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Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder in children, characterized 
by inattention, hyperactivity, and impulsivity. Current diagnostic methods for ADHD rely primarily on behavioral assessments, which 
can be challenging due to symptom overlap with other psychiatric disorders and significant inter-individual variability. Developing 
potential early diagnostic methods for ADHD is imperative to mitigate the risk of misdiagnosis and enhance the evaluation of 
treatment efficacy.
Methods: The study was conducted at the Department of Pediatrics, Affiliated Hospital of Jiangnan University, from November 2022 
to January 2024. Clinical data, including complete blood count, liver and kidney function tests, blood glucose levels, serum electrolyte 
tests, and serum 25-dihydroxyvitamin D3 levels, were collected. Feature selection and model construction were performed using 
various machine learning algorithms.
Results: Our results indicated that the Gradient Boosting Machine algorithm is the optimal model.
Conclusion: Our machine learning analyses suggest that the Gradient Boosting Machine (GBM) model may be the optimal choice, 
highlighting blood beta-2 microglobulin levels, red blood cell distribution width, 25-dihydroxyvitamin D3, and the percentage of 
eosinophils as key predictors of ADHD risk, thereby aiding early diagnosis. Further large-scale studies are warranted to validate these 
findings and explore the underlying mechanisms.
Keywords: ADHD, diagnosis, biomarkers, machine learning, SHAP methods

Introduction
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in children, typically 
manifesting before the age of 12.1 It is characterized by symptoms of inattention, hyperactivity, and impulsivity, with 
a higher prevalence in males than in females.2 ADHD can lead to academic challenges, impaired social relationships, and 
diminished self-esteem. Furthermore, recent data from the National Health Interview Survey (NHIS) for the years 
2020–2022 indicate that the prevalence of ever-diagnosed ADHD in children aged 5–17 years in the United States is 
11.3%.3 In China, the burden of ADHD is expected to increase due to sociodemographic transitions and growing 
awareness of diagnostic criteria. Studies report that the prevalence of ADHD among Chinese children ranges from 4.96% 
to 9.8%, with considerable regional variability. For example, a study conducted in Deyang, Sichuan Province, found 
a prevalence of 9.8% among primary school students, while another study in rural areas of China reported a prevalence of 
7.5%. These findings underscore the importance of early diagnosis and intervention to help children manage their 
symptoms and improve their overall quality of life.

Neuropsychiatric Disease and Treatment 2025:21 1075–1090                                            1075
© 2025 Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Neuropsychiatric Disease and Treatment                                          

Open Access Full Text Article

Received: 25 January 2025
Accepted: 7 May 2025
Published: 21 May 2025

N
eu

ro
ps

yc
hi

at
ric

 D
is

ea
se

 a
nd

 T
re

at
m

en
t d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0001-7608-0164
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/4.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


Currently, ADHD diagnosis primarily relies on behavioral assessments and the criteria outlined in the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5).4 Early diagnosis in clinical settings remains challenging 
due to various factors. ADHD symptoms often overlap with those of other psychiatric disorders, complicating differential 
diagnosis.5 Moreover, ADHD symptoms exhibit significant inter-individual variability and can manifest differently 
across developmental stages.5 Additionally, comorbid conditions, such as learning disabilities and mood disorders, can 
further complicate the diagnostic process.6 Furthermore, early diagnosis and intervention can significantly improve 
a child’s academic performance, social relationships, and overall well-being.7 By addressing ADHD symptoms early, 
individuals can develop coping strategies and skills to manage their challenges effectively.8 Consequently, developing 
potential early diagnostic methods for ADHD, particularly using serum biomarkers, is imperative to mitigate the risk of 
misdiagnosis and enhance the evaluation of treatment efficacy.

