.8–10 Thus, fully harnessing 
the biological activity of TCM, and developing innovative drug products with less side effects than the prevalent drugs, is 
a significant challenge in current scientific research.

The deep interdisciplinary convergence across biomedicine, chemistry, and materials has driven paradigm-shifting 
innovations, offering groundbreaking theoretical foundations for state-of-the-art technological advancements. In recent 
decades, emerging nanotechnology has brought about a revolutionary change in the domain of medicine and healthcare. 
Particularly, nanomedicines have been intensively investigated for the prevention and therapeutic interventions against 
diverse pathologies, such as cancer and infectious diseases, Nano-drug delivery systems (NDDS) as the specific 
application play a crucial role in driving the progress of advancing nanomedicine due to their multiple beneficial 
characteristics, including the high-efficiency encapsulation of hydrophobic pharmaceuticals within amphiphilic systems, 
the preservation of therapeutic payloads against metabolic clearance, the superior targeting capabilities on diseased 
tissue, and so on.11–13 Integrating the cutting-edge nanotechnology with TCM exhibiting polypharmacological activities 
is a strategically pivotal direction in the current biomedical innovation. So far, significant breakthroughs and progress 
have been achieved in the field of TCM through nanotechnology implementation, which primarily involves natural 
nanostructured formulations and NDDS. Nanosized TCM improves drug solubility and stability, enhancing therapeutic 
efficacy and reducing toxicity.14 Meanwhile, NDDS enables precise drug delivery and controlled release, maximizing 
efficacy and minimizing side effects through synergistic interactions with carriers.15

Herein, we summarize the nanostructured formulations of TCM active ingredients, including natural nanostructured 
formulations for TCM (such as the self-assembly of natural compounds, carbon dots and extracellular vesicles derived 
from TCM) and exogenous NDDS for TCM (such as inorganic nanocarriers, organic nanocarriers, and so on) (Figure 1). 
We elucidate their nanostructures, functions, as well as pharmacological activities, and categorically introduce the 
biomedical treatment applications of TCM nanomedicines. Moreover, we explore the advantages and challenges 
associated with TCM nanomedicines, thereby gaining a profound comprehension of how nanotechnology functions in 
TCM and driving the modernization process of TCM nanomedicines.

Where Do We Stand at TCM?
Plant resources and human medicine have evolved together throughout civilization, with their therapeutic practice 
extensively documented throughout human history. As a landmark treatise, the Compendium of Materia Medica 
(Bencao Gangmu) details rigorously the pharmacological properties of 1,892 medicinal plant species and their clinical 
indications. The bioactive potential of these TCM is originated from diverse components, encompassing leaves, flowers, 
buds, pollen, fruits, exocarps, seeds, roots, stems, bark, and entire plant organism, each endowing distinct therapeutic 
profiles. The advent of modern chemical methodologies enables the isolation and characterization of numerous bioactive 
natural products from TCM. German pharmacist Friedrich Serturner first isolated morphine from opium poppy, which are 
now extensively employed in clinical practice as a potent analgesic and anesthetic, thus inaugurating a new era of natural 
ingredients of TCM research. Subsequent pharmacological investigations have elucidated the clinical efficacy of various 
TCM-derived ingredients, solidifying their role as indispensable sources of modern therapeutics. Prominent examples 
include: artemisinin from the leaves of Artemisia annua leaves with remarkable antimalarial properties;5 baicalin from 
the roots of Scutellaria baicalensis with anti-inflammatory activity;16 camptothecin from the stem bark of camptotheca 
acuminata with potent antitumor activity.17 These findings demonstrate the enduring value of TCM-derived natural 
ingredients in drug discovery and development. Given their structural diversity and biological relevance, natural 
ingredients from TCM will certainly remain a cornerstone of pharmacological innovation, contributing significantly to 
global therapeutic advancement. To further exploit the therapeutic potential of TCM active ingredients, advanced 
nanoformulation-based delivery strategies have emerged as a pivotal research focus. This direction not only impacts 
the clinical translation efficiency of TCM, but also may redefining the theoretical framework for natural products in 
intelligent drug development. Based on numerous recent studies, this review provides a systematic overview of current 
classifications of nanosized TCM, their corresponding constituent formulations, and preparation methodologies (Table 1).
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Figure 1 Engineering strategies for TCM nanomedicines. By Figdraw. https://www.figdraw.com.
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Natural Nanoformulations for TCM Active Ingredients
Self-Assembly Nanoengineering of TCM Active Ingredients
Metal Coordination Strategy
Metal-coordinated self-assembled nanoparticles (MSANs), as an emerging paradigm in nanomedicine, leverage the 
synergistic interplay of coordination bonds between metal ions and organic ligands to construct metal-supramolecular 

Table 1 Classification and Fabrication Strategies of TCM Nanomedicines

Nanosized TCM categories Active 
Ingredients

Nanocarrier Synthesis Methods Ref

Metal-Coordinated Nanoparticles Curcumin Fe3+ Direct Blending Protocol [18]

Shikonin Zn2+, PEG Direct Blending Protocol [19]

Quercetin Fe3+ Interfacial Self-Assembly [20]
Tannic acid Fe3+, Cu2+ Sacrificial Template Method [21]

Procyanidin, Tannic 
acid

Fe3+, Gold nanorods Layer-by-Layer Assembly [22]

TCM Molecular Self-Assembly 

Nanoparticles

Morusin, 
Liquiritigenin

- High-Temperature Processing [23]

Berberine, 
Hesperetin

- Nanoprecipitation Methodology [24]

Resveratrol - Sonication [25]
Berberine, 

Chlorogenic Acid
- pH Modulation Strategy [26]

CDs Rhein - Hydrothermal Method [27]
Pollen Typhae - Pyrolytic Carbonization [28]

Quercetin - Solvothermal Method [29]

Citrus peel - Microwave-Assisted Synthesis [30]
EVs Ginseng - Density gradient ultracentrifugation [31]

Lonicera japonica - Density Gradient Ultracentrifugation [32]

Punica granatum - Size-Exclusion Chromatography [33]
Panax ginseng - Polymer Precipitation [34]

Allium cepa - Ultrafiltration [35]

MSNs Bufalin Rod-shaped MSN Template-Assisted Method [36]
Berberine Gold nanoparticle and Folate- 

Modified MSN

Solvent Displacement Method [37]

MOFs Triptolide TA-Iron Coordination Structure Ultrasound-Mediated Synthesis [38]
Honokiol CD-MOFs Ultrasound-Mediated Synthesis [39]

Nobel Metal Nanoparticles Olive leaf Silver nanoparticle Solvothermal Synthesis [40]

Tannic acid Platinum nanoparticle Direct Blending Method [41]
MNPs Dihydroartemisinin Magneto liposome Film Dispersion-Ultrasonication Method [42]

6-gingerol Magneto liposome Film Dispersion-Ultrasonication Method [43]

Polymeric nanoparticles Quercetin β-cyclodextrin Nanoprecipitation [44]
Curcumin Poly (methacryloyl beta-alanine) Emulsification-solvent evaporation [45]

Artesunate PLGA Emulsification-solvent evaporation [46]

Lipid nanoparticles Curcumin Solid Lipid Nanoparticle Thin-Film Ultrasonic Method [47]
Camptothecin Lipid Nanoparticle Methanol/Ethanol Injection [48]

Nanoemulsion Scutellarin - Self-Emulsifying Drug Delivery System [49]

Tanshinone IIA Rhamnolipids, Tea tree oil Ultrasonication Emulsification Method [50]
Curcumin, Emodin Egg yolk lecithin, Chitosan Ultrasonication Emulsification Method [51]

Biomimetic nanoparticles Resveratrol Erythrocyte membrane-coated 

PCL-PEG

Dialysis Method [52]

Curcumin Milk-derived Exosomes Passive Incubation, Sonication, and 

Electroporation.

