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Abstract: Pyridine carboxylic acid isomers — picolinic acid, nicotinic acid, and isonicotinic acid — have historically resulted in 
a plethora of drugs against tuberculosis, cancer, diabetes, Alzheimer’s, angina, dementia, depression, allergy, respiratory acidosis, 
psoriasis, acne, hypertension, hyperlipidemia, HIV/AIDS (specifically HIV-1), among others. Despite the large number of therapeutic 
agents derived from these isomers, the research involving these scaffolds is still exceptionally active. The current surge in enzyme 
inhibitory activities by the compounds derived from them has further created space for the discovery of new drug candidates. This 
review focuses on the medicinal relevance of these isomers by analyzing structure-activity relationships (SARs) and highlighting 
emerging trends from patents filed over the last decade. Notably, pharmaceutical giants like Bayer, Bristol-Myers Squibb, Novartis, 
Curis, and Aurigene have developed enzyme inhibitors based on these scaffolds with nanomolar potency. The role of these isomers in 
the development of antiviral agents, including protease inhibitors, is also discussed. Overall, this review brings to the readers, 
a pragmatic opportunity to comprehend the recent literature, highlighting the scaffolds’ importance in the design of new enzyme 
inhibitors. Furthermore, it discusses the structure-activity relationship of pyridine carboxylic acid-derived compounds and highlights 
the current patenting trends in medicinal chemistry. 
Keywords: pyridine, enzyme inhibitors, nitrogen heterocycles, patents, pharmaceuticals, current trend, substituent effect

Introduction
Heterocyclic chemistry is a rich source of unique and innovative drug formulations.1–3 Among various nitrogen- 
containing heterocycles, pyridine has found extensive use in contemporary drug design due to its ability to accommodate 
diverse substitution patterns on the ring, thereby allowing its incorporation into countless molecules with a wide range of 
biological activities.4–9 Pyridine stands out as the second most widely utilized nitrogen heterocycle in FDA-approved 
pharmaceuticals, securing the leading position among aromatic compounds.10–12 Pyridine continues to fascinate research
ers, as shown by our database analysis.9,13–17 Throughout the last decade from 2013 to 2023, there was a consistent 
stream of research papers and patents featuring the word “pyridine” in their titles (Figure 1). These numbers not only 
highlight the enduring fascination of the scientific community but are also a testament to pyridine’s relevance in 
technological patents.

Analysis of the United States FDA database reveals a notable presence of pyridine, as 14% of the total drugs contain 
this moiety (Figure 2). Pyridine’s substantial representation in the database not only highlights its key role in the 
pharmaceutical landscape but also the potential of this heterocyclic moiety in shaping the future of therapeutics 
development.
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Graphical Abstract

Figure 1 Number of research papers and patents featuring the word “pyridine” in their titles over the past one decade (2014–2024); Source: SciFindern.
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Center for Drug Evaluation and Research (CDER) is a vital part of the FDA and plays a crucial role in ensuring the safety 
and efficacy of drugs in the United States. Over the past decade (2013–2023), CDER has approved a myriad of New Molecular 
Entities (NMEs) with a marked presence of pyridine-containing NMEs in the annual approvals (Figure 3). Year after year, this 
continued inclusion of pyridine-containing NMEs emphasizes the integral role of this heterocyclic moiety in the pharmaceu
tical landscape, thereby emphasizing its potential and value in the realms of therapeutic advancements.18

Figure 4 offers an in-depth analysis of the FDA database, which gives a remarkable insight into the substitution 
patterns of pyridine-containing drugs approved during the last decade. In terms of substitution types, a substantial 
proportion of these drugs contain di-substituted pyridine, closely followed by tri-substituted and mono-substituted 
pyridines. While some drugs contained tetra-substituted and hexa-substituted pyridine, penta-substituted variants were 
notably absent from the database (Figure 4a).

Upon careful examination of substitution patterns within pyridine-containing pharmaceuticals approved between 2013 
and 2023, a distinct trend emerges. There is a notable inclination towards substitution at position 2 of the pyridine ring, 
followed by significant instances of substitution at positions 5 and 3, especially when multiple substituents are present. 
Interestingly, some drugs feature direct substitution on the nitrogen atom within the ring structure (Figure 4b). These 
observations highlight the dynamic nature of the drug design and the adaptability of this heterocyclic moiety in 
pharmaceutical developments over the years.

In this comprehensive review, we delve into the intricate realm of pharmaceuticals derived from pyridine carboxylic 
acid isomers—an exploration critical to the contemporary understanding of medicinal chemistry. Through meticulous 
analysis, this study unveils the therapeutic significance and diverse applications of these compounds within the realm of 
approved drugs as well as patent communications. Pyridine carboxylic acid derivatives display a broad spectrum of 
biological activities and many of them have been approved for use in the clinic to treat various conditions including 
infections, inflammation, and cancers. This broad therapeutic potential is closely linked with their structural features. For 
example, the pyridine ring, which is aromatic in nature and electron deficient, facilitates π-π stacking and hydrogen bond 
interactions with biological targets, thereby enhancing the binding affinity. The carboxylic group contributes additional 
polarity and can co-ordinate with metal ions, a property particularly useful in enzyme inhibition. Moreover, the ease of 

Figure 2 N-Heterocyclic drugs distribution in FDA database.
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substitution at various positions of pyridine ring allows for structural flexibility and fine-tuning of activity and selectivity. 
Together, these features make pyridine carboxylic acid derivatives highly versatile scaffolds in medicinal chemistry. In 
recent years, there have been a good number of patents communicating the role of various pyridine carboxylic acid 
derivatives in this area of enzyme inhibition. Despite the significant impact of pyridine carboxylic acid-containing 
compounds on the pharmaceutical industry, there have been no review articles published specifically based on pyridine 
carboxylic acid derivatives. In the following sections, we provide a comprehensive review of approved drugs derived 
from pyridine carboxylic acid isomers and highlights of patents published in the last decade (2013–2023) which have 
disclosed a great number of pyridine carboxylic acid derivatives as potent enzyme inhibitors and potential therapeutic 
agents to treat various diseases.

Figure 3 New molecular entities (NMEs) containing pyridine moiety, which were approved by FDA over the past one decade (2013–2023).

Figure 4 (a) Analysis of substitution type; and (b) examination of substitution pattern in pyridine containing drugs approved by FDA over the past one decade (2013–2023).
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Approved Drugs Derived from Pyridine Carboxylic Acid Isomers
The intricate interplay between molecular structures and pharmacological effects underscores the pivotal role played by 
pyridine carboxylic acid isomers in shaping the landscape of modern pharmaceuticals. The compounds stemming from 
pyridine carboxylic acids hold potential; likely due to the presence of nitrogen in the aromatic ring. The core is famous 
for its three isomers: picolinic acid (1), nicotinic acid (2), and isonicotinic acid (3) with carboxylic acid substitution at 
2nd, 3rd, and 4th positions on the pyridine, respectively (Figure 5a). A detailed representation of natural products, which 
are categorized based on specific pyridine carboxylic acid isomers is also shown in Figure 5b. Many of them have 
garnered recognition as approved therapeutics by the European Medicines Agency (EMA) or the Food and Drug 
Administration (FDA) of the United States. This includes natural drugs containing the picolinic acid moiety, like 
streptonigrin (4) with notable antitumor and antibacterial properties, along with antibiotics like fusaric acid (5) and its 
derivative, (+)-S-fusarnolic acid, both obtained from Fusarium heterosporium.19,20 In this category, another group of 
antibiotics, promothiocin (6) isolated from Streptomyces sp. SF2741, and pyridomycin (7) obtained from 
Dactylosporangium fulvum were found promising against tuberculosis.21,22 Nicotinic acid-derived natural products 
include several noteworthy examples, like Ilicifoliunine A (8), sourced from Maytenus ilicifolia, plagiochianin B (9) 
from Plagiochila duthiana, and clivimine (10) from Clivia miniate, all contributing towards the arsenal of natural 

Figure 5 (a) Isomeric variants of pyridine carboxylic acid; (b) Representative examples of natural products and EMA/FDA approved natural product drugs.
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pharmacological agents.23–25 It’s worth noting that the figure presented in this context highlights plantagonine (11) from 
Plantago psyllium, which is a unique alkaloid containing the isonicotinic acid structure.26 Notably, the ubiquitous niacin 
(vitamin B) is part of nicotinuric acid (12), trigonelline (13) sourced from Trigonella foenumgraecum, and elexacaftor 
(14) having anti-cystic fibrosis properties.27–30 All these examples highlight the importance of isomeric variations of 
pyridine carboxylic acids, their derivatives, and related natural products in the pursuit of pharmacologically active agents.

Representative FDA-approved drugs stemming from different isomers of pyridine carboxylic acids are shown in 
Figure 6. Regorafenib (15) can tackle certain cancers as well.31 Sorafenib (16) was approved in 2005 to help with liver, 
kidney, and thyroid cancers.32 Lasmiditan (17) marked a milestone in migraine management, securing approval in 
2019.33 Picolinic acid-derived Quinupristin (18) emerged in 1999 as a new antibiotic for tough infections.34 Nevirapine 
(19) combated the challenges of HIV with a significant impact in 2016.35 Ubrogepant (20) was sanctioned in 2019 as 
a CGRP and 5HT1F antagonist to tackle migraines.36 Flotufolastat F-18 (21) with cutting-edge imaging capabilities 
aligned with the dynamic needs of prostate cancer diagnostics.37 Tazarotene (22) got approval for treating skin issues in 
2017.38 Serdexmethylphenidate (23) signified a breakthrough in addressing attention deficit hyperactivity disorder 
(ADHD).39 By 2019, elexacaftor (24) was approved to target cystic fibrosis.29 In 1983, Nicotinamide (25) gained 
recognition as a nutraceutical, sanctioned for the treatment of pellagra, highlighting its vital role in nutritional 
therapy.40 Avatrombopag (26) received approval for treating blood issues in 2018.41 Asciminib (27) as a tyrosine kinase 
inhibitor (TKI) was approved in 2021 to handle leukemia.42 The nicotinic acid-derived FDA-approved drugs include 
Metyrapone (28), used to treat a hormone-related condition. Isoniazid (29) initially emerged as an anti-tuberculosis agent, 
along with protionamide (30) and ethionamide (31), to fight hard-to-treat tuberculosis.43–46

Figure 6 FDA approved drugs derived from the isomers of pyridine carboxylic acid, their indication and year of approval.
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Ethionamide (31), a second-line tuberculosis treatment, is only used in combination therapy or the treatment of drug- 
resistant tuberculosis.47 Nialamide (32) is a drug with anti-thrombotic properties. Its effects on the rabbit ear were observed 
when the internal surface of the arteries and veins were damaged, and a powerful thrombotic effect was observed by 
preventing intravascular thrombosis without inhibition of extravascular clotting.48 Nialamide also had antidepressant proper
ties, but it was withdrawn by the US, Canada, and UK in the 1960s due to serious side effects caused by tyrosine-containing 
foods.49 Before 1950, Iproniazid (33), a medication renowned for its anti-tuberculosis properties, demonstrated significant 
improvements over earlier treatments.50 Notably, it proved more effective than isoniazid in the treatment of bone and joint 
lesions, leading to its widespread recognition and safe usage during that era.51,52 An experiment at Sea View Hospital Staten, 
Island N.Y., in 1951 revealed that iproniazid caused certain toxic side effects in patients when compared to the other two 
tuberculosis medications, including isoniazid. Despite this, the use of iproniazid continued by controlling and encountering its 
toxicity, and benefits exhibited in the case of osseous-tuberculous, were transferred to use in other lesions.53 Iproniazid was 
originally developed to treat tuberculosis, but its mood-relaxing properties were discovered in 1952, making it the first 
commercialized antidepressant drug. This drug was used for decades for antidepressant treatment but was withdrawn in 
several countries, including the USA, due to hepatotoxic side effects. The drug has been replaced by other medication but it 
has an assigned place in therapy.54,55 The discontinuation of nialamide (32), iproniazid (33), and methaniazide (34) reflects the 
dynamic nature of pyridine-4-carboxylic acid in pharmaceutical evolution.