Recently, early diagnosis of neurodevelopmental disorders, including ADHD, using machine learning–based predic
tions hold immense potential for transforming how we understand and support individuals with these conditions. 
Machine learning algorithms are proving to be powerful tools for analyzing complex datasets, identifying patterns 
indicative of neurodevelopmental disorders, and helping physicians identify shared and distinct features that lead to 
a better understanding of these conditions’ underlying mechanisms.9 However, there are few studies focusing on the early 
diagnosis of ADHD using machine learning–based approaches. Therefore, this study aims to establish a machine 
learning–based risk probability predictive model for ADHD to aid in the early diagnosis of ADHD by integrating 
observational cohort studies and advanced machine learning algorithms. For this purpose, we collected data including 
complete blood counts, liver function assessments, kidney function evaluations, blood glucose levels, serum electrolyte 
analyses, and vitamin D level. These indicators were selected not only because they are widely accessible across all 
healthcare facility levels in China but also due to their high cost-effectiveness, making them particularly suitable for 
large-scale screening of ADHD in China.10 This study will not only enhance our understanding of the biological basis of 
ADHD but may also improve treatment strategies for timely intervention and management.

Methods
Study Design
As shown in Figure 1, this pilot prospective observational cohort study was conducted at the Department of Pediatrics, 
Affiliated Hospital of Jiangnan University, from 21 November 2022 to 12 January 2024, in accordance with our previous 
study.11 Children aged 1 to 18 years diagnosed with ADHD were considered for the ADHD group, while healthy children 
admitted to the hospital for routine check-ups were included in the control group. The basic clinical characteristics of both 
groups are detailed in Table 1. We excluded children who with digestive system disorders or other mental disorders, and those 
with missing clinical or laboratory data. To facilitate the identification of potential serum biomarkers for ADHD in clinical 
settings, we focused on differences in complete blood count, liver function tests, kidney function tests, blood glucose levels, 
serum electrolyte tests, and serum 25-dihydroxyvitamin D3 levels. These data were collected within the first 24 hours of 
admission to the department. Initially, a total of 50 features were investigated (Supplemental Table 1).

Ethical Statement
This preliminary observational pilot study was conducted in accordance with the principles of the Declaration of Helsinki 
and received ethical approval from the Institutional Review Board of the Affiliated Hospital of Jiangnan University (ID: 
LS202112R2). Participants, as well as their parents or legal guardians, were comprehensively informed about the study’s 
purpose, procedures, and potential risks and benefits. Written informed consent was obtained from all participants and 
their parents or legal guardians prior to their involvement. Participation was entirely voluntary, and participants were 
advised of their right to withdraw at any time without repercussions. Participation was entirely voluntary, and participants 
were advised of their right to withdraw at any time without repercussions. All collected data were anonymized and 
securely stored to ensure participant confidentiality, preventing the identification of individual participants during data 
collection.
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Clinical Diagnostic Criteria for ADHD
The clinical diagnostic criteria for Attention-Deficit/Hyperactivity Disorder (ADHD) are based on the DSM-5 
(Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition).12 In brief, six or more symptoms from either 
or both categories of inattention and hyperactivity-impulsivity for children up to age 16, or five or more for adolescents 
aged 17 and older and adults, must be present for at least 6 months.13 These symptoms must be inappropriate for the 
individual’s developmental level and interfere with daily functioning.13 Importantly, several symptoms must have been 

Figure 1 Flow chart of the study design.
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present before the age of 12 years. The detailed information of clinical diagnostic criteria for ADHD, including specific 
symptom lists and exclusion criteria, are shown in Supplemental Method 1.

Feature Selection
As shown in Figure 1, to mitigate multicollinearity bias, we performed Spearman correlation analysis and excluded 
variables with significant correlations (R > 0.9), in accordance with the methodology outlined in the aforementioned 
study initially.14 Next, we performed feature selection using both univariable and multivariable logistic regression 
analyses, based on methods from our previous studies.15 Additionally, we constructed a traditional risk probability 
predictive model for ADHD using a nomogram, and verified the discrimination and efficacy of our feature selection by 
comparing the receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curve, as 
described in a previous study.14