[53]
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assemblies with precisely engineered topological architectures.54 In recent years, a growing number of researchers have 
strategically employed bioactive components derived from TCM as organic ligands to construct MSANs for disease 
therapeutics.55,56 Typically, TCM active ingredients with strong coordination capacity, such as polyphenols and poly-
saccharides, are selected as organic ligands.57,58 Through coordination-driven assembly with transition metal ions (eg, 
Fe³⁺, Zn²⁺, Cu²⁺) possessing multiple vacant electron orbitals, stable coordination bonds between metal ions and TCM 
active ingredients are formed, ultimately leading to the construction of corresponding nanoparticles.59

Conventional synthesis strategies predominantly utilize a direct blending protocol, wherein TCM-derived ligands and 
metal ion solutions are mixed under precisely controlled conditions to induce nanostructural self-assembly via metal- 
ligand coordination interactions.60 For instance, Yuan et al18 employed a direct blending method to synthesize curcumin- 
iron nanoparticles by coordinating curcumin with Fe³⁺ ions. Characterization results demonstrated the superior stability 
of the resulting nanosystem. Guo et al also fabricated Zn-Shik nanoparticles via this methodology using shikonin (Shik) 
and Zn²⁺ ions for anti-inflammatory therapy and reactive oxygen species (ROS) scavenging.19 Additionally, interfacial 
self-assembly also represents a critical methodology for fabricating TCM active ingredients-metal coordinated nanopar-
ticles. Interfacial self-assembly refers to a nanostructural architecture strategy where molecules undergo self-organization 
at multiphase interfaces (eg, liquid-liquid, gas-liquid), demonstrating distinct advantages in the precise fabrication of 
complex nanostructures.61 Wang et al20 innovatively leveraged the solid-liquid interface formed by a choline and geranic 
acid ionic liquid as a spatially confined reaction environment to construct MSANs through coordination-driven assembly 
between quercetin and Fe³⁺, and systematically evaluating their antibacterial efficacy. In recent years, sacrificial template 
method (also referred to as the hard-particle directed self-assembly) has emerged as a novel strategy and has been 
successfully applied to the fabrication of TCM active ingredients-metal coordinated nanoparticles.62,63 The fundamental 
principle of this methodology involves the initial introduction of templating molecules to orchestrate coordination-driven 
assembly between TCM-derived ligands and metal ions. Following the completion of TCM active ingredients -metal 
coordination nanoparticle assembly, the templating agents are subsequently removed via selective separation and 
purification techniques.64,65 Qin et al21 successfully fabricated TA-Fe/Cu nanoparticles using zeolitic imidazolate frame-
work-8 as a sacrificial template through coordination-driven assembly of tannic acid (TA) with Fe³⁺ and Cu²⁺. Compared 
to conventional MSANs with solid structures, the hollow architecture of TA-Fe/Cu demonstrates superior photothermal 
conversion efficiency. In vitro and in vivo results confirm that TA-Fe/Cu exhibit remarkable wound-healing efficacy 
through synergistic photothermal effects and ROS scavenging capability.

Nanoengineered TCM active ingredients-metal complexes exhibit multifaceted advantages in disease therapeutics. 
First, their dynamic metal-ligand coordination networks significantly address the inherent limitations of TCM active 
ingredients, such as low bioavailability and poor chemical stability.66 Second, the intrinsic functionalities of metal ions 
(eg, redox activity of Fe³⁺ and antimicrobial properties of Cu²⁺) combined with the programmable loading capacity for 
functional molecules endow these nanoparticles with versatile functionalization capabilities. Zhang et al leveraged this 
characteristic to conjugate photothermally active gold nanorods with TCM active ingredients-metal complexes, success-
fully constructing a novel and highly efficient antibacterial nanosystem that synergistically integrates photothermal 
therapy with conventional chemotherapy.22 This coordination chemistry-guided precision nanoengineering strategy not 
only enhances the targeted delivery efficiency of TCM components but also enables synergistic therapeutic effects, 
thereby systematically expanding the mechanistic research dimensions of TCM in disease treatment.

TCM Molecular Self-Assembly Strategy
Beyond the aforementioned strategies, another prevalent approach in the self-assembly of TCM active components 
involves endogenous self-assembly, where amphiphilic-structured TCM molecules autonomously facilitate nanoparticle 
formation through intermolecular interactions.67 The intermolecular interactions governing this self-assembly process are 
predominantly non-covalent, including electrostatic interactions, van der Waals forces, hydrogen bonding, hydrophobic 
interactions, and π-π stacking.68 Current research in the field predominantly focuses on the self-assembly of TCM active 
components, including polysaccharides, saponins, polyphenols, terpenoids, and alkaloids, owing to their hydrogen bond- 
rich structures and amphiphilic nature (A molecule exhibits both hydrophilicity and hydrophobicity), which confer 
superior self-assembly capability compared to other TCM constituents.69–72
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The self-assembly process of TCM molecules encompasses multiple initiation strategies, including high-temperature 
heating, nano-coprecipitation, sonication treatment, and pH modulation methods. High temperature heating can promote 
non-covalent bonding processes between molecules and enhance the stability of reaction products.73 For instance, Nie 
et al successfully constructed novel self-assembled nanoparticles through high-temperature processing at 120°C using 
morusin and liquiritigenin, and characterization results indicated that the nanoparticles displayed excellent stability.23 

The nanoprecipitation methodology, a classical approach in nanopharmaceutical fabrication, is primarily governed by 
two interrelated physicochemical processes: diffusion-controlled thermodynamic equilibration and aggregation-driven 
kinetic assembly.74 Furthermore, Gao et al synthesized berberine-hesperetin nanoparticles via nano-coprecipitation 
mediated self-assembly for ulcerative colitis therapy, demonstrating a novel preclinical treatment strategy.24 The under-
lying principle of sonication lies in its capacity to modulate molecular dimensions, thereby enhancing intermolecular 
interaction forces that facilitate molecular self-assembly.75 Leveraging this mechanochemical mechanism, Chang et al 
engineered resveratrol nanoparticles through 100 hz sonication-induced supramolecular organization, establishing 
a bioengineered platform for developing targeted respiratory syncytial virus infection therapeutics.25 The pH modulation 
strategy for optimizing the synthesis of self-assembled nanoparticles stems from the protonation-state-regulated mechan-
ism under critical pH conditions, which substantially accelerates the reaction kinetics of molecular self-assembly 
processes.76,77 Therefore, Fu et al26 successfully induced the self-assembly of berberine and chlorogenic acid by 
precisely adjusting the pH of the reaction system to 7.0–7.5 using NaOH. Characterization results demonstrated that 
the resulting self-assembled nanoparticles exhibited excellent structural stability.

TCM molecular self-assembled particles are endowed with inherent biocompatibility and broad-spectrum pharmaco-
logical activity profiles via nature-inspired architectural strategies, thereby demonstrating low-risk therapeutic potential 
with broad-spectrum efficacy in oncology,78 inflammatory disorders,79 and bacterial infection.80 Furthermore, their 
intrinsic programmability enables precision functionalization modifications to achieve superior drug delivery perfor-
mance through programmable supramolecular engineering.81

Carbon Dots Nanoengineering of TCM Active Ingredients
Carbon dots (CDs) are an emerging class of ultrasmall nanoparticles (with a size of less than 10 nm) that are primarily 
classified into four categories: graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), 
and carbon-based polymer dots (CPDs).82 Recently, with advancements in nanopharmaceutical preparation technologies 
and the deepening exploration of TCM, active ingredients derived from TCM have emerged as promising precursors for 
synthesizing novel CDs due to their unique natural architectures and biocompatibility.83 These nanomaterials, fabricated 
using extracts or bioactive molecules from TCM as carbon sources, are collectively termed TCM-CDs.84 Structurally, 
TCM-CDs can be categorized into two distinct classes: CQDs and CNDs.85,86