The compounds 35–48 presented in Figure 7 comprehend a spectrum of analgesic effects, accentuating their significance 
across diverse inflammatory conditions. Nicomorphine (35), a potent opioid analgesic, and nicocodeine (36), an opioid receptor 
agonist, offer robust pain relief.56 Dexamethasone isonicotinate (37) stands out as a notable anti-inflammatory agent, while the 
2021-introduced CGRP antagonist,57 (38), demonstrates promise in inhibiting neurogenic inflammation. Clonixin (39) and 
morniflumate (40), both COX-1 and COX-2 inhibitors, exemplify the NSAID class, displaying their prowess in alleviating 
inflammation.58,59 Menthyl nicotinate (41) serves to foster circulation and relief in musculoskeletal conditions.60 Noteworthy is 
niflumic acid (42) selectivity in addressing rheumatoid arthritis-associated inflammation through COX-2 inhibition.61 Other 

Figure 7 Pyridine carboxylic acid derived anti-inflammatory drugs.
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compounds, including nifenazone (43), a broad-spectrum analgesic, and derivatives like nicoboxil (44), propyl nicotinate (45), 
and methyl nicotinate (46), contribute distinct pain management perspectives. Particularly, 2-(p-tolyl)ethyl nicotinate (47) — an 
FDA orphan drug — offers promise against primary biliary cholangitis.62–64 Finally, amlexanox (48), an inhibitor of TBK1 and 
IKK-e, exhibits potential in modulating inflammatory responses for aphthous ulcer treatment.65

Figure 8 encapsulates a compilation of antimicrobial agents, originating from different pyridine carboxylic acid isomers. 
Among antibiotics derived from picolinic acid, streptonigrin (49) is a noteworthy representative. Recent studies suggest that this 
isomer has the potential to block the release of free fatty acids from fat cells and increase the activity of lipoprotein lipase, offering 
promise as both a combination therapy and an economical standalone treatment for lowering lipid levels.66–68 Notably, saquinavir 
(50), approved by the FDA in 1997, exhibited protease inhibition activity against HIV.69 Further, pristinamycin (51) is another 
significant antibiotic in this context.70 In the domain of antibiotics featuring a nicotinic scaffold, the array includes cefpiramide 
(52), a third-generation antibiotic, and the well-established nalidixic acid (53), introduced in 1986 by FDA.71,72 Concurrently, 
enoxacin (54), approved by FDA in 2017, demonstrates broad-spectrum antibacterial potential.73 Additionally, Gemifloxacin 
(55), established in 2003, further enriches this spectrum.74 Finally, the category of antibiotics incorporating an isonicotinoyl 
moiety includes cefalonium (56), as a first-generation antibiotic.75 Equally, cefsulodin (57) exhibits specificity against 
Pseudomonas aeruginosa. In addressing tuberculosis, aconiazide (58) assumes a pivotal role.76–79 Notably, enisamium (59), 
a Russian introduction, offers antiviral efficacy against influenza.80 Thus, the figure illuminates the extensive repertoire of 
antibiotic drugs emerging from pyridine carboxylic acid derivatives, delineating their expansive therapeutic potential across 
diverse infectious conditions.

Figure 9 provides a comprehensive assemblage of antidyslipidemic agents derived from pyridine carboxylic acid isomers, 
thereby revealing innovative therapeutic interventions to treat dyslipidemia. Notably, niceritrol (60) and nicofuranose (61) 
function as cholesterol reducers, contributing to lipid management.81,82 The introduction of inositol nicotinate (62) in 2005 
adds a vasodilatory agent to the spectrum, while etofibrate (63) serves as a dyslipidemic agent.83–85 Furthermore, the 
recognition of nicorandil (64) by the EMA in 2015 underscores its vasodilatory properties.86,87 In contrast, within the domain 

Figure 8 Antimicrobial drugs originating from pyridine carboxylic acid isomers.
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of picolinic acid derivatives, bupicomide (65) is a singular example of an antidyslipidemic agent enriching the repertoire of 
antidyslipidemic options.88,89

The vibrant potential of pyridine carboxylic acid-derived drug candidates is highlighted in Figure 10, which shows their 
clinical trial stages. For instance, picolinic acid-derived drug candidates include verubecestat (66) — a BACE2 inhibitor with 

Figure 9 Antidyslipidemic drugs derived from pyridine carboxylic acids.

Figure 10 Pyridine carboxylic acid derivatives in drug development pipeline.
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a Ki of 0.38 nM — which is in Phase 2 of clinical trials.90 Avoralstat (67) — a PKK inhibitor, and tetomilast (68), a PDE4 
inhibitor are in Phase 3 trials.91,92 GSK-269984A (69), a PGE2 EP1 inhibitor with an IC50 of 7.9 nM, and SKLB610 (70), 
a VEGFR2 inhibitor, have demonstrated their potential in pre-clinical stages.93,94 Similarly, the spectrum of nicotinic acid- 
derived drugs under development presents a cohort of candidates with distinct attributes. Farudodstat (71), a DHODH 
inhibitor with an IC50 of 35 nM, and Motesanib (72), a VEGFR1 inhibitor with an IC50 of 2 nM, are undergoing phase 2 
trials.95,96 Basmisanil (73), a GABAA-a5 inhibitor (IC50 = 8 nM) is also in phase 2, while apatinib (74), a VEGFR2 inhibitor 
with an IC50 of 1 nM is undergoing phase 3 trials.97,98 Ninerafaxstat (75), a pFOX inhibitor, is in Phase 2, while flunixin 
meglumine (76), a COX-1 inhibitor with an IC50 of 0.55 mm, is in the pre-clinical stage.99,100 Moreover, GSK189254A (77), 
an H3R antagonist with a pKi range of 9.59–9.90, is in Phase 1, and losmapimod (78), a p38 MAPK inhibitor with a pKi of 7.6 
for p38β, is progressing through phase 2 trials.101,102 BMS-688521 (79), an LFA/ICAM inhibitor with an IC50 of 2.5 nM, has 
shown promise in the pre-clinical stage.103 Notably, the isonicotinic acid-derived drug candidates include KDOAM-20 (80), 
which is a KDM5 inhibitor (IC50 = 40 nM) and is in pre-clinical stage.104 Furthermore, KDM5-C70 (81) — a JARID1B 
inhibitor with an IC50 of 49 nM, and OPRT inhibitor DFP11207 (82) are in phase 1 of clinical trials.105,106

The Effect of Pyridine Substitution on Key Pharmacological Parameters
The physicochemical properties of molecules are significantly impacted by replacing the phenyl group with a ring- 
containing nitrogen atom, which can translate into improved pharmacological parameters.107 Herein, we describe some 
key parameters, such as biochemical potency, target selectivity, cellular potency, and binding affinity by comparing the 
results of pyridine and non-pyridine ring-containing analogues. Figure 11 summarizes exciting examples of the pyridine 
effect on improving some key pharmacological parameters. For example, Dandapani et al evaluated nearly 100,000 
different chemical structures and found that compound 83 could effectively stop the growth of Trypanosoma cruzi — 
a parasite responsible for Chagas disease. However, its isonicotinoyl analogue was 500-fold more potent than the parent 
molecule (T. cruzi IC50 = 1.0 nM for 84). Likewise, ponatinib (85) — a multikinase inhibitor — is used to treat a type of 
highly resistant blood cancer by blocking some proteins that help in the growth of cancer cells. Ponatinib is also being 
evaluated for other types of cancers, such as lung and bile duct cancers. However, this drug has many side effects because 
it blocks many other proteins. By adding nitrogen to the structure of ponatinib, the new version (86) of this drug was 28- 
fold more potent by effectively blocking MNK1 and MNK2 proteins that make some cancers resistant to treatments. 
Naltrexone (87) is a drug with an antagonistic effect on the μ-opioid receptor (μ-OR) in our body. In 2013, Zhang et al 
made changes to naltrexone to help it fit into the receptor cavity and discovered that the addition of nitrogen to the drug 
improved its receptor binding. The docking study for compound 88 showed 880-fold improved binding affinity in 
comparison to 87 (μ-OR Ki = 120 nM). This new version of naltrexone did not activate the receptor, which is desirable 
for its intended purpose. When 6-substituted pyrrolo[2,3-d]pyrimidine containing compound 89 was modified by the 
addition of a nitrogen atom in the phenyl side-chain structure, compound 90 was obtained (Figure 12).

Upon testing this compound on isogenic Chinese hamster ovary (CHO) cells expressing folate receptors (FRs) α and β, it 
had superior anti-proliferative activity due to its competitively binding with [3H] folic acid. In further assays involving KB 
tumor cells, compound 90 exhibited an IC50 value of 0.37 nM, making it 3 times more potent than the original compound 89. 
The findings suggest that compound 90 is potentially a powerful antitumor agent having reduced toxicity to normal cells.108

Le et al reported inhibitors of matrix metalloproteinase-13 (MMP-13) — an enzyme involved in osteoarthritis. To 
block MMP-13, the active compound 91 and its pyridine carboxylic acid derivative 92 were discovered by high- 
throughput screening (HTS) followed by structure-activity relationship (SAR) studies (Figure 13). It was found that 
compound 92 could be much more effectively absorbed and remained in the body for a longer period compared to 91. 
Bioavailability (%F) of 92 in the animal model was 73%, which was significantly higher than that of 91 having 9% only. 
Similarly, 91 had a clearance rate (CL) of 20 mL/min/kg, while 92 had a slower rate of 7.6 mL/min/kg, meaning 92 
stayed in the body longer. Furthermore, compound 91 had an AUC (the area under the plasma drug concentration-time 
curve) of 380 ng/h/mL, while 92 had a much higher AUC of 13,000 ng/h/mL, indicating a greater exposure of the body 
to pyridine carboxylic acid derived 92 over time.107,109

Overall, these examples identify the pyridine carboxylic acid isomers as important constituents of drug design for 
multiparameter optimization. Beyond all of the above-mentioned properties, pyridine derivatives are receiving interest for 
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their ability to act as enzyme inhibitors.110 Pyridine carboxylic acid-derived compounds function as enzyme inhibitors against 
a wide range of enzymes such as urease,111 synthase,112 tyrosinase,113 myeloperoxidase (MPO), and acetylcholinesterase,114 

cyclooxygenase-2 (COX-2),115 histone demethylase,116,117 calpain (calcium-activated protease),118 Bcr-Abl tyrosine 

Figure 12 Enhancement of antitumor effect by the addition of nitrogen atom.