Model Construction and Evaluation
As shown in Supplemental Table 2, a total of 15 features were selected for the development of the prediction models. We 
employed five different machine learning (ML) models to predict the risk of ADHD: 1. Adaptive Boosting (AdaBoost), 
2. Lasso Regression (Lasso), 3. Random Forest (RF), 4. Gradient Boosting Machine (GBM), 5. Extreme Gradient 
Boosting (XGBoost), 6. Support Vector Machine (SVM), 7. K-Nearest Neighbors (KNN), 8. Multilayer Perceptron 
(MLP), and 9. Decision Tree (DT). The use of multiple models enabled us to compare their performance and identify the 
most effective approach for predicting the risk of ADHD. To evaluate the reliability of these models, we used three 
primary metrics: the area under the Receiver Operating Characteristic (ROC) curve (AUC), the Precision-Recall Curve 
(PRC), and Decision Curve Analysis (DCA).14

Model Interpretation
The interpretability of machine learning has always been challenging.17 To further explain how each feature variable 
affects and contributes to the final model, we employed the SHapley Additive eXplanation (SHAP) method to interpret 
the highest-performing black-box model based on previous studies.18 In this study, we evaluated the importance of each 
feature by computing the mean absolute SHAP value. We also plotted the SHAP values for each feature across samples 
to better understand the overall patterns and the impact range of features on the risk of ADHD. We also utilized the 
SHAP dependency plot to evaluate the effects of each feature. Additionally, we provided two examples of SHAP 
predictions for demonstration purposes. Furthermore, to facilitate the utility of the model in clinical settings, the final 
prediction model was implemented into a web application developed using the Streamlit Python framework and available 
at https://adhdrisk.streamlit.app/.19

Table 1 The Basic Clinical Characteristics of Participants Involved in This Study

Characteristic Overall, N = 740 Control, N = 242 ADHD, N = 498 P-value#

Age, Mean (SD) 8.95 (2.46) 8.74 (2.91) 9.05 (2.20) 0.92
Sex, n (%) 0.74

Male 559 (76) 181 (75) 378 (76)

Female 181 (24) 61 (25) 120 (24)
Education, n (%) <0.001

Kindergarten 31 (4.2) 27 (11) 4 (0.8)

Primary school 556 (75) 152 (63) 404 (81)
Junior high school 153 (21) 63 (26) 90 (18)

BMI, Mean (SD) 16.84 (1.70) 16.87 (1.63) 16.82 (1.74) 0.73
Birth type, n (%) 0.19

Vaginal Delivery 670 (91) 224 (93) 446 (90)

Cesarean Section 70 (9.5) 18 (7.4) 52 (10)

Notes: #Wilcoxon rank sum test; Pearson’s Chi-squared test. 
Abbreviation: BMI, Body Mass Index.
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Mendelian Randomization Analysis
Mendelian Randomization (MR) analysis is a powerful technique that leverages genome-wide association studies (GWAS) 
data and genetic variants to explore potential relationships between modifiable exposures and various outcomes or diseases.20 

GWAS identifies genetic variants associated with specific traits, diseases, or outcomes, while genetic variants, especially 
single-nucleotide polymorphisms (SNPs), serve as instrumental variables (IVs) in MR studies.21 MR analysis has been 
widely used to assess the potential effects of various exposures on disease risk.21 In this study, to explore potential association 
between ADHD and potential serum biomarkers, we conducted bi-directional Mendelian Randomization analysis based on 
previous studies.22–24 Supplemental Method 2 provides detailed information about the criteria for Mendelian randomization 
analysis, and Table 2 shows the detailed information of GWAS data used in this study. All GWAS data involved in this study 
were obtained from the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/).25 We then utilized the SNPnexus database 
(https://www.snp-nexus.org/v4/), a web-based tool that provides an aggregate set of functional annotations for SNPs, to map 
SNPs to their closest genes based on IVs of potential serum biomarkers (detailed SNPs and associated genes are shown in 
Supplemental Table 3).26 And the analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment using the R package “clusterProfiler”,27,28 were conducted based on our preceding work to explore the 
biological pathways involving the pathophysiology of ADHD.22,24,29