The synthesis strategies of CDs are primarily categorized into two major classes: the “top-down” approach and the 
“bottom-up” approach. The so-called “top-down” synthesis of CDs fundamentally relies on physicochemical techniques 
to disintegrate bulk carbon materials into CDs, including electrochemical exfoliation, ultrasonication, laser ablation, and 
arc discharge methods.87–89 However, the “top-down” strategy exhibits intrinsic drawbacks such as broad size distribu-
tion, pronounced structural heterogeneity, inadequate control over processing parameters, and inevitable impurity/defect 
incorporation.90 The “bottom-up” synthesis methodology relies on molecular-level assembly of precursors to enable the 
controlled fabrication of CDs,91 which demonstrates superior viability over the “top-down” approach for achieving large- 
scale and cost-effective production of CDs, primarily due to its inherent advantages in controllable molecular assembly 
and energy-efficient processing pathways.92 Consequently, the bottom-up approach has been established as the predo-
minant methodology in CDs synthesis, particularly in the fabrication of TCM-CDs. The “bottom-up” synthesis strategy 
currently encompasses four principal methodologies for CDs fabrication: hydrothermal synthesis,93 pyrolytic 
carbonization,94 solvothermal synthesis,95 and microwave-assisted processing.96 The hydrothermal method represents 
an eco-friendly synthetic strategy, whose standardized protocol encompasses sequential steps including precursor 
dissolution, hydrothermal reaction under elevated temperature and pressure, controlled gradient cooling, centrifugal 
separation, membrane filtration purification, and terminal dialysis refinement, ultimately yielding CDs with well-defined 
structural characteristics.97 Xia et al27 engineered CDs with integrated fluorescence tracing and near-infrared 
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photothermal conversion capabilities via hydrothermal synthesis using Rhein, which effectively alleviated dextran sulfate 
sodium (DSS)-induced ulcerative colitis through ROS scavenging and suppression of NF-κB-mediated inflammatory 
cascades. A representative pyrolytic carbonization strategy involves high-temperature carbonization of molecular pre-
cursors, followed by boiling and dialysis of the carbonized products to yield CDs.98 Wang et al implemented this strategy 
in fabricating Pollen Typhae (PT)-derived carbon dots (PT-CDs). Specifically, PT was subjected to gradient pyrolysis 
treatment (250–400°C) in a crucible, followed by sequential boiling and dialysis purification of the carbonized products, 
ultimately yielding PT-CDs with remarkable therapeutic efficacy in ameliorating acute kidney injury.28 The solvothermal 
method is fundamentally characterized by the employment of non-aqueous solvents (eg, ethanol, dimethylformamide) as 
reaction media, distinct from the hydrothermal approach that exclusively utilizes aqueous systems.99,100 This strategy 
achieves precise regulation of CDs synthesis through systematic modulation of solvent properties.101 Kasi and co- 
workers synthesized neuroregenerative CDs via a 180°C ethanol-mediated solvothermal strategy using quercetin as the 
carbon precursor. These CDs demonstrated significant enhancement of Schwann cell proliferative activity, thereby 
accelerating post-injury regeneration of peripheral nerve tissues.29 Microwave-assisted synthesis facilitates CDs prepara-
tion through dielectric heating-induced bond dissociation in molecular precursors, which drives cascade physicochemical 
transformations. This approach demonstrates superior precursor activation kinetics and precise control over CDs 
morphology and surface chemistry compared to conventional thermal methods.102 Utilizing citrus peel-derived biomass 
as a carbon precursor, Hu et al30 synthesized fluorescence-responsive functionalized CDs within 1 minute via 
a microwave-assisted approach. These CDs demonstrated sensitive detection of Escherichia coli in dairy matrices, 
highlighting the exceptional efficiency of microwave-driven synthesis in advancing green CD fabrication strategies.

The hallmark advantage of TCM-CDs lies in their environmentally benign synthesis, enabling energy-efficient 
fabrication under non-toxic reagent conditions.103 Their sub-10 nm nanostructure facilitates rapid renal clearance via 
glomerular filtration, significantly mitigating bioaccumulation risks and demonstrating superior biocompatibility.104 

Furthermore, TCM-CDs inherently integrate fluorescence-based tracing capabilities with precise diagnostic functional-
ities, underscoring their versatility across diverse application scenarios.105

Extracellular Vesicles Derived from TCM
Extracellular vesicles (EVs) are phospholipid bilayer-enclosed structures secreted by cells, characterized by their low 
immunogenicity and high biocompatibility, which have positioned them as an emerging therapeutic strategy in disease 
treatment.106 TCM-EVs are naturally secreted nano-scale vesicles from herbal cells, encapsulating lipids, proteins, nucleic 
acids, and bioactive phytochemicals, demonstrating versatile therapeutic potential across multiple disease contexts.107

Currently, the primary preparation methods for TCM-EVs include differential ultracentrifugation, density gradient 
centrifugation, size-exclusion chromatography, polymer-based precipitation, and ultrafiltration. Differential ultracentrifuga-
tion sequentially removes particulate impurities through gradient centrifugal forces, followed by ultracentrifugation pelleting 
to isolate EVs within a target size range. This standardized protocol employs multi-step centrifugation for precise preparation 
of EV products.108 Density gradient ultracentrifugation represents a methodological refinement evolved from conventional 
differential ultracentrifugation protocols. Seo et al31 isolated ginseng-derived EVs utilizing a sucrose density gradient method. 
These EVs demonstrated efficacy in inhibiting osteoclast differentiation, positioning them as a potential therapeutic agent for 
osteoporosis. The core workflow comprises density gradient formation, isopycnic centrifugation, fractionation, and elution 
purification.109 Li et al employed iodixanol density gradient construction coupled with fractionation-based isolation to prepare 
Lonicera japonica-derived EVs, which alleviated DSS-induced colitis.32 Size-exclusion chromatography achieves size- 
dependent separation of EVs through molecular sieving via porous matrices (eg, agarose/dextran gels). The standardized 
protocol involves chromatographic column elution of the sample mixture at a constant flow rate to achieve target EVs 
isolation.110 Sánchez-López et al isolated EVs from punica granatum using this methodology, demonstrating wound-healing 
promotion, anti-inflammatory, and antioxidant properties.33 The principle of polymer precipitation involves competitive 
binding of hydrophilic polymer to water molecules in the hydration layer on the surface of EVs, disrupting their colloidal 
stability and thereby inducing precipitation for separation. The standardized protocol involves incubation of the sample with 
polymer solution followed by sequential centrifugation steps to achieve EVs isolation.111 Zhang et al utilized ExoQuick 
solution to isolate panax ginseng-derived EVs via polymer-based precipitation.34 Ultrafiltration achieves size-selective 
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separation of EVs through molecular sieving effects generated by porous membranes with defined pore size distributions.112 

Ham et al developed a novel molecular sieve membrane enabling high-efficiency isolation of allium cepa-derived EVs via 
ultrafiltration methodology.35

Exogenous NDDS for TCM Active Ingredients
Inorganic Nanocarriers
Mesoporous Silica Nanoparticles
Mesoporous Silica Nanoparticles (MSNs) are silicon-based nanoparticles with a porous structure. MSN encompasses 
multiple categories, including ordered MSN, hollow MSN, core-shell MSN, dendrimer-like MSN, and biodegradable 
MSN, among others.113 Currently, the primary methods for synthesizing MSNs include the sol-gel process and template- 
assisted approaches.114 The sol-gel synthesis method of MSNs involves the condensation reaction of the precursor within 
the micelles confined by the emulsion, followed by template extraction to generate an ordered mesoporous structure.115 

The template-assisted method entails selecting a suitable templating agent and mixing it with the precursor (or having it 
adsorbed onto a specific substrate), allowing the precursor to react and grow following the template, and then removing 
the template through methods such as calcination and extraction to obtain the material.116

Due to their high specific surface area, ease of modification, adjustable pore size, and good biosafety, MSN have been 
widely utilized as a sophisticated inorganic nano-carrier for drug delivery in various biomedical applications, including 
targeted therapy for cancer.117 MSN is frequently utilized for the delivery of active ingredients of TCM that possess anti- 
cancer properties. Fan and his colleagues employed rod-shaped MSN to encapsulate bufalin for targeted therapy of 
colorectal cancer. Thanks to the exceptional EPR effect exhibited by MSN, the efficacy of bufalin in treating colorectal 
cancer was significantly enhanced.36 In recent years, functionalizing MSN to enhance its therapeutic effects has emerged 
as a new trend in research.118 Li and colleagues further utilized gold nanoparticles and folate-modified MSN for targeted 
delivery of berberine in the treatment of liver cancer. The gold nanoparticles endowed the nanoparticles with 
a photothermal effect, while the folate enabled active targeting and recognition of liver cancer cells by the nanoparticles. 
The high targeting efficiency, combined with the synergistic action of photothermal therapy (PTT) and chemotherapy, 
significantly enhanced the anticancer efficacy of berberine.37