Figure 11 Effect of pyridine ring on pharmacology of bioactive molecules.
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kinase,119 and c-Met kinase.120–122 Hence in this perspective, there have been a large number of patents published in recent 
years communicating the role of various pyridine carboxylic acid derivatives in this area of enzyme inhibition.

Patent Literature Review (2013–2023)
Many enzyme inhibitors are well known for their function as drugs in clinical settings.123 Interestingly, most of the 
patents unveiled herein depicted the enzyme-inhibitory activity of pyridine carboxylic acid derivatives. Within the 
diverse range of inhibitors emanating from pyridine carboxylic acid, the focus of this section will be on the patents 
and papers from 2013 to 2023, as shown in Table 1. These are categorized, depending on the proposed target when 
specified. The molecular structures of the notable biologically active inhibitors can be seen in Figure 14.

Figure 13 Effect of nitrogen atom substitution on in vivo pharmacological profiles.

Table 1 Patents Published on Pyridine Carboxylic Acid Derivatives in Different Therapeutic Areas from 2013 to 2023

Patent No Compound Nature Applicants/ 
Assignees

Type of Inhibitor/Claims Year Reference

WO2023018643A1 Pyridine-3-carboxylic acid AbbVie Inc. Receptor-interacting protein kinase 1 (RIPK1) inhibitors for 
the treatment of diseases/These inhibitors alleviate 
neurodegenerative processes by reducing RIPK1 activity, 
which in turn mitigates neuroinflammation and cell 
necroptosis.

2023 [124]

WO 2016/174183 Pyridine-2-carboxylic acid Bayer Inhibitors of IRAK4 (Interleukin-1 receptor-associated 
kinase 4)/For treatment of lymphoma, psoriasis, macular 
degeneration, endometriosis COPD, and neoplastic disorders.

2016 [125]

WO 2019/099703 A1 Pyridine-2-carboxylic acid Sidecar 
Therapeutics, Inc.

Inhibitors of ASK1(Apoptosis Signal-regulating Kinase 1)/ 
ASK1 has been found to be active for the treatment of 
fibrosis, cancer, diabetes, cardiovascular and 
neurodegenerative diseases, fibrosis, cancer, autoimmune 
disease, inflammatory disease or condition, cardiovascular 
disease, neurodegenerative disease or condition, or 
combinations thereof.

2019 [126]

WO2019081637 Pyridine-2-carboxylic acid Boehringer 
Ingelheim 

International 
GMBH.

Transient Receptor Potential C6 Ion Channel (TRPC6) 
inhibitors/For the treatment of hypertension and other 
cardiac and vascular conditions, muscular dystrophy, fibrotic 
disorders, preeclampsia restenosis, liver disease, pain, 
ischemia and ischemic reperfusion injury, and certain forms of 
cancer.

2019 [127]

US 2020/0055824 A1 Pyridine-2-carboxylic acid Vanderbilt 
University

Inhibitors of WD Repeat-containing protein 5 (WDR5) / 
These inhibitors efficiently modulate the interaction of 
WDR5 with chromatin, cognate transcription, and other 
regulatory factors ie, histone methyltransferase MLL1, 
proliferative activity, tumor formation, and tumor 
maintenance.

2020 [128]

(Continued)
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Table 1 (Continued). 

Patent No Compound Nature Applicants/ 
Assignees

Type of Inhibitor/Claims Year Reference

WO2022/047230A1 Pyridine-2-carboxylic acid 
Pyridine-4-carboxylic acid

Fibrogen. Inc Histone lysine demethylase 5 (KDM5) inhibitors/For effective 
treatment of cancer such as colon cancer, breast cancer, 
neuroblastoma, cervical cancer, kidney cancer, liver cancer, 
lung cancer, leukemia, HIV, Hepatitis B infections, diabetes, 
and cardiovascular diseases.

2022 [129]

WO 2018/149986 Al Pyridine-4-carboxylic acid Oryzon Genomics, 
S.A.

Histone Demethylase inhibitors/For treating a disease 
associated with a JmjC- KDM, cancer, or viral infections.

2018 [130]

WO 2014/053491 Al Pyridine-4-carboxylic acid Epithera-peutics 
APS.

Histone Demethylase Inhibitors/For the prevention and/or 
the treatment of diseases where genomic dysregulation plays 
a role in pathogenesis, such as eg cancer

2014 [131]

WO 2014/100463 Al Pyridine-4-carboxylic acid Quanticel Pharma- 
ceuticals, Inc.

Histone Demethylase inhibitors/For the treatment of 
carcinoma, such as breast carcinoma, lung carcinoma, prostate 
carcinoma, bladder carcinoma, and/or melanoma.

2014 [132]

WO 2015/200709 Al Pyridine-4-carboxylic acid Quanticel Pharma- 
ceuticals, Inc.

Histone Demethylase inhibitors/For the treatment of cancer, 
such as breast carcinoma, lung carcinoma, prostate carcinoma, 
bladder carcinoma, and/or melanoma.

2015 [133]

US2022/0226292 A1 Pyridine-2-carboxylic acid Indian Institute of 
Science, Bangalore

Effective against SARS-Cov-2, herpes simplex virus, influenza 
A virus, Japanese encephalitis virus, flavivirus, and zika viral 
infections.

2022 [134]

WO 2014/132220 A1 Pyridine-3-carboxylic acid Novartis Selective (Platelet Derived Growth Factor Receptor) PDGFR 
inhibitors/These are active pharmaceutical agents useful in the 
treatment of fibrotic diseases and conditions such as 
pulmonary arterial hypertension (PAH), respiratory and 
inflammatory infections.

2014 [135]

WO 2015/092610 Al Pyridine-3-carboxylic acid Pfizer Tropomyosin Receptor Kinase (Trk) inhibitors offer targeted 
treatments for conditions such as atopic dermatitis, psoriasis, 
cancer and pain, acute and chronic itch, pruritus, eczema, and 
prurigo nodularis, inflammation, restenosis, atherosclerosis, 
thrombosis, lower urinary tract disorder, inflammatory lung 
diseases, inflammatory bowel diseases, fibrosis, 
neurodegenerative disease, infectious diseases such as 
Trypanosoma cruzi infection (Chagas disease), papillary thyroid 
carcinoma and adult myeloid leukaemia.

2015 [136]

US 8.450,316 B2 Pyridine-3-carboxylic acid Trustees of Tufts 
College, Arisaph 
Pharmaceuticals, 

Inc.

Potential fatty Acid Binding Protein (FABP) inhibitors/For the 
treatment of conditions associated with hyperlipidemia and 
hypercholesterolemia that have been linked to an increased 
risk of other conditions, such as atherosclerosis, deleterious 
ailments, and heart attack.

2013 [137]

US 8,937,063 B2 Pyridine-3-carboxylic acid Tufts College 
Trustees, Arisaph 
Pharmaceuticals, 

Inc.

Potential fatty Acid Binding Protein (FABP) inhibitors/For the 
treatment of conditions associated with hyperlipidemia and 
hypercholesterolemia that have been linked to an increased 
risk of other conditions, such as atherosclerosis, deleterious 
ailments, and heart attack.

2015 [137]

WO 2015/044174 AI Pyridine-3-carboxylic acid Bayer Pharma. Factor XIa Inhibitors/FXIa inhibitors can be used to treat and/ 
or prevent diseases, particularly thrombotic or 
thromboembolic diseases, perioperative heavy blood loss, 
and/or cardiovascular diseases.

2015 [138]

(Continued)
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Table 1 (Continued). 

Patent No Compound Nature Applicants/ 
Assignees

Type of Inhibitor/Claims Year Reference

WO 2020/128850 A1 Pyridine-3-carboxylic acid Pfizer Inc. Selective Transforming Growth Factor-Beta (ΤFGβ) 
inhibitors/For the treatment of fibroproliferative diseases. 
Many forms of cancer, such as colorectal skin and lung cancer. 
In particular, to treat cancers of the pancreas, breast, and 
brain including glioma.

2020 [139]

WO 2020/092667 A1 Pyridine-3-carboxylic acid Merck Sharp and 
Dohme Corp.

Nav1.8 inhibitors/disease prevention, amelioration, or 
suppression mediated by Nav1.8 channel activity The 
compounds of the current invention may be useful in the 
treatment of acute itch, chronic itch, pain, and cough 
disorders.

2020 [140]

US 8,691,852 B2 Pyridine-3-carboxylic acid Almirall, S.A. Dihydroorotate Dehydrogenase (DHODH) inhibitors/For the 
prevention or suppression of diseases and disorders known 
to be amenable to improvement through inhibition of 
dihydroorotate dehydrogenases, such as, immune and 
inflammatory diseases, autoimmune diseases, malignant 
neoplastic diseases, angiogenic-related disorders, viral and 
infectious diseases, and destructive bone disorders.

2014 [141]

US 8,729,273 B2 Pyridine-4-carboxylic acid LG Life Sciences 
Ltd.

Xanthine Oxidase inhibitors/Provide methods for the 
treatment and/or prevention of the diseases associated with 
xanthine oxidase, such as hypertension, heart failure, 
hyperuricemia, kidney disease, cardiovascular disease, gout, 
diabetes, inflammatory bowel disease, inflammation, and 
articular disease.

2014 [142]

WO 2015/069594 Al Pyridine-4-carboxylic acid Bristol-Myers 
Squibb Company.

Inhibitors of Glycogen Synthase Kinase 3 (GSK-3)/Found 
effective for the treatment of both the symptomatic and 
neuropathologic aspects of Alzheimer’s disease, as well as 
other neurodegenerative diseases ie Huntington’s disease, 
Parkinson’s disease, stroke, amyotrophic lateral sclerosis, 
traumatic brain injury, spinal cord trauma, peripheral 
neuropathies, and vascular dementias.

2015 [143]

WO 2016/011209 Al Pyridine-4-carboxylic acid LifeSci 
Pharmaceuticals, 

Inc.

Plasma Kallikrein (Pkal) inhibitors/For the effective treatment 
of vascular system diseases and disorders. Angioedema, brain 
edema, and macular edema, are examples of such diseases and 
disorders.

2016 [144]

WO 2021/021933 A1 Pyridine-4-carboxylic acid The Wistar 
Institute

IsPH inhibitors/IsPH is an enzyme involved in the methyl 
erythritol phosphate pathway of isoprenoid synthesis/used to 
treat bacterial infections.