Statistical Analysis
In this study, data are presented as mean ± standard deviation (SD). The normality of the data was assessed using the 
Shapiro–Wilk test. For data following a normal distribution, statistical comparisons were conducted using unpaired t-tests, 
one-way ANOVA, or two-way ANOVA, followed by Tukey’s post-hoc tests for multiple comparisons. Non-normally 
distributed data were analyzed using the Mann–Whitney U-test for two groups or the Kruskal–Wallis test for multiple 
groups. All statistical analyses were performed using Python version 3.11.9 (https://www.python.org) and R Version 4.4.1 
(https://cran.r-project.org/). A P-value of less than 0.05 was considered to indicate statistical significance. The raw code for 
the study is available through our GitHub repository (https://github.com/PediatricLab-YueyingLiu/ADHDML).

Table 2 Detailed Information of GWAS Data Used in the Study

GWAS ID Years Trait Sample Size Population Database/PMID*

ieu-a-1183 2017 ADHD 55,374 European IEU Database
ebi-a-GCST90025948 2021 Serum phosphate levels 400,159 European IEU Database 

PMID: 34226706

ebi-a-GCST90025980 2021 Aspartate aminotransferase levels 436,275 European IEU Database 
PMID: 34226706

prot-c-3485_28_2 2019 Blood beta-2-microglobulin 3,080 European IEU Database 

PMID:28240269
ebi-a-GCST004606 2017 Blood eosinophil counts 172,275 European IEU Database 

PMID:27863252

ebi-a-GCST90018973 2021 Total bilirubin levels 34,829 European IEU Database 
PMID:34594039

ebi-a-GCST90000615 2020 Vitamin D level 417,580 European IEU Database 
PMID: 32242144

ukb-d-30070_irnt 2018 Red blood cell distribution width 350,473 European IEU Database

ebi-a-GCST90025992 2021 Serum albumin levels 400,938 European IEU Database 
PMID: 34226706

Notes: *IEU OPEN GWAS Database (https://gwas.mrcieu.ac.uk/).16
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Results
Data Processing Results and Features Selection
As shown in Figure 1 and Table 1, after selection, a total of 740 volunteer participants were involved in this study, and 
there were no significant differences in age, sex, BMI, and birth type between the two groups (P > 0.05). Although there 
was a significant difference in educational attainment between the two groups (P < 0.05), educational attainment itself 
does not directly affect the risk of developing ADHD. Recent research has indicated that socioeconomic status can 
influence both the risk of ADHD and educational attainment.30 Children from lower socioeconomic backgrounds may 
have less access to resources and support, which can exacerbate the challenges associated with ADHD.31

Then, univariable and multivariable logistic regression analyses were performed for feature selection (Figure 2A and B). 
A total of 15 features, including serum 25-dihydroxyvitamin D, were selected from an initial pool of 50 features (Supplementary 
File 1). Notably, high odds ratios (ORs) for absolute eosinophil count were observed in both univariable and multivariable logistic 
regression analyses. This may be attributed to the fact that eosinophils are a type of white blood cell involved in the body’s immune 
response, and research has suggested that immune system abnormalities, such as inflammation and allergic responses, could 
potentially influence brain function and behavior.32 Additionally, there is no significant correlation existed between the variables, 
as illustrated in Supplementary File 1. The nomogram visually combines multiple factors, including serum 25-dihydroxyvitamin 
D, to deliver an overall risk assessment (Figure 2C). The receiver operating characteristic (ROC) curve validated the discrimina
tion and efficacy of our feature selection compared to the single factors, with highest AUC scores in the nomogram model (0.87) 
(Figure 2D). The calibration curve further supports the discrimination and efficacy of our feature selection, as neither the bias- 
corrected nor the apparent line is far from the ideal line (Figure 2E). Finally, the decision curve analysis (DCA) supports the 
model’s potential clinical utility by comparing the “Model” line to the “None” line and the “All” line (Figure 2F). In summary, 
after data processing and feature selection via univariable and multivariable logistic regression analyses, our study demonstrated 
that a total of 15 features could serve as a predictive model for the risk probability of ADHD to aid in the early diagnosis of ADHD.