Metal-Organic Frameworks
Metal-Organic Frameworks (MOFs) are a novel type of porous materials assembled through the coordination bonding of 
metal ions or metal clusters with organic ligands.119 The synthetic methodologies for MOFs encompass hydrothermal/ 
solvothermal synthesis, microwave-assisted synthesis, mechanochemical approaches, electrochemical methods, ultra-
sound-mediated synthesis, and diffusion techniques.120

MOFs have been widely applied in the research and development of nanomedicines due to their adjustable porous 
structures, good biocompatibility, and ease of functionalization.121 Wang and his team have developed an iron-based MOFs 
nanocarrier for loading triptolide, targeting its application in the treatment of melanoma. This MOFs nanocarrier has 
undergone modifications with bovine serum albumin and folic acid, and possesses chemodynamic therapy (CDT) activity. 
These features not only enhance targeting efficacy but also achieve synergistic effects among multiple therapeutic approaches, 
thereby significantly improving the therapeutic efficacy of triptolide through various aspects.38 In another study, He and 
colleagues developed a cyclodextrin-based MOFs system for loading honokiol, targeting its application in breast cancer 
treatment. This MOFs system was also loaded with indocyanine green and encapsulated with the cell membrane of MCF-7 
cells (a type of breast cancer cell). This innovative approach not only enhanced the stability and targeting ability of honokiol 
but also synergized it with PTT, thereby significantly boosting the therapeutic efficacy of honokiol.39

Noble Metal Nanoparticles
Noble metal nanoparticles refer to tiny particles with sizes typically not exceeding 100 nanometers, composed of 
precious metal elements such as gold, silver, platinum, and palladium. The synthetic methodologies for noble metal 
nanoparticles bear similarities to those employed in the fabrication of MOFs.
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A distinct advantage of noble metal nanoparticles lies in their dual functionality: serving as nanocarriers for 
targeted delivery of TCM bioactive components while exerting therapeutic effects through their intrinsic physi-
cochemical properties.122,123 For instance, gold nanoparticles (Au NPs) exhibit excellent photothermal effects. 
Taking advantage of this property, Zhang et al designed a functionalized Au NPs modified with AS1411 for 
targeted therapy of colorectal cancer. This nanoparticle demonstrates significant killing effects on colorectal cancer 
cells through the PTT effect.124 In terms of serving as nanocarriers, noble metal nanoparticles can enhance the 
efficacy of active ingredients in TCM by increasing their stability, solubility, and other properties. It is reported 
that researchers utilized silver nanoparticles encapsulated with olive leaf extract for the treatment of colorectal 
cancer. In vitro experiments demonstrated the nanoparticles remarkable inhibitory effect on HCT-116 cells (a type 
of colorectal cancer cell), thereby showcasing their exceptional potential for anticancer therapy.40 Furthermore, 
Xiang and his team have developed a metal-based nanoparticle system loaded with TA, utilizing platinum 
nanoparticles (Pt NPs) as the foundation. This system is designed to inhibit cancer progression by enhancing anti- 
cancer immune responses. As a nanocarrier, Pt NPs play a crucial role in significantly boosting the bioavailability 
and targeting efficiency of tannic acid, thereby prolonging its circulation time in the body and facilitating its 
accumulation at tumor sites. These improvements collectively enhance the anti-cancer activity of TA.41

Magnetic Nanoparticles
Mineral medicines are an important part of TCM in our country. Such as cinnabar, realgar, and magnetite, etc., they are 
known as “metal and stone medicines” and are widely used in traditional Chinese medicine. Some TCMs of inorganic 
mineral origin can be directly generated into nanomedicines through physical methods (mechanical crushing method, ball 
milling method) and chemical methods (precipitation method, sol-gel method, hydrothermal method). Similar to 
magnetite, magnetic nanoparticles (MNPs) are a type of nanoscale particles composed of magnetic elements (such as 
iron, nickel, cobalt) and their compounds, exhibiting unique properties including a high surface-to-volume ratio, 
magnetism, and high stability. These characteristics have led to their widespread application in the biomedical field.125

When loaded with active ingredients of TCM for cancer treatment, MNPs can enhance the efficacy of these ingredients 
through two distinct properties. Firstly, the magnetic guidance effect of MNPs is utilized to achieve targeted delivery of the 
active ingredients of TCM. In previous research, MNPs have been shown to accumulate specifically at tumor sites under the 
guidance of an external magnetic field, thereby increasing the drug concentration at those sites and ultimately enhancing the 
therapeutic effect.126 Li and his team have developed lipid-coated magnetic nanoparticles loaded with dihydroartemisinin 
(DHA), based on iron oxide, for the treatment of head and neck squamous cell carcinoma. Both in vitro and in vivo 
experiments have demonstrated that these nanoparticles can achieve targeted delivery of DHA under the influence of an 
external magnetic field, exhibiting significantly enhanced therapeutic efficacy compared to non-targeted DHA delivery.42 

Furthermore, MNP can synergistically treat cancer along with the active ingredients of TCM through their magnetocaloric 
effect, thereby enhancing the therapeutic efficacy. Under the application of an external alternating magnetic field, MNPs can 
absorb magnetic energy to produce heat, thereby elevating the local temperature of tumor tissue to the point of eradicating 
tumor cells.127 Li and his team have developed a targeted therapy for colorectal cancer based on magnetic mesoporous silicon 
nanoparticles (MMSNPs) encapsulating 6-gingerol. Under the influence of an external alternating magnetic field, these 
MMSNPs synergistically induce colorectal cancer cell death through a combination of magneto-thermal effects, the 
stimulation of antitumor immunity, and oxidative stress. This approach has significantly enhanced the therapeutic efficacy 
of 6-gingerol and demonstrated potent anticancer activity.43

Organic Nanocarriers
Polymer Nanocarriers
Polymer nanocarriers are drug delivery systems constructed using one or more polymers, such as polyethylene glycol 
(PEG) and chitosan.128,129 In the preparation of polymeric nanocarriers, the most commonly employed methods are 
emulsification-solvent evaporation130 and nanoprecipitation,131 which have emerged as predominant techniques due to 
their high efficiency, scalability, and broad applicability.
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Polymeric nanocarriers are widely used in the field of targeted drug delivery, especially in the delivery of active ingredients 
of TCM for cancer treatment, due to their advantages such as high biocompatibility, high stability, adjustable surface 
properties, versatility, good drug loading and release capabilities, and low immunogenicity and renal filtration rate.132 

Researchers developed a polymeric nanocarrier based on β-cyclodextrin that loads quercetin and doxorubicin. This nano-
carrier not only enhances the bioavailability of quercetin but also reverses the resistance of MCF-7 cells to doxorubicin, 
achieving an improved anticancer effect through synergistic therapy.44 In the treatment of cervical cancer, some researchers 
have developed a polymer nanoparticle based on poly (methacryloyl beta-alanine) for the targeted delivery of curcumin. This 
nanoparticle improves the targeting and therapeutic effect of curcumin by increasing the release rate of curcumin and guiding 
curcumin to act on the nucleus of HeLa cells (a type of cervical cancer cell), providing a new strategy for the clinical treatment 
of cervical cancer.45 Leveraging the advantage of easy surface modification of polymer-based nanocarriers, some researchers 
have further conducted surface engineering to endow them with additional functionalities, thereby enhancing their drug 
delivery efficiency and amplifying the therapeutic effects of the administered drugs. For example, Peng et al constructed 
a biomimetic polymer nanocarrier by coating poly (lactic-co-glycolic acid) (PLGA) nanocarriers with mannose-modified red 
blood cell membranes, and utilized it to deliver artesunate and chloroquine for targeted therapy of colorectal cancer. The 
mannose-modified red blood cell membranes enable the nanoparticles to have a longer circulation time in the body and to 
target and accumulate at tumor sites for effective action. In vitro and in vivo results indicate that this nanocarrier significantly 
enhances the anticancer therapeutic effects of artesunate and chloroquine.46

Lipid Nanoparticles
Lipid nanoparticles are vesicular nanostructures primarily composed of lipid molecules, encompassing various types such 
as liposomes, lipid nanoparticles (LNPs), solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs).133 

In the preparation of lipid-based nanocarriers, the most commonly used methods are Thin-Film Hydration134 and 
Methanol/Ethanol Injection.135 These two methods have become the preferred strategies for synthesis due to their well- 
established technology, ease of operation, and broad applicability.