2021 [145]

US11,382,907B2 Pyridine-4-carboxylic acid Alkahest, Inc Chemo kinase receptor 3 (CCR3) inhibitors/Methods for the 
improvement of neurodegenerative diseases including aging- 
associated-neuronal loss, aging-associated-loss of motor 
coordination, and aging-associated-memory impairment.

2022 [146]

WO2020/053812A1 Pyridine-3-carboxylic acid Purdue Research 
Foundation.

Kinase inhibitor/These inhibitors target a wide range of 
cancer-driver kinases such as FGFR1-4, FLT3, ABL1, and RET 
including AML, CML, various RET and FGFR-driven cancers. In 
addition, for disease treatment such as cancer and, in 
particular, acute myeloid leukemia.

2020 [147]

WO 2015/089220 Al Pyridine-3-carboxylic acid Allergan, Inc. Kinase inhibitor/This invention describes methods for 
modulating, regulating, or inhibiting tyrosine kinases, whether 
receptor or non-receptor, for the prevention and/or 
treatment of disorders caused by unregulated tyrosine kinase 
signal transduction, such as metabolic, and blood vessel 
proliferative disorders and abnormal cell proliferation.

2015 [148]
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IRAK4 Inhibitors
Interleukin-1 receptor-associated kinase 4 (IRAK4) is the most proximal kinase in the Toll-like receptor (TLR)/interleukin (IL)-1 
receptor (TLR/IL-1R) signaling cascade, which is associated with autoimmune diseases, inflammation, and cancers.149–151 TLR 
assembles the MyDDosome complex during signal transduction, which then activates transcriptional factors and the downstream 
pro-inflammatory cytokines production. Human and rodent genetics support the role of IRAK4 in immunological response. 
Moreover, clinical trials are ongoing for the evaluation of IRAK4 inhibition for non-Hodgkin lymphoma.151 Bryan et al reported 
an IRAK4 inhibitor 93 with a clinical code CA-4948 having IC50 less than 50 nM (Figure 15).152 Similarly, Bayer125 and Bristol- 
Myers Squibb (BMS) have disclosed some noteworthy IRAK4 inhibitors such as 94153,154 with an IC50 value of 3.4 nM. BMS 
also discovered some potent IRAK4 inhibitors such as 95 and 96 with IC50 values of 3 and 2 nM, respectively. Gilead reported 
even more potent IRAK4 inhibitors 97‒100 with IC50 values being less than 1 nM.151,155 Remarkably, the compounds 93–100 
are built around a substituted pyridine core, which facilitates hydrogen bonding and π-π stacking interactions within the kinase 
active site. The presence of electron-deficient nitrogen-containing rings enhance binding affinity, whereas rigid linkers like 
amides or ureas help maintain optimal geometry for target engagement. Together, these features support a strong and selective 
binding to IRAK4, with several inhibitors demonstrating IC50 values in nanomolar range.

ASK1 Inhibitors
Apoptosis signal-regulating kinase 1 (ASK1) is a serine-threonine kinase that activates other kinases in response to a range of 
stresses like calcium overload, ROS (reactive oxygen species) stress, lipopolysaccharides and endoplasmic reticulum stress156,157 

ASK1 has been found to engage in the development of cancer, diabetes, fibrosis, neurodegenerative, and cardiovascular 
diseases.158–162

Rowbottom disclosed a group of compounds as ASK1 inhibitors. The ability of ASK1 inhibition of 141 compounds was 
tested using the luminescent ADP-Glo™ Kinase Assay and Myelin Basic Protein (MBP) as a substrate (Promega Corporation, 
Madison, WI). It was found that the picolinic acid derivatives having different R groups did not show any activity but when the 
nitrogen atom in the picolinic acid moiety is replaced with a C-F group together with an R group modifications (Figure 16), all 
of the compounds showed significant inhibitory effect with an IC50 < 300 nM for most compounds.126

Figure 14 Biologically active pyridine carboxylic acid derived enzyme inhibitors reported in recently published literature.
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TRPC6 Inhibitors
The superfamily of transient receptor potential (TRP) channels comprises over 28 members, which are categorized into 
seven subfamilies.163,164 The transient receptor potential cation channel, subfamily C, member 6 (TRPC6) plays 
a multifaceted role in neuroprotection, particularly in Alzheimer’s disease (AD) and cerebral ischemia. It has the 
potential to enhance dendritic spine formation, protect neurons from ischemic damage, and promote synaptic growth 
and cognitive functions.165 However, excessive TRPC6 activity can be detrimental to various body systems, possibly 
contributing to conditions like breast cancer and glomerular sclerosis. The precise function of TRPC6 in AD and 

Figure 15 Structures of IRAK4 inhibitors 93‒100.

Figure 16 Structures of ASK1 inhibitors 108‒115.
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ischemia is debated, with conflicting reports of reduced and increased activity.166,167 The extensive TRP gene family is 
responsible for encoding transient receptor potential (TRP) proteins, which assemble into unique ion channels selectively 
permeable to cations. Striking a balance in TRPC6 activity is crucial for brain function preservation, emphasizing the 
need to investigate molecular irregularities and develop targeted pharmacological treatments.168,169 Applications of 
pyridine carboxylic acid derivatives as transient receptor potential C6 (TRPC6) ion channel inhibitors for the treatment 
of pain, cardiac and respiratory conditions, renal disease, liver disease, ischemia or ischemic reperfusion injury, fibrotic 
disorders, cancer, and muscular dystrophy, have been patented (WO2019081637). To the best of our knowledge, this 
patent represents the only available report in the patented literature specifically describing pyridine carboxylic acid-based 
compounds as TRPC6 inhibitors. Considering the important role of ion channels in modulating the capacity for 
membrane and ion flux in cells, it is of great interest to identify agents that can promote or inhibit specific ion channels 
as diagnostic tools as well as potential therapeutic agents.168 TRPC6 is one of these channels, which is part of the TRP 
ion channel family. It is a calcium-permeable channel, more specifically a calcium-permeable cation channel that is non- 
selective.170 A range of pyridine carboxylic acid derivatives were synthesized via a multistep synthetic route and tested 
as TRPC6 inhibitors. The generic structure 116‒129 comprising of pyridine carbonyl core is represented in Figure 17.

As described in the referenced patent (WO2019081637A1), a total of 95 pyridine carbonyl derivatives were 
synthesized and evaluated using Fluorescence Imagining Plate Reader (FLIPR) assay in a cell-based system that 
measures calcium influx as proxy for TRPC6 activity. Among these compounds 116, 117, 125, 126, and 127 demon
strated high potency with IC50 values below 27 nM, while compounds 118–124, 128, and 129 showed moderate potency 
(~27 Nm). Notably, these compounds displayed excellent selectivity, showing significantly weaker or no inhibitory 
activity against related TRP channels, including TRPC3, TRPC5 and TRPC7 as indicated in the patent’s comparative 
selectivity profiling. These compounds can be used in a lower dosage form either alone or in combination with adjuvants 
that enhance the inhibitor stability, thus reducing the potential cytotoxicity and adverse side effects when used as 
a monotherapy. Compared to other TRP channels like TRPC3, TRPC5, and TRPC7; these pyridine carboxylic acid 
derivatives have very strong potency and selectivity for the TRPC6 channel and can be a good starting point for the 
pharmacological modulation of TRPC6.127

WDR5-MLL1 Inhibitors and Modulators
The protein-protein interaction between WDR5 (WD40 repeat protein 5) and MLL1 (mixed-lineage leukemia 1) is 
important for maintaining optimal H3K4 methyltransferase activity of MLL1.171,172 Dysregulation of MLL1 catalytic 
function is relevant to mixed-lineage leukemia, and targeting WDR5-MLL1 interaction could be a promising therapeutic 

Figure 17 Structures of TRPC6 inhibitors 116‒129.
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strategy for leukemia harboring MLL1 fusion proteins.172 In cancer research, the dysregulation of histone methylation 
pathways is a well-established contributor to tumorigenesis.173–176 WDR5-MLL1 inhibitors and modulators offer 
a promising avenue for intervention by disrupting this crucial interaction, thereby potentially reestablishing normal 
epigenetic patterns and suppressing cancer progression.174,177 Gogliotti et al disclosed an invention in a patent US 2020/ 
0055824 A1 that relates generally to compositions comprising benzamides and picolinamides to modulate the interaction 
of WD repeat-containing protein 5 (WDR5) with chromatin, cognate transcription, and other regulatory factors for the 
treatment of solid cancers, leukemia, and other WDR5 dependent diseases. Mixed lineage leukemia (MLL) is a gene 
involved in the translocation of chromosomes in acute leukemia subtypes such as acute myeloid leukemia (2.8%) and 
acute lymphoblastic leukemia (10%).178 Intrinsic histone methyl transferase (HMT) activity of MLL1 is extremely low 
and requires a complex assembly of WDR5, RbBP5, ASH2L, and DPY30 protein partners for effective H3K4 
trimethylation, the so-called WRAD complex. The invention being discussed describes benzamide and picolinamides 
having guanidino-, imino-, or heterocycle-containing groups as their meta substituents. These compounds disrupt the 
WDR5-MLL1 protein-protein interaction and are extensively employed in pharmaceutical compositions, treating pro
liferative disorders and conditions such as cancer. Different assays such as time-resolved fluorescence resonance energy 
transfer (TR-FRET) assay and fluorescence polarization assay (FPA) were performed to evaluate the potential of the 
synthesized picolinamide derivatives 130‒139 as inhibitors of WDR5. The data presented in Figure 18 demonstrates the 
utility of the representative compounds as selective inhibitors of the WDR5 protein to bind peptides from the relevant 
MLL domain. As described in the supporting patent (US10807959B2), compound 136 and 138 demonstrated strong 
inhibitory activity values of 0.1 nM and 0.15 nM, respectively, in the TR-FRET assay. Furthermore, the cellular viability 
of human tumor cell lines was determined for compounds 140‒142 by examining the anti-proliferative activity using 
MLL harboring cell lines. Concisely, picolinamide derivatives can be an excellent choice in treating proliferative 
disorders and cancer, especially leukemia.128

Figure 18 Structures of WDR5-MLL1 inhibitors and modulators 130‒142.
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KDM4 Inhibitors
KDM4 inhibitors, a class of compounds gaining increasing attention in the field of epigenetics, target a group of enzymes 
known as lysine-specific demethylase 4 (KDM4), which play a crucial role in regulating gene expression by removing 
specific methyl groups from histone proteins.179,180 The significance of KDM4 inhibitors extends into the field of cancer 
research, as dysregulated histone methylation is a hallmark of many cancer types. These inhibitors offer a promising 
avenue for therapeutic intervention, potentially reprogramming the epigenetic landscape to suppress tumor growth and 
metastasis.181,182 Beyond cancer, KDM4 inhibitors hold promise in addressing other diseases linked to aberrant 
epigenetic modifications, such as neurological disorders and cardiovascular conditions.183 As our understanding of 
epigenetics continues to expand, KDM4 inhibitors represent a valuable tool in the quest for targeted therapies and 
precision medicine, offering new possibilities for treating a wide range of complex diseases.184