Explainable Machine Learning Analyses Results
After univariable and multivariable logistic regression analyses, we applied several widely used machine learning algorithms, 
including Adaptive Boosting (AdaBoost), Lasso Regression (Lasso), Random Forest (RF), Gradient Boosting Machine (GBM), 
Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Multilayer Perceptron 
(MLP), and Decision Tree (DT), to further develop a machine learning–based predictive model for the probability of ADHD risk. 
As shown in Figure 3A–C, we evaluated the performance of these predictive models using the receiver operating characteristic 
(ROC) curve, the precision-recall curve (PRC), and the decision curve analysis (DCA). Among these 9 different machine learning 
algorithms, the GBM model demonstrated the highest performance in the ROC (0.91), PRC (0.95), and DCA evaluations. 
Therefore, we chose the GBM model as the optimal model for this study. Additionally, we determined the optimal number of 
features among the machine learning algorithms by comparing the AUC scores of the ROC curves for different machine learning 
models with varying feature numbers (Figure 3D). The results indicated that 8 features constituted the optimal number for GBM 
model.

To facilitate interpretability, we applied the Shapley Additive Explanations (SHAP) method to the GBM-based predictive 
model used in this study. This method illustrates how the features affect the model’s output (ADHD risk), as indicated in a previous 
study.14 The summary bar plot (Figure 3E) shows the eight evaluated risk factors based on their SHAP values, with red and blue 
dots in each feature importance row representing high-risk and low-risk values, respectively. The summary dot plot (Figure 3F) 
also displays the important features and their ranking, with both plots highlighting the key role of top 4 features including levels of 
blood beta 2 microglobulin, red blood distribution width, 25-dihydroxyvitamin D3, and percentage of eosinophil in predicting risk 
probability of ADHD. The SHAP dependence plot (Figure 4A) was used to understand how individual features affect the GBM 
model’s output, with SHAP values higher than zero indicating a higher risk of ADHD. Two typical examples were provided, one 
for a low-risk (healthy) individual (Figure 4B) and another for a high-risk (ADHD) individual (Figure 4C). These examples 
suggest that vitamin D levels may be the key feature in lowering the risk probability of ADHD, as they tend to decrease the risk in 
both low-risk and high-risk scenarios. The SHAP Force Plot shows how a machine learning model arrives at a specific prediction 
for an individual instance (Figure 4D). The final prediction model was implemented into a web application to facilitate its utility in 
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Figure 2 Univariable and multivariable logistic regression analyses. (A and B) Univariable and multivariable logistic regression analyses. (C) Nomogram is conducted to 
predict the risks probability of ADHD. (D) The ROC (Receiver Operating Characteristic) curve. (E) The Calibration curve. The closer the Bias-corrected or Apparent line is 
to the Ideal line, the better the model’s calibration. (F) DCA (Decision Curve Analysis) curve. The “None” line represents the net benefit of not using any prediction model 
and the line labeled “All” represents the net benefit of treating all patients as high risk, regardless of their actual risk level. By comparing the “Model” line to the “None” line 
or “All” line, the DCA curve help evaluate the clinical usefulness of a predictive model.
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Figure 3 Comprehensive evaluation of machine learning models. (A–C) ROC (Receiver Operating Characteristic) curve, Precision-Recall (PRC) curve and DCA (Decision 
Curve Analysis) curve of different machine learning models. (D) AUC score in ROC curve of different machine learning models with varied feature numbers. (E) Summary 
bar plot by the SHAP method, showing the average impact of each feature on the risk of ADHD, with features sorted by importance. (E) Summary dot plot by the SHAP 
method, providing a more detailed view of each feature’s impact. Each dot represents a single participant, with color indicating the feature value (red for high, blue for low) 
and horizontal position indicating the impact on the risk of ADHD. (F) SHAP summary dot plot illustrating the overall distribution of each feature’s influence, where red 
generally indicates high values and blue indicates low values for the corresponding feature.
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Figure 4 (A) The SHAP dependence plot of TOP 4 features selected by the GBM model, deemed most important for predicting ADHD risk. These plots show the relationship 
between individual feature values and their impact on the model’s output (ADHD risk prediction). SHAP values (the y-axis) above zero push the model’s decision towards predicting 
ADHD, while values below zero push the decision away from predicting ADHD. (B and C) Representative waterfall plots for a healthy child and an ADHD child. Red arrows indicate 
features that increase the risk of ADHD, while blue arrows indicate features that decrease the risk of ADHD. (D) Force plot for all participants. The x-axis represents individual 
participants, ordered by their predicted ADHD risk, and the y-axis represents the contributions of different features to the model’s output.
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Figure 5 The website application to estimate ADHD risk. The user-friendly application of the final GBM model, which uses 8 features, is accessible for ADHD prediction.
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clinical scenarios, as shown in Figure 5, and is available through https://adhdrisk.streamlit.app/. In summary, our machine learning 
analyses suggest that the GBM model may be the optimal choice, highlighting blood beta-2 microglobulin levels, red blood cell 
distribution width, 25-dihydroxyvitamin D3, and the percentage of eosinophils as key predictors of ADHD risk, thereby aiding 
early diagnosis.