Lipid nanoparticles have been extensively utilized in drug delivery,136 biomedical imaging and diagnostics,137 as well 
as gene therapy,138 due to their advantages such as excellent controlled release properties, targeting capabilities, and 
enhanced drug bioavailability.139 The utilization of lipid nanocarriers to load active ingredients of TCM for cancer 
treatment is also a new trend in the current development of nanomedicine. Zhang and his team have devised 
a functionalized SLN carrier for loading curcumin, specifically tailored for the treatment of liver cancer. By employing 
hyaluronic acid for surface modification, this nanoparticle carrier acquires the capability to specifically target liver cancer 
cells. Experimental results indicate that curcumin loaded onto this SLN carrier exhibits a higher degree of accumulation 
at the tumor site compared to free curcumin, resulting in a marked enhancement of its anticancer therapeutic efficacy.47 In 
another study, Jing and colleagues utilized LNPs to encapsulate camptothecin for the treatment of liver cancer. These 
LNPs were also functionally modified, and innovatively co-delivered camptothecin along with a contrast agent. This 
enables these nanoparticles not only to possess targeted therapeutic capabilities against liver cancer but also to achieve 
synchronous in vitro MRI imaging, thereby integrating diagnosis and treatment. This not only broadens the application 
scenarios of active ingredients derived from TCM but also offers new insights into personalized cancer treatment.48

Nanoemulsion
Nanoemulsions are nanoscale dispersion systems composed of oil phase, aqueous phase, and emulsifiers. Their nanoscale 
droplet size and exceptional stability demonstrate broad applicability in drug delivery.140,141 TCM-derived nanoemul-
sions represent an advanced drug delivery platform wherein active ingredients from TCM are encapsulated via 
nanotechnology within emulsion-based systems, aiming to enhance bioavailability, stability, and targeted delivery 
capabilities. The oil phase is predominantly constituted by lipophilic (curcumin, paclitaxel, tanshinone, etc) or oleaginous 
(volatile oil of ligusticum chuanxiong, peppermint oil, zedoary oil, etc) TCM active ingredients.

The currently prevalent preparation techniques for TCM nanoemulsions primarily include high-pressure 
homogenization,142 ultrasonication,143 phase inversion temperature (PIT) method,144 and self-emulsifying drug delivery 
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systems (SEDDS).145 The former two methods fall into high-energy preparation techniques, while the latter two belong 
to low-energy fabrication approaches.

In practical applications, nanoemulsions are extensively employed in the construction of nanosized TCM formula-
tions owing to their high stability, enhanced bioavailability, and superior safety profiles.146 Liao et al developed a self- 
emulsifying nanodelivery system based on scutellarin to suppress excessive inflammatory responses. Characterization 
data demonstrated that the nanoemulsion exhibited excellent physical stability and achieved lymph node-specific 
accumulation in vivo, significantly mitigating LPS-induced systemic cytokine storms. This system markedly enhanced 
the anti-inflammatory efficacy of scutellarin. Biosafety evaluation further confirmed the absence of toxic effects on major 
organs (heart, liver, lungs, and kidneys) in experimental animals following administration of the nanoemulsion.49 In 
addition, R. M. El-Moslemany et al prepared a tanshinone IIA nanoemulsion via the ultrasonication emulsification 
method. This nanoemulsion exhibited significant bioactivity and demonstrated remarkable therapeutic efficacy in 
mitigating acute lung injury in vivo.50 Lei et al developed a pH-responsive sodium alginate hydrogel-encapsulated 
nanoemulsion co-loaded with curcumin and emodin via ultrasonication emulsification. This nanoemulsion demonstrated 
pH-triggered controlled drug release in the colon, effectively alleviating the inflammatory microenvironment through 
downregulation of pro-inflammatory cytokines (TNF-α, IL-6), upregulation of anti-inflammatory cytokine IL-10, scaven-
ging of macrophage-derived ROS, and enhancement of intestinal mucosal tight junction protein expression.51

Biomimetic Nanoparticles
Biomimetic nanoparticles are a novel type of nanocarriers fabricated by coating the surfaces of traditional nanomaterials 
with cellular constituent (such as cell membranes, extracellular vesicles, etc.).147–149 The primary preparation strategies 
for membrane-coated biomimetic nanoparticles include membrane extrusion150,151 and electroporation.152 The detailed 
isolation and purification techniques for EVs (eg, differential centrifugation, size-exclusion chromatography, or ultra-
centrifugation) have been outlined above.

Compared with traditional nanocarriers, biomimetic nanocarriers exhibit better biocompatibility, higher targeting 
efficiency, and more superior abilities to penetrate biological membranes.153 Based on these advantages, an increasing 
number of researchers are combining them with active ingredients of TCM that have anticancer effects to develop novel 
nanomedicines with even stronger anticancer properties. In the research conducted by Zhang and his team, they utilized 
red blood cell membranes to encapsulate a PCL-PEG polymer carrier, thereby creating a novel biomimetic nanocarrier 
loaded with resveratrol for targeted therapy of colorectal cancer. By leveraging the properties of the red blood cell 
membranes, this nanocarrier can effectively evade clearance by the body’s immune system, leading to an extension of its 
circulation time within the body. This prolonged circulation enhances the chances of the drug reaching the disease site, 
ultimately boosting the therapeutic efficacy of resveratrol.52 Exosomes, a type of nanovesicles derived from cells, also 
serve as a type of biomimetic nanocarrier.154 They are capable of encapsulating drugs and achieving targeted delivery 
without the need to bind with other nanoparticles. A group of researchers has successfully developed a delivery system 
based on milk-derived exosomes encapsulating curcumin. This system efficiently delivers curcumin to breast cancer 
cells, enhancing its anticancer activity and providing a promising strategy for the treatment of breast cancer.53

Advantages of Nanosized TCM for Biomedical Applications
Compared with traditional TCM, nanosized TCMs exhibit a series of prominent advantages. They have better solubility, stronger 
permeability, more precise targeting, and can enable the combined application of multiple therapies. These advantages effectively 
enhance the pharmacological activity of nanosized TCMs, demonstrating greater potential in the treatment of disease.

Bioavailability
The bioavailability of active ingredients in TCM is generally not strong, primarily due to the intricate molecular 
architectures of these compounds, the high abundance of polar or hydrophobic functional groups, and hepatic first- 
pass metabolism. This poor bioavailability poses limitations on the clinical application of active ingredients in TCM. To 
address this issue, researchers have developed nanocarrier-based delivery systems for constructing nanosized TCM 
formulations to enhance their bioavailability155 (Figure 2). The first strategy involves encapsulating TCM active 
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ingredients within amphiphilic nanocarriers to enhance hydrophilicity and solubility, thereby improving bioavailability. 
Yao et al developed an amphiphilic PEG-PLGA nanoparticle-based delivery system for encapsulating isoliensinine in 
hypertension treatment. Pharmacokinetic studies demonstrated that this nanocarrier significantly enhanced plasma drug 
concentration of isoliensinine and prolonged its systemic retention, thereby effectively improving bioavailability.156 