Pyridine carboxylic acid-derived compounds are also investigated as histone demethylase inhibitors.116,185,186 Histone 
lysine demethylase 4 (KDM4) catalyzes the removal of methyl marks from histone lysine residues to control chromatin 
structure and gene expression epigenetically.187,188 Histone demethylase activity can be inhibited by methyllysine histone 
substrate mimics (Figure 19).189 Epitherapeutics APS filed a patent disclosing histone demethylase inhibitors.131 In 
AlphaLISA assays, the pyridine-4-carboxylic acid analogues 143–150 presented in Figure 20 demonstrated inhibitory 
activities against one or more of KDM4A, KDM4B, and KDM4C. Several of these compounds were tested in 
immunofluorescence assays using U2OS cells, and the representative compounds 143 and 144 were found to be potent 
KDM4C inhibitors (IC50 < 1 µM).190 Moreover, the histone lysine-demethylase inhibitory effect of the compounds under 

Figure 19 Mechanistic pathway of histone demethylases.
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discussion was tested within the cell, and global levels of tri-methylation on lysine 4 of histone 3 (H3K4me3) were 
assessed by Western blot in the breast cancer BT474 cell line. Compounds with different R groups exhibited strong 
biochemical KDM inhibitory as well as cellular activity against all cell lines tested below 100 nM concentration. The 
structures of the most potent JmjC-KDM inhibitors are displayed in Figure 20. In brief, it is suggested that the use of 
compounds 145‒150 in therapeutically effective amounts, may help treat diseases associated with JmjC-KDM inhibitors 
as anticancer and antiviral agents.130

The ability of pyridine carboxylic acid-derived compounds enclosed in patent WO 2018/149986 A1 to inhibit the 
activity of KDM5B was determined by employing AlphaLISA technology in vitro using human recombinant proteins. 
For the determination of IC50 values, the patented inhibitors were tested at eight logarithmic serial dilutions. The 
invention also relates to pharmaceutical compositions comprising these compounds and to use in cancer therapy. The 
tested compounds 151‒159 showed IC50 in the range of 1‒3 nM, see Figure 21. 130

A patent application WO2010043866 disclosed a series of pyridine-2,4-dicarboxylic acids for their inhibitory 
activities against JMJD2E in the FDH-coupled demethylase assay. Among the tested compounds, pyridine-2,4-dicar
boxylic acid (160), 3-(4-methoxybenzylamino)pyridine-2,4-dicarboxylic acid (161), 3-(2-fluorophenyl amino)pyridine- 
2,4-dicarboxylic acid (162), 3-(o-tolylamino)pyridine-2,4-dicarboxylic acid (163), and 3-(2-aminophenylamino)pyridine- 
2,4-dicarboxylic acid (164) (Figure 22) showed quite potent inhibition with IC50 values of 1.4, 0.3, 1.1, 7.9, and 0.6 µM, 
respectively. Another test was conducted on 2,2-bipyridyl derivatives (heteroaryl derivatives, cofactor disruptor) in the 
FDH coupled inhibition assay and the non-denaturing MS binding assay. The compounds (165‒170) in Figure 22, 
showed strong binding affinity and IC50 values of 6.6, 1.5, 3.6, 3.8, 4.5, and 8.0 µM, respectively.190

In 2014, Quanticel Pharmaceuticals, Inc. filed a patent application WO 2014/100463A1 that described the substituted 
aminopyridine derivatives (171‒176) and their pharmaceutical compositions as inhibitors of histone demethylase for 
treating cancer and neoplastic diseases are shown in Figure 23. Most of these compounds induced complete tumor 
regression via an in vivo approach. The compounds were tested to inhibit JARID1A, JARIDlB, and JMJD2C 

Figure 20 Structures of KDM inhibitors and modulators 143‒150.
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Figure 22 Structures of KDM inhibitors and modulators 160‒170.

Figure 21 Structures of KDM 5 inhibitors and modulators 151‒159.
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demethylase activity in vitro employing time-resolved-fluorescence resonance energy transfer (TR-FRET) detection 
method. Most of the compounds were found to be active and inhibited the activity of a demethylase comprising of 
a JmjC domain (eg, a histone demethylase such as a JHDM protein) with low IC50 values (≤ 0.10 µΜ). The decrease in 
JARID1B is connected to a rise in tri-methylated H3K4 levels within tumor suppressor genes. The quantification of tri- 
methylated histone H3 and cellular inhibition of KDM5A and 5B, was done on ZR-75-1 breast cancer cell line via 
immuno-blotting assay. The subsequent IC50 values from these cellular assays revealed a correlation between the degree 
of inhibition of these enzymes in cancer cell lines and the degree of inhibition of these enzymes in a biochemical assay. 
To further support this claim, the most active compounds were subjected towards in vivo xenographic evaluation into nu/ 
nu mice model. Most of the compounds had an overall favorable profile. In addition, such compounds have the advantage 
of being fairly soluble in water as well as stable in vivo; a characteristic not frequently shared by most synthetic 
derivatives. Since they exhibited specific inhibitory potential toward histone demethylases; it has been suggested that 
they can serve as an effective tool to regulate the modulation of demethylation in a cell, either generally or with respect to 
one or more specific target genes.132

Quanticel Pharmaceuticals, Inc. submitted a follow-up patent application WO 2015/200709A1 to their 2014 patent 
application WO 2014/100463A1. The generic structure for compounds 177–194 is given in Figure 24. Screening of these 
compounds for histone demethylase inhibitory activity was carried out using enzymatic and cellular inhibition assays. 
The results disclosed a number of substituted pyridine carboxylic acid derivatives as in vitro selective histone demethy
lase enzyme inhibitors with IC50 values in the sub-nanomolar range for cancer prevention and treatment of neoplastic 
disease. The enzymatic assays were performed to inhibit JMJD2C activity based upon time resolved-fluorescence 
resonance energy transfer (TR-FRET) detection. The human KYSE-150 (SMAD4 mut, TP53 mut) esophageal carcinoma 
cell line was used to test cell proliferation by in vitro cell-based assay. The IC50 values of cellular proliferation were 
found typically lower than 0.10 µΜ. The most potent inventive compounds were further evaluated for in vivo xenograft 
study using MCF-7 cells. The subsequent results provided the compounds with good to excellent oral bioavailability and 
pharmacokinetic profiles as highly active and selective histone demethylase inhibitors.133

WO2022/047230A1 patented by Fibrogen. Inc included 142 pyridine carboxylic acid derivatives (see representative 
structures of 195–227, Figure 25). Among them, 139 compounds are pyridine-2-carboxylic acid derivatives with different 
R groups and the remaining three compounds (199‒201) are pyridine-4-carboxylic acid derivatives. All these derivatives 
were tested for the inhibition of KDM5B and KDM4A. All pyridine-2-carboxylic acid derivatives showed pronounced 
inhibition against KDM5B with IC50 < 1.0 µM. Three pyridine-4-carboxylic acid derivatives showed weaker inhibition 
with IC50 of 1.4 and 2.0 µM. Among all compounds, only some of them displayed moderate inhibition against KDM4A 
with IC50 < 40 µM.

Figure 23 Structures of KDM (JARID 1A, JARID 1B, JMJD2C) inhibitors and modulators 171–176.
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Gilead Sciences, Inc. filed a patent (US 2018/0042905A1) disclosing an invention that relates to novel methods of 
treating Hepatitis B virus (HBV) by administering KDM5 inhibitors. The most auspicious compounds 228–235 
(Figure 26) mentioned in the invention are listed in Table 2 with a summary of their HBV antiviral activity. The data 
in the patent leads us to the conclusion that pyridine carboxylic acid derivatives can be considered promising lead 
molecules for the development of new antiviral drug candidates for lifelong therapy of HBV.191

High concentrations of sub-viral particles (SVPs) with HBV surface antigen (HBsAg) in chronic HBV infection are 
a significant obstacle to effective immune responses. Despite significant advances in HBV treatment, only a small 
percentage of patients achieve the ideal goal of “functional cure”, which is characterized by hepatitis B surface antigen 
(HBsAg) loss. More specifically, sustained loss of HBsAg is significant because it is linked to better long-term outcomes. 

Figure 24 Structures of KDM inhibitors and modulators 177‒194.
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Figure 25 Structures of KDM inhibitors and modulators from WO2022/047230A1 (195‒227).
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HBV surface antigen (HBsAg) is a major obstacle that provides direct evidence in the timing of the decision to 
discontinue treatment and start off-therapy retreatment during antiviral therapies.192,193

3HAO Inhibitors
As an enzyme of the kynurenine pathway, which is directly responsible for the conversion of 3-hydroxyanthranilic acid 
into quinolinic acid (QUIN), through the intermediate formation of a semimuconic aldehyde and its subsequent non- 
enzymatic cyclization, 3-hydroxyanthranilate-3,4-dioxygenase (3HAO) is potentially involved in a series of neurode
generative disorders and diseases, such as Huntington’s disease, Alzheimer’s disease, HIV-related dementia, and cerebral 
ischemia. As reported in the supporting patent (WO2012097869A1), compounds 236–238 (Figure 27) demonstrated 
3HAO inhibition in rat brain homogenates, showing inhibition of 49%, 22%, and 78% at 10 µM, and 90%, 76%, and 
97% at 100 µM, respectively. In human brain homogenates, the same compounds showed 66%, 42%, and 80% inhibition 
at 10 µM, and 93%, 100%, and 100% at 100 µM, respectively.

Figure 26 Structures of KDM inhibitors from US 2018/0042905 A1 (228‒235).

Table 2 HBV Antiviral Activity (EC50, µm) of Compounds 
228–235

Compounds HBsAg HBeAg HBV RNA PHH

228 2.024 1.631 – 50.00

229 1.298 1.090 – 50.00

230 0.481 0.642 0.224 100.00
231 4.049 5.771 – 50.00

232 19.502 22.632 – –

233 0.0667 0.188 0.100 28.231
234 50.00 50.00 – 50.00

235 3.984 5.968 – 50
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PDGFR Selective Inhibitors
Pyridine carboxylic acid derivatives have also been reported as selective platelet-derived growth factor receptor 
(PDGFR) inhibitors to treat pulmonary arterial hypertension (PAH). Studies in animal models have revealed that 
PDGF appears to play a significant role in vascular remodeling.194 Both PDGFRα and PDGFRβ receptors are associated 
with specific receptor tyrosine kinases. Inhibiting PDGFR kinase has been proposed as an additional therapeutic 
modality, and this hypothesis appears to be validated by clinical studies with the non-selective PDGFR inhibitor 
imatinib.195 However, the adverse effects linked to a lack of selectivity imply that clinical utility requires the identifica
tion and development of selective PDGFR inhibitors.196 Recently compound 239197 (PK-10453) has been described as 
a non-selective PDGFR inhibitor. PK-10453 inhibits PDGFRα and PDGFRβ with respective IC50 values of 10.1 and 35 
nM. On the other hand, NOVARTIS AG specifically claims the crystalline form of PDGFR inhibitor 240 which is also 
a pyridine carboxylic acid-derived compound and is considered even more potent and selective than either imatinib or 
PK-10453 with IC50 of 3.0 nM.135 It is possible that Novartis intends to develop compound 240196,198 for the treatment of 
PAH.196 The structures of 239 and 240 are given in Figure 28.