Mendelian Randomization Analyses Results
To further explore and verify the association between the selected 8 features from the GBM predictive model and ADHD 
symptoms, bi-directional Mendelian randomization analyses were conducted based on our previous study.24,29 As shown 
in Figure 6A and B, bi-directional Mendelian randomization analyses indicated that only serum 25-dihydroxyvitamin D3 
was associated with ADHD symptoms in both directions (P < 0.05), and ADHD symptoms may influence total bilirubin 
levels (Figure 6B). Furthermore, we performed bi-directional colocalization analyses between serum vitamin D and 
ADHD symptoms to verify their association. The results indicated that vitamin D influences ADHD symptoms on 
chromosome 2 (Figure 6C), whereas ADHD symptoms influence vitamin D levels on chromosome 1 (Figure 6D). In 
other words, serum 25-dihydroxyvitamin D3 may serve as a potential hub predictive biomarker to aid in the early 
diagnosis of ADHD.

Finally, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses to explore the potential biological mechanisms underlying the impact of vitamin D on ADHD 
symptoms, based on genes associated with SNPs used as instrumental variables (IVs) for serum vitamin D (Figure 6E 
and F). GO analysis highlighted the uronic acid metabolic process, glucuronate metabolic process, and neutral lipid 
metabolic process, whereas KEGG analysis highlighted the ascorbate and aldarate metabolism, pentose and glucuronate 
interconversions, and glycerolipid metabolism. In summary, our results suggest that serum 25-dihydroxyvitamin D3 may 
serve as a potential hub predictive biomarker to aid in the early diagnosis of ADHD, and that vitamin D may potentially 
affect ADHD symptoms via carbohydrate and lipid metabolism.

Discussion
Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by persistent patterns of 
inattention, hyperactivity, and impulsivity that interfere with daily functioning and development. People with ADHD may 
have difficulty staying on task, sustaining focus, and managing impulsive behaviors.12 Although the number of ADHD 
diagnoses has sharply increased recently, underdiagnosis of ADHD is still common, which can have significant con
sequences, including chronic stress, low self-esteem, and difficulties in personal and professional lives.33 Given the 
challenges in diagnosing ADHD accurately, identifying reliable biomarkers for ADHD is crucial. Therefore, blood-based 
biomarkers are being explored for their potential to aid in ADHD diagnosis, as they can help in the early detection of 
ADHD and lead to a better understanding of the disorder and the development of new therapeutic strategies.2 Additionally, 
non-invasive testing simplifies the process and makes it more comfortable, especially for children with ADHD.34 Recently, 
machine learning has been rapidly transforming the field of neurology, offering powerful tools for diagnosis, prognosis, and 
treatment. A previous study demonstrated that machine learning can identify individuals at high risk of developing certain 
neurological conditions, such as Alzheimer’s disease, multiple sclerosis, and brain tumors, enabling earlier interventions and 
preventive strategies.35 Therefore, our study aims to develop a machine learning–based risk probability predictive model for 
ADHD, integrating observational cohort studies with advanced machine learning algorithms to aid in early diagnosis.