The second strategy leverages the nanoscale size effect by reducing drug particle size to increase specific surface area, 
thereby accelerating dissolution kinetics and markedly enhancing drug solubility and bioavailability. Ge et al group 
engineered an ellagic acid-gallic acid-catechin (EA-GA-CA) sandwich-like nanostructure for antibacterial therapy. 
Structural characterization revealed that this nanostructure exhibited a remarkably high specific surface area, which 
facilitated a substantial enhancement in aqueous solubility and ultimately optimized bioavailability.157 Another strategy 
involves reducing hepatic clearance to prolong the systemic circulation time of the drug, thereby enhancing bioavail-
ability. Zhou et al innovatively developed a biomimetic nanodelivery system utilizing erythrocyte membrane and PLGA 
for targeted shikonin delivery in colorectal cancer therapy. This bioinspired design, mimicking natural erythrocyte 
characteristics, effectively reduced hepatic metabolic clearance of the nanoparticles. Pharmacokinetic analysis demon-
strated that the biomimetically engineered shikonin formulation significantly extended systemic circulation half-life 
compared to free drug, confirming the strategy’s efficacy in enhancing bioavailability.158

Targeting
Nanosized TCM active ingredients can increases the dosage of drugs accumulated at the lesion site, thereby improving 
drug delivery efficiency and therapeutic efficacy, and reduces adverse reactions caused by drug-induced damage to other 

Figure 2 Strategies of nano-engineering for improving the bioavailability of active ingredients in TCM. By Figdraw. https://www.figdraw.com.

https://doi.org/10.2147/IJN.S518610                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 6300

Wang et al                                                                                                                                                                           

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.figdraw.com


normal tissues in the body.159 The mechanisms for enhancing drug targeting can be divided into passive targeting, active 
targeting, and physicochemical targeting (Figure 3).

The mechanism of passive targeting delivery by nanosized TCM primarily relies on the Enhanced Permeability and 
Retention (EPR) effect, which is closely related to the physicochemical properties of the nanocarriers, including particle size, 
morphology, molecular weight, charge properties, and charge amount.160,161 For example, Ji et al fabricated self-assembled 
nanoparticles based on honokiol via a hydrothermal method for colorectal cancer treatment. In vivo pharmacokinetic and 
biodistribution studies demonstrated that these nanoparticles could achieve targeted accumulation in tumor tissues through the 
EPR effect.162 Nanocarriers composed of PEG and PLGA can enhance drug stability and improve bioavailability.163 Based on 
this advantage, researchers have utilized PEG-PLGA nanocarriers to encapsulate honokiol for the treatment of breast cancer. 
Through the EPR effect, the passive targeted delivery of honokiol can be achieved, thereby improving its therapeutic 
efficacy.164 Specially, Zheng et al designed a self-assembling nanocarrier based on 1,2-Distearoyl-sn-glycero-3-phosphoetha-
nolamine-N- [maleimide (polyethylene glycol)-2000] (DSPE-PEG2000-Mal) and cholesterol for simultaneous targeted 
delivery of curcumin and resveratrol in the treatment of liver cancer. Both in vivo and in vitro experiments were conducted 
to verify its ability to enhance the anticancer efficacy of these drugs.165

Active targeting refers to a drug targeting delivery strategy that nanoparticles modified with specific ligands can be 
precisely internalized by target cells to exert therapeutic effects. The core of this strategy lies in the specific binding 
between ligands and receptors.166 This strategy not only specifically acts on target cells but can also bind to target 
organelles after cellular internalization, thereby improving the precision of treatment.167 Currently, a popular strategy for 
achieving active targeting is to modify the surface of nanoparticles with ligands that can specifically recognize certain 

Figure 3 Schematic diagram of targeted delivery of nanosized TCM to pathological lesions. (A). Nanosized TCM achieves passive targeting to lesion sites via the EPR effect. 
(B). Nanosized TCM realizes active targeting to lesion sites through biomimetic modification or surface protein engineering. (C). Nanosized TCM enables physicochemical 
targeting to lesion sites by responding to endogenous or exogenous stimuli. By Figdraw. https://www.figdraw.com.
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overexpressed receptors on the surface of cancer cells, thereby enabling the active targeted delivery of active ingredients 
in TCMs.168 For instance, folate is a type of B vitamin, and its receptors are often overexpressed in cancer cells.169 

Therefore, targeting folate receptors has become one of the strategies for active targeted delivery. Guo et al utilized 
folate-modified star polyester nanocarriers for targeted delivery of curcumin to treat breast cancer. This nanocarrier 
exhibited good targeting ability for the curcumin and significantly enhanced its therapeutic efficacy.170 Li et al also 
utilized folate-coated MSNs to load tanshinone IIA. This nanocarrier demonstrated good targeting toward promyelocytes 
both in vivo and in vitro, and exhibited superior therapeutic effects compared to MSNs carriers without folate coating.171 

The asialoglycoprotein receptor is also one of the receptors that are overexpressed on the surface of cancer cells. Based 
on this, researchers have utilized galactose-modified PLGA nanocarriers to encapsulate dalbergin for the liver cancer 
treatment. This approach not only improves the bioavailability of dalbergin but also increases its distribution within liver 
cancer tissues, thereby achieving targeted therapy.172 Furthermore, Ling et al synthesized a polymer nanocarrier capable 
of targeted recognition of IL-13Rα2 (an IL-13 receptor that is highly expressed in glioblastoma multiforme, GBM), 
which was used to deliver resveratrol, thereby achieving precise treatment of GBM and enhancing the anticancer 
therapeutic effect of resveratrol.173,174 Guo et al engineered curcumin-derived extracellular vesicles with death receptor 
5 (DR5) antibody functionalization. These nanoparticles achieved targeted delivery to tumor sites by specifically 
recognizing DR5 on senescent tumor cell surfaces, thereby overcoming the limited targeting capacity of curcumin. In 
vivo studies further demonstrated their potent tumor growth inhibitory efficacy.175

Physicochemical targeting primarily achieves targeted delivery of drugs through the utilization of endogenous 
physicochemical stimuli within the disease microenvironment or the influence of certain external physicochemical 
factors.176 For instance, hypoxia is a prominent characteristic of the tumor microenvironment.177 Based on this 
characteristic, Liu et al developed a kind of micelle based on angelica polysaccharide for the delivery of curcumin in 
the treatment of liver cancer. This micelle was modified with azobenzene, which enables it to stimulate the release of 
curcumin under hypoxic conditions in liver cancer, achieving targeted therapy.178 The pH value of tumor tissue is lower 
than that of normal tissue, exhibiting a weak acidity.179 Therefore, the development of NDDSs with pH-responsive 
properties is also one of the current strategies for achieving active targeted drug delivery. Researchers have developed an 
MSN modified with folic acid and polyacrylic acid for the delivery of chrysin in the treatment of breast cancer. 
Experiments have demonstrated that this nanocarrier can efficiently release chrysin under the pH conditions specific to 
the tumor environment, achieving pH-responsive targeted drug delivery.180 In addition to responding to internal stimuli 
within tumor tissues, researchers have also utilized strategies involving nano-carriers that respond to external stimuli to 
achieve physicochemical targeted delivery. S. Roy et al constructed a bioinspired magnetic nanocarrier system using 
Lactobacillus rhamnosus (Au-Lac)-derived biotemplates coupled with zinc ferrite, successfully achieving targeted 
delivery of quercetin – an anticancer bioactive compound from TCM. In vitro studies confirmed the nanoparticles’ 
magnetically guided directional migration into cervical cancer cells under external magnetic field control, demonstrating 
remarkable magnetic targeting properties.181

Multimodal Therapy
Nanosized TCM can achieve combined therapy against disease through multiple mechanisms, thereby significantly 
enhancing treatment efficacy (Figure 4). PTT is an emerging and highly precise cancer treatment method. It primarily 
involves the targeted delivery of nanoparticles with photothermal conversion effects to the tumor site. Under the 
illumination of an external light source, these nanoparticles convert light energy into thermal energy, raising the local 
temperature of the tumor tissue to kill tumor cells, thereby achieving the goal of anticancer treatment.182,183 