Trk Inhibitors
Activation of the Tropomyosin-receptor-kinase (Trk) A/B/C receptor promotes growth, survival, and differentiation of 
discrete neuronal populations during development, adult life, and aging. It also plays a role in the emergence and 
progression of human disease. Trk-specific inhibitors have therapeutic applications in cancer and pain, making them 
a burgeoning field of study in oncology and neurology. Pyridine carboxylic acid core-containing compounds are reported 
as Trk Inhibitors. The compounds 241‒243199,200 with fluorination at position 3 of the piperidine ring are prominent and 
showed marked potency with IC50 values of 1.7, 1.3, and 1.5 nM respectively, except compound 244 having 3R,4R 
stereo configuration with adjacent ether, decreases potency depicted from IC50 value (12.3 nM) (Bailey, Schirrmacher, 
Farrell, and Bernard-Gauthier, 2017; WO 2015/092610 Al, 2015). In another short publication, pyrrolidine analogs were 

Figure 27 Structures of 3HAO inhibitors 236‒238.

Figure 28 Structures of PDGFR inhibitors 239 and 240.
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described, which utilized a 6-aminonicotinamide hinge binder adorned with a variety of amide substitutions. Compounds 
245 and 246 in this series are presented as sets of enantiomers and trend for a preference of the (R)-enantiomer 245 with 
IC50 of 11.6 nM.201 The compounds 241‒246 are illustrated in Figure 29.

FABP Inhibitors
Numerous studies show that excessive free fatty acid (FFA) is the pathogenic factor for a wide range of disorders such as 
atherosclerosis, obesity, hypertension, and metabolic syndrome. These are diseases that synergistically compromise 
human health. Fatty acid binding proteins (FABPs) are in charge of transporting FFA from cytoplasm to different 
cellular organelles like mitochondria, nucleus, peroxisomes, lipid droplets, and ER (endoplasmic reticulum), and thus 
play a pertinent role in cellular functions as depicted in (Figure 30). As a result, developing and employing FABP 
inhibitors could be a viable strategy for controlling atherosclerosis, obesity, diabetes, and metabolic syndrome in 
humans.68 William W. Bachovchin et al disclosed pyridine-3-carboxylic acid derivatives (niacin) as FABP inhibitors 
in their two patents.68,137 The derivatives included the representative compound 247 as shown in Figure 31. Compound 

Figure 29 Structures of Trk inhibitors 241‒246.

Figure 30 Intracellular transport of free fatty acid (FFA).
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247 displayed a significant effect on lipid modulation by chronic administration of compounds compared to niacin in 
a hamster model. The concentrations of LDL (low-density lipoprotein) and total cholesterol in compound 272-treated 
trials are at least 1.67 and 1.54 times greater than those in the niacin trials. Additionally, the HDL (high-density 
lipoprotein) is noticeably higher in the compound 40 trace, in addition to the VLDL and LDL being significantly 
reduced. Meanwhile, when treated with compound 247, both ABCA1 and ApoAI mRNA levels were higher in the 
compound 247-treated animals relative to vehicle control animals. Therefore, Compound 247 could be used to develop 
new drugs to treat FABP-related disorders and metabolic syndrome. Because of their significant impact on the liver, 
niacin derivatives are also thought to target FABP4.68 Although niacin has been linked to liver toxicity202 and glucose 
intolerance in chronic dose settings, certain chemical modifications could avoid these side effects. In brief, pyridine- 
3-carboxylic acid derived-compounds could be good candidates for the development of new FABP inhibitors to treat 
various ailments.10,203,204

FXIa Inhibitors
The most common medications used to prevent and treat thrombotic disorders are anticoagulants. Each anticoagulant 
used in clinical practice is linked to serious adverse effects, particularly bleeding. It has been proposed that Factor XIa 
(FXIa), a crucial factor involved in the amplification of the procoagulation signal, is a primary target for the development 
of anticoagulant drugs.138 The importance of pyridine carboxylic acid derived compound as FXIa inhibitor can be 
estimated from the fact that aryl boronic acid 249 (IC50 = 1.4 µM) having pyridine carboxylic acid core reported to show 
better FXIa active site inhibition as compared to its precursor 248 (IC50 = 7.3 µM) deprived of pyridine carboxylic acid 
core. The compound 249 has also much better selectivity than 248. It was observed that S enantiomer of compound 249 
was bound in active site assuming that only S enantiomer was found active against FXIa.138,205 A review by Al Horani 
also discusses FXIa inhibitors in detail. Among these compounds was pyridine carboxylic acid derivative 250 with FXIa 
IC50 of 20 nM.206 Furthermore, Bayer Pharma, Germany, filed several patent applications in 2015, disclosing phenyl 
alanine derivatives as FXIa inhibitors for the prophylaxis of various ailments related to cardiovascular disorders and 
thrombotic diseases. One of the interesting phenyl alanine derivative 251 having pyridine carboxyl moiety is reported as 
FXIa inhibitor with IC50 of 0.9 nM and the concentration required to double the clotting time was reported as 0.08 µM in 
APTT assay.138 The structures of compounds 248‒251 are shown in Figure 32.

Figure 31 Structure of FABP inhibitor 247.
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TGFβ Inhibitor
Transforming Growth Factor Beta (TGFβ) is a multi-functional cytokine, which is involved in numerous biological 
processes including cell growth, differentiation, immune regulation, fibrosis, and cancer progression. TGFβ inhibitors are 
being explored for cancer, fibrotic diseases, autoimmune and inflammatory conditions. Sistla et al disclose a patent 
unveiling novel crystalline polymorphic and amorphous form of 4-(2-(5-chloro-2-fluorophenyl)-5-isopropylpyridin- 
4-ylamino)-N-(l,3-dihydroxypropan-2-yl) nicotinamide 252207,208 (Figure 33) known for treating abnormal cell growth, 
such as cancer, in mammals by acting as a potent and selective ΤGFβ inhibitor.139

Nav1.8 Inhibitors
Novel derivatives of 2-Amino-N-heteroaryl-nicotinamides as Nav1.8 inhibitors were disclosed in patent WO 2020/ 
092667 A1. Voltage-gated sodium ion channel (Nav1.8) is thought to be involved in a variety of diseases such as 
inflammatory pain, neuropathic pain, chronic itch disorders, etc. The importance of Nav1.8 is summarized in Figure 34.

The potency of the patented compounds was assayed using a patch clamp assay, and human Nav1.8 and Nav1.5 
channels were stably expressed in human embryonic kidney (HEK) 293, and their inhibition was measured as a function 
of drug concentration by an offline analysis. Finally, 218 compounds were evaluated for their Nav1.8 channel activity, the 
majority of which inhibited the flow of sodium through human Nav1.8 and Nav1.5 channels with IC50 values in the 
single-digit nanomolar range. The presence of a halogen substituent plays an important role in the Nav1.8 activities of 
this series, particularly when it is located in an ortho-position. The compound 258 5-chloro-2-(4.4-difluoroazepan-l-yl)- 

Figure 32 Structures of FXIa inhibitors 248‒251.
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6-methyl-N-(2-sulfamoylpyridin-4-yl) nicotinamide having chloro and methyl substitution at the nicotinamide moiety, 
exhibited an IC50 of 0.3 nM against Nav1.8 channels employing a 1 hertz pulse train stimulation. Compounds 253‒257 
and 259‒264 also showed significant activity (Figure 35). It is speculated that these compounds may be beneficial in the 
prevention, treatment, or management of cough, pain, acute itch, and chronic itch disorders. It was suggested by the 

Figure 33 Structures of TGFβ inhibitor 252.

Figure 34 Importance of Nav1.8 inhibitors.
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inventor that the inhibitory effect of these compounds is dependent on halogen substituents; particularly, the presence of 
a fluoro group increases the activity in comparison to other groups. As part of a pharmaceutical preparation, these 
compounds can be used alone or in conjunction with a well-known analgesic.140

DHODH Inhibitors
Dihydroorotate dehydrogenase (DHODH) inhibitors act upon dihydroorotate dehydrogenase, thereby hindering pyrimi
dine biosynthesis.209 This inhibition disrupts DNA and RNA synthesis in rapidly dividing cells, making them promising 
for cancer and autoimmune disease therapies by suppressing immune cell proliferation.210,211 Pyridine carboxylic acid 
derivatives are also known for their dihydroorotate dehydrogenase (DHODH) inhibitory activity. DHODH inhibitors 
have demonstrated their effectiveness in treating a variety of diseases.209 Despite extensive efforts to develop DHODH 
inhibitors, no FDA approval has yet been obtained.212 Julio Cesar et al described the use of new amino derivatives of 
nicotinic and isonicotinic acid as inhibitors of the DHODH. The amino(iso)nicotinic acid derivatives were conveniently 
synthesized as described in Scheme 1. These compounds were subjected to human DHODH activity using a chromogen 
reduction assay with DCIP (2,6-dichlorophenol indophenol) to observe the inhibition effect.

The most significant feature observed for effective DHODH inhibitory activity is their substitution pattern on phenyl 
ring with flouro or trifluoromethyl group. These compounds 265‒272213 were proved as potent DHODH inhibitors with 
IC50 values in a range of 3‒8 nM (Figure 36). In addition to efficient inhibition of DHODH, the amino derivative of 
nicotinic and isonicotinic acid in the patent being discussed, also inhibits the proliferation of cells with a high turnover 
rate, particularly in lymphocyte cells. In conclusion, these patented amino (iso)nicotinic acid derivatives and their 

Figure 35 Structures of Nav1.8 inhibitor 253–264.
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Scheme 1 General structures of amino nicotinic and isonicotinic acid derivatives as DHODH inhibitors.