In this study, we initially selected features via univariable and multivariable logistic regression analyses, which 
revealed that 15 features—including serum 25-dihydroxyvitamin D—were selected as predictors of ADHD risk. 
Then, we established a traditional predictive model using a nomogram, and the ROC, calibration, and DCA curves 
demonstrated good discrimination and efficacy for our feature selection. Next, we employed various machine 
learning algorithms to further refine the number of features and develop prediction models based on the selected 
clinical features from univariable and multivariable logistic regression analyses. The Gradient Boosting Machine 
(GBM) model demonstrated the highest performance, with an AUC of 0.91 and 0.95 in the ROC and PRC curves 
respectively. Eight features, including serum 25-dihydroxyvitamin D, were identified as the optimal set for the 
GBM model. The Shapley Additive eXplanation (SHAP) method was employed to interpret this model, revealing 
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Figure 6 Bi-directional Mendelian Randomization analysis. (A and B) Forest plot of Mendelian randomization and reverse Mendelian randomization analysis. (C and D) Bi- 
directional colocalization analysis between serum vitamin D and ADHD symptoms, suggesting that vitamin D can serve as a biomarker of ADHD. (E and F) Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant pathways involving genes associated with SNPs using as the 
instrumental variables (IVs) of serum vitamin D.
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the pivotal role of the top four features—blood beta-2 microglobulin levels, red blood cell distribution width, 25- 
dihydroxyvitamin D3, and the percentage of eosinophils—in predicting ADHD risk probability. The final prediction 
model was deployed as a web application to facilitate early diagnosis and intervention in clinical scenarios. 
However, it should be used as a supportive tool alongside comprehensive clinical assessments, and additional 
validation remains necessary.

Bi-directional Mendelian randomization analyses were conducted to explore and verify the association between the 
selected eight features from the GBM prediction model and ADHD symptoms, based on our previous study. The results 
indicated that serum 25-dihydroxyvitamin D3 was associated with ADHD symptoms in both directions, and that ADHD 
symptoms may affect total bilirubin levels. Recently, increasing evidence has supported the crucial role of vitamin D in 
various neurological disorders,36 and research indicates that vitamin D may play a role in protecting against Parkinson’s 
disease by supporting neuronal health and reducing inflammation.36 Moreover, there is growing evidence suggesting 
a link between serum vitamin D levels and ADHD. Studies have consistently found that children and adolescents with 
ADHD tend to have significantly lower serum concentrations of 25-dihydroxyvitamin D3 compared to healthy controls.37 

Although there is still limited research directly linking total bilirubin levels to ADHD, elevated bilirubin levels can 
influence neuroinflammation and trigger neuroinflammatory responses.38 This neuroinflammation might influence neu
rological conditions, including ADHD.39

The bi-directional colocalization analyses also supported the association of serum 25-dihydroxyvitamin D3 with 
ADHD symptoms in both directions. These results highlight the potential value of serum 25-dihydroxyvitamin D3 as 
a biomarker for predicting the risk probability of ADHD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were conducted to explore the potential biological mechanisms under
lying the impact of vitamin D on ADHD symptoms based on genes associated with SNPs used as instrumental variables 
(IVs) for serum vitamin D. GO analysis highlighted the uronic acid metabolic process, glucuronate metabolic process, 
and neutral lipid metabolic process, and KEGG analysis highlighted the ascorbate and aldarate metabolism, pentose and 
glucuronate interconversions, and glycerolipid metabolism. Research has indicated that children with ADHD may have 
altered carbohydrate metabolism, including changes in the levels of certain uronic acids.40 Uronic acids, such as 
glucuronic acid, are involved in detoxifying various substances in the body, particularly certain environmental pollutants 
like Bisphenol-A (BPA) and Diethylhexyl Phthalate (DEHP). A recent study involving children with ADHD, autism 
spectrum disorder (ASD), and neurotypical controls indicated that the efficiency of glucuronidation for BPA was reduced 
by about 17% in children with ADHD compared to the control group.41 Glycerolipid metabolism involves the synthesis 
and breakdown of glycerolipids, which include triglycerides and phospholipids.42 This process is crucial for maintaining 
cellular energy balance and producing signaling molecules.42 Neutral lipids, such as triglycerides, play a significant role 
in this metabolic pathway.43 In the context of ADHD, research has shown that individuals with ADHD may have 
imbalances in their lipid profiles, such as higher levels of triglycerides and lower levels of HDL (good cholesterol).44,45 