Polydopamine (PDA) is an excellent photothermal agent, Su and his team utilized polydopamine that possessing great 
photothermal conversion effect to load camptothecin for the treatment of lung cancer, which exhibits superior inhibitory 
effects on lung cancer cells under the dual mechanisms of chemotherapy and PTT, demonstrating more significant 
therapeutic effects compared to free camptothecin.184 Molybdenum disulfide (MoS2) is also a material with 
a photothermal conversion effect.185 Chen et al utilized MoS2 to construct a nanocarrier for targeted co-delivery of 
curcumin and erlotinib in the treatment of lung cancer. Under the synergistic treatment of combined chemotherapy and 
PTT, these nanoparticles demonstrated favorable therapeutic effects on lung cancer both in vitro and in vivo.186 
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Photodynamic therapy (PDT) refers to an anticancer treatment strategy where nanoparticles with photosensitizing 
properties are delivered to the tumor site, and under the action of exogenous light and the participation of molecular 
oxygen in the tissue, a reaction occurs to produce cytotoxic substances, thereby inducing tumor cell death.187,188 In recent 
years, researchers have employed nanotechnology to process the active ingredients of TCM, granting them additional 
photosensitizing effects. For example, researchers encapsulated quercetin and the photosensitizer zinc phthalocyanine 
within lipid nanocarriers to create anticancer nanoparticles that leverage both PDT and chemotherapy effects. Both 
in vitro and in vivo experiments demonstrated the nanoparticles’ excellent anticancer efficacy.189,190 Fullerenes are 
nanoparticles capable of generating ROS under light illumination and are often utilized in PDT.191 Similarly, Zhang et al 
employed fullerene-based nanocarriers to deliver artesunate for PDT and chemotherapy synergistic treatment.192 In 
addition, in the latest research, researchers have utilized nanotechnology to develop nanoparticles with two-photon 
excitation effects based on the inherently photosensitizing active ingredients of TCM, such as curcumin and emodin. 
Compared to traditional PDT, these nanoparticles exhibit more efficient ROS generation capabilities and demonstrate 
more significant therapeutic effects against cancer.193,194 In addition, Wen et al successfully engineered photodynamic 
curcumin-derived carbon dots via a chitosan-hyaluronic acid functionalization strategy. In vitro antibacterial assays 
revealed that 405 nm light irradiation markedly triggered ROS generation in the composite system, conferring robust 
antimicrobial activity.195

CDT refers to a novel anticancer treatment approach that employs nanoparticles to catalyze the Fenton reaction within 
the tumor microenvironment, generating hydroxyl radicals which subsequently induce the death of tumor cells.196 Metal 
particles (such as iron, copper, manganese, etc.) are commonly used as Fenton-like nanoparticles for CDT.197 Zhang and 

Figure 4 Phototherapy, chemodynamic therapy, and photodynamic therapy based on nanosized TCM. By Figdraw. https://www.figdraw.com.
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his colleagues developed a nano-hydrogel encapsulated with artesunate, utilizing Cu-Fe3O4 particles, for targeted therapy 
against osteosarcoma. Through the synergistic effects of CDT and chemotherapy, this nano-hydrogel demonstrated robust 
anticancer activity by inducing the generation of abundant radicals, triggering oxidative stress in tumor cells, and 
ultimately leading to cell death both in vitro and in vivo.198 In another research endeavor, Chen and his team leveraged 
hollow mesoporous Prussian Blue (HMPB) nanoparticles for targeted delivery of curcumin. By reacting with endogenous 
hydrogen sulfide at the disease site to generate radicals, these nanoparticles elicit oxidative stress, thereby inducing 
autophagy in colorectal cancer cells and exerting an anticancer effect. Experiments further revealed that the combined 
use of curcumin and HMPB nanoparticles exhibited higher anticancer activity than either free curcumin or free HMPB 
nanoparticles alone. This underscores the complementary nature of CDT and chemotherapy, which together enhance 
therapeutic efficacy, achieving a synergistic effect where the whole is greater than the sum of its parts.199

Therapeutic Applications of TCM Nanomedicines: From Mechanisms to 
Practice
Compared with conventional TCM formulations, TCM nanomedicines have demonstrated multifaceted therapeutic 
advantages and achieved broad clinical application across diverse pathological contexts. This review specifically 
elucidates the mechanistic foundations of TCM nanomedicines in three critical therapeutic domains – oncotherapy, 
inflammation modulation, and microbial eradication – through integrated analysis of nanostructured fabrication strategies 
and molecular targeting pathways (Figure 5).

Figure 5 The applications of TCM nanomedicines in biomedical treatment field. (A). Anticancer mechanism mediated by nanosized TCM. (B). Anti-inflammation 
mechanisms exerted by nanosized TCM (C). Anti-bacterial mechanism of nanosized TCM. By Figdraw. https://www.figdraw.com.
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Anti-Cancer
At present, cancer is a serious global public health problem. According to the International Agency for Research on 
Cancer (IARC), there were 20 million new cases of cancer worldwide in 2022, while 9.7 million people deaths from 
cancer.200 High morbidity and mortality rates of cancer make it one of the major threats to human health worldwide. The 
development of nanotechnology-based TCM has opened innovative intervention approaches for malignant tumor 
treatment. Through features such as precise drug delivery, multi-target regulation, and biological barrier penetration, it 
overcomes the inherent limitations of TCM components and provides nanoscale solutions with TCM characteristics for 
precision cancer therapy.

At the molecular mechanistic level, nanosized TCM exerts antitumor efficacy through multi-pathway and multi-target 
synergistic effects. The primary mechanism involves enhancing the host’s antitumor immune response. Zhang et al developed 
a novel self-assembled TCM nanocomplex based on the molecular interaction characteristics of ursolic acid and epigalloca-
techin gallate, which was applied to precision therapy for Hepatocellular Carcinoma (HCC). Mechanistic studies revealed that 
this nanosystem could significantly enhance the anti-tumor response in the tumor immune microenvironment by stimulating 
anti-cancer cytokines (IL-12 and IFN-γ) and activating CD4⁺ T cells and CD8⁺ T cells.201 Liu et al constructed a self- 
assembled nanodelivery system using celastrol as a precursor molecule. In vitro and in vivo results demonstrated that this 
nanotherapeutic agent could significantly suppress the growth of subcutaneously xenografted tumors by trigger death of tumor 
cells.202 Furthermore, Zhou et al engineered erythrocyte membrane-coated biomimetic nanoparticles with piceatannol as the 
active pharmaceutical ingredient. Mechanistic studies confirmed their targeted inhibition of colorectal cancer metastasis 
through modulation of the Hippo/YAP1/SOX9 signaling axis.203 Additionally, it can effectively suppress tumor angiogenesis. 
Zhou et al engineered a coordination-driven metal-phenolic network architecture through curcumin complexation with Cu²⁺/ 
Zn²⁺, subsequently integrating this system into a liposomal delivery platform for tumor-targeted delivery. In vitro validation 
confirmed that this nanotherapeutic potently suppressed tumor angiogenesis, thereby establishing a novel therapeutic strategy 
for clinical oncology.204 Moreover, nanosized TCM exerts therapeutic synergism by reversing tumor cell multidrug resistance, 
thereby significantly potentiating chemotherapeutic efficacy. Li et al engineered a hyaluronic acid-based nanodelivery system 
co-loaded with capsaicin and doxorubicin for combination chemotherapy in HCC. Experimental validation demonstrated that 
capsaicin reverses doxorubicin chemoresistance by modulating the Substance P/hepatic stellate cell axis.205

Anti-Inflammation
Inflammation is an evolutionarily conserved defense mechanism that orchestrates physiological responses to injury or 
infection by mediating pathogen eradication and tissue repair.206 However, pathological hyperactivation or chronic 
persistence of this process initiates autodestructive signaling cascades,206 culminating in irreversible organ dysfunction 
(eg, pulmonary fibrosis,207 hepatic cirrhosis,208 and renal failure209).Most active components of TCM possess excellent 
anti-inflammatory activity.210 Therefore, developing novel anti-inflammatory nano-formulations based on the active 
components of TCM to precisely regulate inflammatory responses is of great clinical application value.