Figure 36 Structures of DHODH inhibitor 265‒272.
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pharmaceutical compositions have been found useful for the diagnosis, prevention, or suppression of diseases and 
disorders that are susceptible to improvement by treatment with inhibitors of dihydroorotate dehydrogenase. Such 
diseases include autoimmune diseases, immune diseases, malignant neoplastic diseases, destructive bone disorders, 
angiogenic-related disorders, infectious, inflammatory, and viral diseases. This discloser also describes the dosage 
formation and pharmaceutical preparation methods of these amino(iso)nicotinic acid derivatives as potent DHODH 
inhibitors. These findings suggest new approaches towards the development of DHODH inhibitors involving pyridine 
carboxylic acid moieties. It highlighted their importance as a target for drug discovery and chemotherapeutics.141

XO Inhibitors
Xanthine oxidase (XO) is a multipurpose molybdoflavoprotein that can produce uric acid and reactive oxygen species via 
catalysis and thus can lead to various diseases like hyperuricemia, gout, heart failure, cardiovascular diseases, hyperten
sion, diabetes, inflammation, cancers, kidney diseases, and articular diseases.211,214–218 A number of patent publications 
have reported xanthine oxidase inhibitors (WO 1998/018765, WO 2007/043457, WO 1992/009279, WO 2008/126770, 
WO 2007/004688, WO 2008/126899, and WO 2008/126,898). Among these, WO 1998/018765 exhibits the inhibitory 
effects of pyrazoles and phenyl derivatives against xanthine oxidase, and WO 2008/126898 describes the inhibitory 
effects of indole compounds against xanthine oxidase. In 2014, Soga et al published a patent for deciphering novel 
compounds that act as xanthine oxidase inhibitors. A total of thirty compounds were reported in this invention, out of 
which seven compounds 273‒279 were having a pyridine carboxylic acid core (Figure 37). The best XO inhibitory 
activity was shown by compound 276 with an IC50 of 2.1 nM. The ability to lower uric acid in plasma and the liver was 
also determined in vivo in a xanthine oxidase assay using an oxonic acid-induced hyperuricemic model, albeit moderate 
to poor activity was observed for pyridine-derived compounds.142,219

GSK-3 Inhibitors
Glycogen synthase kinase-3 (GSK-3) inhibitors have gained substantial attention in biomedical research and drug 
development.220 These compounds, designed to target GSK-3, a key enzyme in cellular processes, hold promise for 
treating various diseases.221,222 In neurological disorders like Alzheimer’s, they may mitigate neurodegeneration.223,224 

GSK-3 inhibitors also show potential in cancer therapy, influencing cell cycle regulation and promoting apoptosis in 
cancer cells. Moreover, they have applications in regenerative medicine and diabetes research. Their versatility and 
central role in cellular pathways make them valuable tools for understanding and potentially addressing a wide range of 
medical conditions, offering prospects for novel therapeutic interventions.225

Figure 37 Structures of XO inhibitors 273–279.
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In 2015, Bristol-Myers Squibb disclosed a series of aromatic and heterocyclic derivatives of isonicotinic acid (WO 
2015/069594 Al) as inhibitors of glycogen synthase kinase 3 (GSK-3). In the patent under discussion, nicotinamide 
derivatives were conveniently synthesized by direct amination. To measure GSK-3 inhibitory activity, a kinase assay was 
developed using fluoresceinated peptide and a β-glycerol phosphate buffer system. A dose-response curve was generated 
to evaluate the ability to inhibit > 50% of the kinase activity (IC50) at eleven varying concentrations. Their IC50 values 
ranged from subnanomolar to nanomolar concentrations, depending on the substitution pattern. Hundreds of compounds 
were prepared inhibiting GSK-3. The most potent activity (IC50 value < 1.0 nM for GSK-3β and < 5 nM for GSK-3α, 
respectively) was observed for compounds 280‒284, while other compounds displayed moderate activity. The structures 
of compounds with significant inhibitory potential are given in Figure 38 along with their IC50 values. These findings 
suggest that the regulation of GSK-3 modulators can also be useful for the treatment of neuropathological and 
symptomatic aspects of Alzheimer’s disease and other neurodegenerative disorders.143

PKal Inhibitors
A number of plasma kallikrein (PKal) inhibitors have been identified so far, but only a few of them have entered clinical 
trials or have been marketed.226,227 Lifesci Pharmaceuticals, Inc. reported a novel series of heterocyclic derivatives with 
a pyridine carboxylic acid core and their pharmaceutical compositions, which strongly inhibited PKal. Screening of the 
compounds was carried out using human plasma kallikrein (hPK) (Abeam) in an enzymatic assay. The resultant data 
showed that 136 among the tested 146 compounds were able to inhibit hPK with IC50 ≤ 1.0 µΜ. Besides, the series were 
subjected to in vitro cellular assay. The majority of the compounds had EC50 values less than 1.0 µM, making them 
suitable candidates for the treatment of plasma kallikrein-related metabolic disorders, such as angioedema. The structures 
of 285–292 are depicted in Figure 39.144

CA Inhibitors
Carbonic anhydrase (CA) inhibitors suppress the conversion of CO2 and H2O into bicarbonate and block the reabsorption of 
bicarbonate from the proximal tubules (Figure 40) in the kidneys.228,229 Studies revealed that CA inhibitors reduce aqueous 
humor secretion, which is found between the lens and cornea of the eyeball, and decrease intraocular pressure.230 The 

Figure 38 Structures of GSK-3 inhibitors 280–284.
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inhibitors have greater use in edema, altitude sickness, glaucoma, and some adjuvant treatment for epilepsies.231 Pyridine 
carboxylic acid derivatives inhibit the enzyme carbonic anhydrase more effectively. Some novel pyridine carboxamide 
derivatives 293–297 showed a CA inhibitory profile against various isoforms such as acetylcholinesterase (AChE) (KIS 

3.07–87.26 nM), human carbonic anhydrase I and II isoforms (hCA I and II) (KIS 1.47–10.06 nM and KIS 3.55–7.66 nM), 
respectively.232 Another heterocyclic sulfonamide derivative 298, exhibited CA inhibition activity against three forms of CA 
isozymes, CA I, II (cytosolic forms), and IV (membrane-bound) form. CA (II) (Ki = 4 nM) and (IV) (Ki = 10 nM) showed 
inhibitory effects in the lower nanomolar range.233 Nicotinic acid-containing 6-substituted scaffolds 299–312 were developed 
and evaluated for CA inhibition activity (Figure 41). The activity was profound against isoenzyme CA (III). The docking 
studies and chromatographic data of nicotinic acid derivatives demonstrated the binding of the carboxylic part to the Zn2+ ion 
of the enzyme active site. Moreover, a hydrophobic part at position 6 enhanced activity, such as 6-(hexyloxy) pyridine- 
3-carboxylic acid (Ki = 41.6 µM).234

IspH Inhibitors
IspH is a crucial enzyme for isoprenoid biosynthesis in pathogenic bacteria. This enzyme is absent in humans, which 
makes it an attractive and selective target for antibacterial drug development. Additionally, IspH inhibition may interfere 
with tumor cell metabolism, highlighting its potential in cancer therapy. 4-Hydroxy-3-methylbut-2-enyl diphosphate 
reductase (IspH) inhibitors can play a role in bacterial infections and cancer. The Wistar Institute patented a series of 
compounds having inhibition against IspH in 2021. Among them, a pyridine-4-carboxylic acid derivative (313, 
Figure 42) was able to inhibit IspH with an IC50 of 1.44 µM.145

CCR3 Inhibitors
Alkahest, Inc. patented a pyridine-4-carboxylic acid derivative235 (314, Figure 43) as a C-C motif chemokine receptor 3 
(CCR3) inhibitor, which can be used for neurodegenerative disease. The compound 314 acted as an antagonist of CCR3, 
the receptor for Eotaxin-1 (CCL11). CCL11 is a protein increasing in blood by age, and the negative correlation between 
CCL11 and cognitive function has been proved.236 Chronic inhibition against CCR3 was evaluated in vivo by several 

Figure 39 Structures of PKal inhibitors 285–292.

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S513461                                                                                                                                                                                                                                                                                                                                                                                                   4073

Yaqoob et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



neurodegenerative animal models, such as the mouse MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of 
Parkinson’s Disease, the Alzet mini-pump, model 2002, the oxazolone-induced model of eosinophilia, the synuclein 
transgenic mouse model of Parkinson’s Disease, etc., and indicated a dose-dependent effect.

α-Amylase and α-Glucosidase Inhibitors
Diabetes mellitus disrupts carbohydrate homeostasis and lipid metabolism due to defects in pancreatic functions and can lead 
to organ failure, stroke, heart arrest, loss of vision, limb amputation, and damage to the nervous system. The two major 
enzymes, α-amylase and α-glucosidase, are involved in antidiabetic treatment. Pancreatic inhibition of carbohydrate digestive 
enzymes such as α-amylase and α-glucosidase inhibitors in the intestine can help in combating secondary diabetes and 
postprandial hyperglycemia (PPHG). In a recent study, 5-amino nicotinic acid derivatives 315‒326, summarized in Figure 44, 
have been synthesized and evaluated for inhibition activity against α-amylase and α-glucosidase with IC50 values in the range 
of 12.17‒37.33 µg/mL for α-amylase and 12.01–38.01 µg/mL for α-glucosidase; see Table 3 for the inhibitory profile.237

Type I MetAPs Inhibitors
Methionine aminopeptidases (MetAPs) cleave N-terminal methionine from newly synthesized proteins and peptides distributed 
in both prokaryotes and eukaryotes, the inhibition of which is important for biological processes, subcellular location, and 
eventual degradation of proteins. MetAPs serve important physiological functions and disrupting the MetAPs gene in 
Escherichia coli (Ec MetAP1) or Salmonella typhimurium is a noxious phenomenon. In Saccharomyces cerevisiae, the inhibitor 

Figure 40 Pyridine carboxylic acid derivatives with inhibitory effects against carbonic anhydrase.
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slows the bacterial growth, either hampering map1 or map2. Therefore, MetAPs are potential targets for antibacterial and 
antifungal drug development. Inhibitors of the enzyme provide more effective treatment for bacterial and fungal infections. 
Recently, pyridine-2-carboxylic acid thiazol-2-ylamide (PACT) analogues 327‒347 (Figure 45) were checked against type 
I MetAPs inhibition activity. It is found that substitutions at position 3 of pyridine were found more effective than position 2 

Figure 41 Structures of Carbonic anhydrase inhibitors 293–312.
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substitutions and inhibition activity was enhanced when N and O atoms were connected to the pyridine ring directly, see 
Table 4.238

KMO Inhibitors
The Kynurenine pathway (KP) has multiple functions including the generation of cellular energy in the form of nicotinamide 
adenine dinucleotide (NAD+) and catabolize tryptophan. In case of inflammation, KP enzymes, such as kynurenine 3-mono
oxygenase (KMO), upregulate and produce toxic substances that may cause disorders, such as neurodegenerative 
diseases.239,240 Diclofenac (348) is known as a human KMO protein binder and inhibitor in cell lysate with low micromolar 
KD 64.8 μM and IC50 13.6 μM, respectively, and low millimolar cellular IC50 1.35 mm. (Figure 46).241,242

Figure 42 Structure of IspH inhibitor 313.

Figure 43 Structures of CCR3 inhibitor 314.