These imbalances can influence brain function and behavior, highlighting the importance of lipid metabolism in the 
context of ADHD. Ascorbate and aldarate metabolism are crucial pathways for maintaining cellular health and protecting 
against oxidative damage.46 In the context of ADHD, antioxidants play a significant role in mitigating oxidative stress, 
which is often elevated in individuals with ADHD.47 Oxidative stress can damage cells and tissues, including those in the 
brain, potentially exacerbating ADHD symptoms. Additionally, recent studies indicate that antioxidant therapy might 
improve symptoms in both ADHD and epilepsy (potentially co-occurring disorders) by reducing oxidative damage and 
inflammation.48,49 Furthermore, advanced studies have indicated that individuals with ADHD may experience difficulties 
with theory of mind skills—the cognitive ability to understand that others have their own mental states. Children with 
ADHD also exhibit significantly altered brain activity compared to typically developing controls, including increased 
amplitude of low-frequency fluctuation and decreased functional connectivity in various brain regions.50,51 Growing 
evidence suggests that oxidative stress may contribute to the pathophysiology of these symptoms, and vitamin D may 
alleviate them due to its antioxidant and anti-inflammatory properties within the brain.52 Taken together, these findings 
suggest that serum 25-dihydroxyvitamin D3 may serve as a central biomarker for ADHD risk, with vitamin D potentially 
influencing ADHD symptoms via its roles in carbohydrate metabolism, lipid metabolism, and regulation of the 
antioxidant system.
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Limitation
There are several limitations to this study. First, this study was conducted at a single center in China and involved 
Chinese populations, so the findings may not be directly applicable to other populations or ethnicities. Second, this study 
developed a machine learning-based prediction model with 740 participants, which is a decent sample size. Further 
external validation is still required to assess the generalizability of this model. Third, the pilot prospective observational 
cohort study covered a relatively short period. Further longitudinal data and follow-up assessments are required to 
provide more robust evidence for the utility of serum 25-dihydroxyvitamin D3 as a biomarker for ADHD. Fourth, ADHD 
is a complex neurodevelopmental disorder, and a single biomarker may not be sufficient to capture its full complexity. 
Further research investigating other potential biomarkers could provide a more comprehensive understanding of ADHD 
pathogenesis. Fifth, this study does not provide direct mechanistic insights into how vitamin D deficiency contributes to 
ADHD pathogenesis. Further experimental studies are needed to elucidate the underlying biological mechanisms. Finally, 
although this study suggests that serum 25-dihydroxyvitamin D3 could be a promising biomarker for ADHD, its clinical 
utility and cost-effectiveness need to be further evaluated in real-world settings before it can be widely implemented in 
clinical practice.

Conclusion
In conclusion, we successfully developed a machine learning (ML) model to predict the risk probability of ADHD using 
clinical data obtained from real-world clinical practice. The GBM model demonstrated superior performance compared 
with five other machine learning algorithms in this study. Additionally, the Shapley Additive eXplanation (SHAP) 
method was applied to elucidate the ML model. This approach not only helped determine the importance of each feature 
in the model but also demonstrated how each feature influenced the model. Finally, we explored and verified the 
association between the selected eight features from the ML model and ADHD symptoms using bi-directional Mendelian 
randomization analyses. Taken together, our study successfully establishes a machine learning–based risk probability 
predictive model for ADHD, indicating that serum 25-dihydroxyvitamin D3 may serve as a potential hub predictive 
biomarker to aid in the disorder’s early diagnosis and that vitamin D may potentially affect ADHD symptoms through 
carbohydrate and lipid metabolism pathways.
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