In terms of mechanistic dimensions, nanosized TCM exhibits multi-targeted modulation of inflammatory responses. 
Primarily, it attenuates inflammatory responses through immunomodulatory axis by precisely regulating immune cell 
populations. Gao et al prepared curcumin-derived EVs for the treatment of ulcerative colon cancer. Mechanistic studies 
demonstrated that these EVs could promote the phenotypic transformation of macrophages from M1 to M2, thereby 
down-regulating the inflammatory response.211 Secondly, it exerts anti-inflammatory effects by inhibiting inflammatory 
cell infiltration and downregulating inflammatory cytokines. Zheng et al constructed a pulmonary-targeted anti- 
inflammatory NDDS by co-loading astragaloside IV and ligustrazine into PEG-PLGA nanocarriers, which could inhibit 
bleomycin-induced pulmonary inflammation by suppressing inflammatory cell infiltration and downregulating the release 
of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α.212

Anti-Bacterial
Bacterial infections, a significant public health issue threatening human health for millennia, witnessed a historic turning 
point in prevention and control with the clinical application of antibiotics. Although the discovery of antibiotics provided 
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humanity with a temporary advantage in combating pathogenic bacteria, the evolution and spread of drug-resistant 
pathogens rapidly reversed this situation. WHO data reveal that global deaths caused by drug-resistant bacterial 
infections have surged to 1.27 million cases.213 Against this backdrop, the development of innovative therapeutic 
strategies targeting resistant pathogenic bacteria has become a critical research area requiring urgent breakthroughs in 
global clinical medicine. TCM has been extensively applied in the anti-bacterial field with demonstrated remarkable 
efficacy.214 With the continuous advancement of pharmaceutical technologies, researchers are integrating TCM with 
nanotechnology to develop novel anti-bacterial agents, providing innovative therapeutic strategies for the treatment of 
drug-resistant bacterial infections.

At the mechanistic level of antibacterial action, nanoscale TCM exerts bactericidal effects primarily through structural 
disruption of bacterial cell membranes. Ge et al engineered a self-assembled nanoparticle using ellagic acid, gallic acid, and 
catechin. Experimental studies demonstrated that this nanoparticle disrupts the cell membrane integrity of Staphylococcus 
aureus, inducing lytic rupture and exhibiting potent antibacterial efficacy.157 Beyond bactericidal activity, nanoscale TCM 
exerts antibacterial effects through a key mechanistic strategy: suppression of bacterial biofilm formation. Zhang et al 
engineered a quercetin-based nanomicelle system. Experimental validation demonstrated that this nanomicelle potently 
suppresses biofilm formation in Staphylococcus aureus.215 Another antibacterial therapeutic mechanism involves neutralizing 
bacterial exotoxins to mitigate pathogen-induced pathological damage at the infection site. Tan et al synthesized dandelion- 
derived EVs, which promoted infected wound healing through specific neutralization of Staphylococcus aureus exotoxins.216

The Future Perspectives
The emergence of nano-TCM has written a new chapter in the modern nanomedicine field. This convergence of traditional 
medicine and cutting-edge science has reignited the millennia-old herbal medicine heritage with renewed radiance. In 
recent years, with the extensive integration of nanotechnology into TCM, the biosafety evaluation and elucidation of 
pharmacological mechanisms of nano-engineered TCM formulations have emerged as critical scientific challenges 
impeding their clinical translation. Current research demonstrates that while nanoscale modifications can significantly 
enhance the bioavailability and targeted delivery efficiency of TCM, with preliminary validation of their biosafety in 
experimental animal models, their potential cytotoxicity in humans, alterations in metabolic pathways, and long-term 
biological effects still require further clinical validation through rigorous trials. Additionally, scalable production and cost- 
effective manufacturing of nano-engineered TCM is also a considerable problem. Established preparation techniques, 

Table 2 Clinical Translation Status of TCM Nanomedicines

Active ingredient Herb Nanocarrier Name Status Ref

Elemene Wen Yujin Emulsion Elemene Injection Approved in China 
(1993)

[220]

Liposome Elemene Liposome Approved in China 

(2011)

[221]

Coix seed oil Coix lacryma-jobi Emulsion Kanglaite Approved in China 

(1997)

[222]

Vincristine Catharanthus roseus Liposome Marqibo Approved in the US 
(2012)

[223]

Crocin Crocus sativus L. Nanoparticle Crocin-Selenium Nanoparticle Clinic trial [224]

Aloe extract Aloe vera Nanoparticle Aloe Vera Nanoparticle Clinic trial [225]
Curcumin Curcuma longa L. Nanoparticle Nanocurcumin/ Curcumin nanoparticle Clinic trial [226,227]

Capsaicinoids Bhut Jolokia Nanolipid 

Vesicle

Nanolipid Vesicles Formulation of 
Capsaicinoids

Clinic trial [228]

Camptothecin Camptotheca acuminata 
Decne

Nanoparticle Camptothecin nanoparticle Clinic trial [229,230]

Melaleuca alternifolia 
extract

Melaleuca alternifolia Nanoparticle Melaleuca alternifolia nanoparticle Clinic trial [231]

Rutin Sophora japonica L. Nanoparticle Rutin nanoparticle Clinic trial [232]
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including nano-co-precipitation and ultrasonic fragmentation, face significant industrialization barriers due to limitations in 
process complexity and equipment costs. The development of green and sustainable preparation processes represents 
a critical pathway to overcoming translational bottlenecks from laboratory-scale research to clinical applications.

Generally, TCM compound prescriptions serve as the primary modality and means in clinical TCM practice. As 
a modernized TCM form of TCM formulations, component-based Chinese medicine is systematically developed by 
combining bioactive constituents in accordance with the fundamental “monarch (Jun), minister (Chen), assistant (Zuo), 
and envoy (Shi)” compatibility principle of herbal prescription. Rooted in TCM theory while incorporating contemporary 
pharmacological evidence, these multi-component systems demonstrate characteristic polypharmacological synergism 
through precisely designed component interactions. However, current nanosized TCM research is predominantly focused 
on single-active compounds (Table 2). Developing advanced nanosized TCM technologies for multi-component TCM 
formulations necessitates immediate breakthroughs. Building on supramolecular assembly principles and natural drug 
compatibility theory, Qian et al developed a novel strategy to elucidate the anti-inflammatory mechanism of the classical 
Huanglian Wumei decoction, which features the rhizoma coptidis-fructus mume (RC-FM) pair as its signature combination. 
Self-assembled natural phytochemicals were obtained during the decoction process of HLWMD, then infrared/ultraviolet- 
visible spectroscopy revealed that berberine (BBR) and chlorogenic acid (CGA) are two main active constituents of RC- 
FM pair. Subsequently, BBR and CGA self-assemble into an amphiphilic spheroid macromolecule (BCS) with an average 
size of about 98.3 nm through electrostatic interactions, π-π stacking and hydrophobic interactions. In vitro results 
demonstrated that the stacking pattern and amphiphilic molecular structure of BCS significantly augmented the anti- 
inflammatory performance compared with that of BBR and CGA alone. This findings explained the scientific connotations 
of TCM compatibility from the perspective of self-assembly and synergistic effects, providing a novel insight and strategy 
for elucidating the mechanism of multi-component combinations of TCM.217 Emerging studies have reported that the 
presence of naturally occurring nanoparticles in certain TCM decoctions, where these nanoscale components exhibit 
enhanced therapeutic efficacy through their stabilized morphological characteristics.218 Zhang et al assessed the pharma-
codynamic basis of the TCM formula T-QY305, which consists of five herbs: astragalus membranaceus, Lonicera 
japonica, angelica sinensis, licorice, and centipede. The study demonstrated that the T-QY305 spontaneously forms self- 
assembled nanostructures (N-QY305) during decoction. Through comprehensive characterization and animal experiments, 
N-QY305 was identified as the crucial bioactive component underlying the formula’s pharmacological effects.219 From this 
study, TCM research may further be considered as significantly related to nanomedicine, opening new avenues for 
nanotechnology-driven exploration. Collectively, developing compound-based nano-formulations aligned with the holistic 
principles of TCM and systematically establishing multi-component targeted co-delivery systems will emerge as a pivotal 
research direction for enhancing the clinical efficacy of nano-engineered TCM.
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