Table 3 Inhibition Study of α-Amylase and α-Glucosidase Compounds 
315–326

Compounds α-Amylase Inhibition  
μg/mL ± SEM

α-Glucosidase Inhibition  
μg/mL ± SEM

315 28.89 ± 0.102 28.09 ± 0.09
316 12.91 ± 0.04 12.72 ± 0.12

317 28.84 ± 0.03 28.61 ± 0.01

318 12.17 ± 0.14 12.01 ± 0.09
319 13.01 ± 0.07 13.11 ± 0.15

320 12.91 ± 0.08 12.79 ± 0.17

321 13.04 ± 0.02 12.99 ± 0.09
322 26.53 ± 0.08 26.27 ± 0.18

323 26.70 ± 0.06 25.97 ± 0.19

324 26.94 ± 0.02 27.02 ± 0.11
325 37.33 ± 0.02 38.01 ± 0.12

326 36.65 ± 0.03 37.47 ± 0.13

Acarbose 10.98 ± 0.03 10.79 ± 0.17
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COX-1 and COX-2 Inhibitors
Non-steroidal anti-inflammatory drugs (NSAIDs) are used against inflammation, pyrexia, and pain. Many of them follow their 
action by inhibiting cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, which are involved in the biosynth
esis of prostaglandins from arachidonic acid through a catalytic reaction. However, toxicity related to NSAIDs, such as 
ulceration, bleeding, and perforation, limits their use as anti-inflammatory drugs. Nicotinic acid (pyridine-3-carboxylic acid) 
derivatives have been demonstrated as good options for COX-1 and COX-2 inhibitors, such as drug Niflumic acid (349), and 

Figure 44 Structures of α-amylase and α-glucosidase inhibitors 315–326.

Figure 45 Structures of Type I MetAPs inhibitors 327–347.
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prodrugs Flunixin (350) and Talniflumate (351). It was reported compounds including nicotinic acid portion 352–358 (Figure 47) 
showed reduced gastric toxicity with potent activities. Some novel nicotinic acid derivatives 359–373 (Figure 47) exhibited 
COX-2 inhibitory activity with greater selectivity as compared to COX-1 inhibition. Compounds 361 and 364 have shown highly 
potent anti-inflammatory activity compared to diclofenac and indomethacin and are as potent as celecoxib. The selectivity was 
1.8–1.9-fold greater than the reference drug, celecoxib, see Table 5. Histopathological studies on nicotinic acid derivatives were 
also carried out. The results showed that there was no ulceration and that the gastric profile was safe.243

Urease Inhibitors
Urease is a nickel-containing metalloenzyme that is involved in the catalytic reaction of urea into ammonia and 
carbamate. Carbamate further hydrolyzes into bicarbonate and another molecule of ammonia is produced. This pH 
increase is associated with alkalinity and results in gastric ulcers, kidney stones, pyelonephritis, and hepatic coma. Urease 
inhibitors are required to regulate urease activity. Nicotinic and isonicotinic thiosemicarbazide derivatives 374–399 
illustrated in Figure 48 possess highly potent urease inhibitory activity, showing IC50 values of 1.13 to 19.74 μM.111

Table 4 Inhibitory Activity of Type I MetAPs Inhibitors 327–347

Compounds EcMetAPI IC50 (μM) ScMetAPI IC50 (μM)

327 > 100 > 100
328 > 100 > 100

329 5.82 ± 0.58 ND

330 > 100 ND
331 > 100 > 100

332 > 100 > 100

333 12.78 ± 0.97 62.86 ± 1.18
334 2.09 ± 0.01 2.43 ± 0.01

335 1.01 ± 0.02 > 100
336 > 100 > 100

337 9.22 ± 0.04 > 100

338 > 100 > 100
339 1.98 ± 0.01 17.04 ± 1.94

340 4.51 ± 0.36 > 100

341 6.71 ± 0.64 > 100
342 2.32 ± 0.03 > 100

343 1.41 ± 0.30 0.77 ± 0.28

344 4.49 ± 0.28 ND
345 1.22 ± 0.12 1.03 ± 0.09

346 0.26 ± 0.04 0.35 ± 0.03

347 0.38 ± 0.03 0.62 ± 0.06

Figure 46 Structure of KMO inhibitor 348.
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Multi-Kinase Inhibitors
The FDA approved Ponatinib (400), a multi-kinase inhibitor developed by Ariad Pharmaceuticals, in 2012. It currently targets 
a wide range of cancer-driver kinases. Among these are the kinases FGFR1-4, FLT3, ABL1, and RET. Inspired by this, the 

Figure 47 Structures of COX-1 and COX-2 inhibitors 349–373.

Table 5 COX-1 and COX-2 Inhibitory Activity of Compounds 359–373

Compounds COX-1 IC50 (μM) COX-2 IC50 (μM) SI

359 0.1357 ± 0.003 0.1580 ± 0.004 0.85

360 0.2794 ± 0.007 0.0495 ± 0.001 5.64

361 0.1506 ± 0.004 0.0809 ± 0.002 1.86
362 0.8378 ± 0.023 0.2690 ± 0.007 3.11

363 0.2997 ± 0.008 0.0544 ± 0.001 5.51

364 0.7909 ± 0.022 0.0973 ± 0.002 8.13

(Continued)
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discussed patent outlines a variation of Ponatinib, where the original benzimide moiety is swapped with a nicotinamide 
moiety. This change is considered a potentially more efficient and less harmful alternative to Ponatinib, especially in its 
application for treating diseases like cancer, notably acute myeloid leukemia (AML). Ponatinib (400)244,245 and HSN748 

Table 5 (Continued). 

Compounds COX-1 IC50 (μM) COX-2 IC50 (μM) SI

365 1.5640 ± 0.044 0.1200 ± 0.003 13.00

366 0.3447 ± 0.009 0.1370 ± 0.003 2.52
367 0.6905 ± 0.019 0.1170 ± 0.003 5.90

368 0.2390 ± 0.006 0.1700 ± 0.004 1.41

369 0.7533 ± 0.021 0.0409 ± 0.001 18.41
370 1.4350 ± 0.040 0.1370 ± 0.003 10.47

371 0.2860 ± 0.008 0.1600 ± 0.004 1.79

372 0.7873 ± 0.022 0.0461 ± 0.001 17.07
373 0.5313 ± 0.015 0.1100 ± 0.003 4.83

Indomethacin 0.0891 ± 0.002 0.2240 ± 0.006 0.39

Diclofenac 0.4880 ± 0.019 0.4090 ± 0.013 1.19
Celecoxib 0.5120 ± 0.014 0.0553 ± 0.001 9.26

Figure 48 Structures of urease inhibitors 374–399.
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(401)246 shown in Figure 49, were tested against a panel of disease-associated kinases, that have been demonstrated to be 
inhibited by Ponatinib. Though there were some noticeable discrepancies with some other kinases, the inhibitory profile of 
HSN748 against ABLl (T3l5I) and FLT3-ITD was interestingly similar to that of Ponatinib. ABL1 and FLT3 are mutated in 
chronic and acute myeloid leukemias, respectively. Ponatinib and HSN748 have similar activities against ABL1, ABLl 
(T3l5I). Interestingly HSN748 has a significantly lower IC50 against FLT3 (D835Y) kinase than Ponatinib (compare IC50 of 
13.8 nM for HSN748 versus 176 nM for Ponatinib, as shown in Table 6.

Most FLT3 inhibitors initially worked well but within a few months, patients relapsed due to kinase mutation, which 
decreased the treatment’s effectiveness. Therefore, HSN748 may be a more effective treatment option for drug-resistant 
AML (due to kinase mutation) compared to Ponatinib.147

Both vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor (PDGFRβ) 
are important receptor-type tyrosine kinases (RTKs) involved in vascular disease.247 It was demonstrated that compounds 
inhibiting both kinases are more effective.248 Allergan Inc. patented two series of compounds synthesized based on 
Formula I and Formula II (Figure 50). In the series of Formula 1, the most preferred compounds 402‒406 have the 
greatest potency against both VEGFR2 and PDGFRβ. In the series of Formula II, compounds 407–410 show activity 

Table 6 Ponatinib and HSN748 IC50 

Against Several Kinases

Kinases HSN748 Ponatinib

IC50 (nM)a

ABL1 1.1 0.87

ABL1 (T3151) 11.1 2.5

c-SRC ˃ 1000 4.6
FGFR1 24.4 6.9

FGFR2 11.7 6.0

FGFR3 96.4 25.0
FGFR4 125.1 46.8

FLT3 (D835Y) 13.8 176

FLT3 (ITD) 1.5 10.03
P38a/MAPK14 382.7 86.6

P70S6K/PRS6KBI 273.1 200.1

PDGFRα 10.7 3.8
PDGFRβ 10.2 7.01

RET 0.65 0.88

MNK1 202 3930
MNK2 9.36 268

Note: aIC50 was determined at Reaction Biology 
(Malvern, PA). [ATP] = 100 µM.

Figure 49 Structures of multi-kinase inhibitor 400 and 401.
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against both the VEGF and PDGF receptors. Compounds 407 and 408 have the highest activity against the VEGFR2 
receptor; while compounds 409 and 410 had the best activity against the PDGFRβ receptor (Figure 50).148

Conclusion
Pyridine is a therapeutically active moiety, which is found in innumerable compounds, of both synthetic and natural 
origin. While there is a plethora of pyridine derivatives known to date, pyridine carboxylic acid isomers and its 
derivatives hold a special place in medicinal and pharmaceutical chemistry. This is mainly due to their renowned 
biological activities, and ease of syntheses. They can be further derivatized into numerous other interesting compounds 
using well-known and well-established synthetic strategies. Hence, pyridine carboxylic acid and its derivatives can be 
easily fused to other aryl or heteroaryl moieties, thereby bringing together active pharmacophores and thus opening up 
new avenues for drug discovery.

This review has highlighted a range of patented pyridine carboxylic acid derivatives with promising activity profile 
against key biological targets. These include IRAK4 and ASK1 inhibitors with anti-inflammatory and anti-cancer 
potential, WDR5 inhibitors targeting oncogenic MYC interaction, and selective PDGFR inhibitors for the treatment of 
pulmonary arterial hypertension (PAH). Other notable applications include inhibitors of Trk, FABPs, FXIa, TGFβ, 

Figure 50 Structures of multi-kinase inhibitors 402–410.
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DHODH, TRPC6, KDM4, XO, GSK-3, PKaI, carbonic anhydrase, α-amylase, α-glucosidase, MetAPs, COX-1/COX-2, 
urease, and antiviral agents against hepatitis B. Several of these compounds are currently in various phases of clinical 
trials, and the hopes remain high regarding their success. A comprehensive summary of the enzyme targets, abbrevia
tions, and their disease relevance is provided in supporting information.

Despite this encouraging progress, several challenges remain. Many pyridine carboxylic acid derivatives suffer from 
suboptimal pharmacokinetic properties, limited target selectivity, or insufficient in vivo validations. Furthermore, the 
patented literature often lack detailed mechanistic or structural biology data, making it difficult to fully assess therapeutic 
viability. Future research should focus on enhancing the metabolic stability, improving selectivity via structure-guided 
designs, and expanding biological validations in relevant disease model. In addition, more integrated studies combining 
computational modellings, SAR optimizations, and in vivo pharmacology will be essential to translate these compounds 
into clinically successful therapies. In conclusion, pyridine carboxylic acid isomers represent a class of privileged 
scaffolds with broad therapeutic potential. This review offers a unique patent-based perspective, capturing a decade of 
industry efforts and emerging trends that may inform and inspire future academic and translational research.
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